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Intermediate filament 
reorganization dynamically 
influences cancer cell alignment 
and migration
Andrew W. Holle1, Melih Kalafat1, Adria Sales Ramos1, Thomas Seufferlein2, 
Ralf Kemkemer1,3,*, & Joachim P. Spatz1,4,*

The interactions between a cancer cell and its extracellular matrix (ECM) have been the focus of an 
increasing amount of investigation. The role of the intermediate filament keratin in cancer has also 
been coming into focus of late, but more research is needed to understand how this piece fits in the 
puzzle of cytoskeleton-mediated invasion and metastasis. In Panc-1 invasive pancreatic cancer cells, 
keratin phosphorylation in conjunction with actin inhibition was found to be sufficient to reduce 
cell area below either treatment alone. We then analyzed intersecting keratin and actin fibers in the 
cytoskeleton of cyclically stretched cells and found no directional correlation. The role of keratin 
organization in Panc-1 cellular morphological adaptation and directed migration was then analyzed by 
culturing cells on cyclically stretched polydimethylsiloxane (PDMS) substrates, nanoscale grates, and 
rigid pillars. In general, the reorganization of the keratin cytoskeleton allows the cell to become more 
‘mobile’- exhibiting faster and more directed migration and orientation in response to external stimuli. 
By combining keratin network perturbation with a variety of physical ECM signals, we demonstrate the 
interconnected nature of the architecture inside the cell and the scaffolding outside of it, and highlight 
the key elements facilitating cancer cell-ECM interactions.

The basis for the self-powered movement of any cell is the cytoskeleton, a cell type-specific mixture of microfil-
aments, microtubules, and intermediate filaments. Continual reorganization and restructuring of cytoskeletal 
components is essential to the survival of cells, and is crucial for a number of processes including focal adhesion 
turnover, morphological stability, and cell migration1,2. The actin microfilament network in particular, which has 
been described as the lead ‘actor’ in cell migration1, has been well characterized in this respect2–6, and has been 
shown to be sufficient for the formation of metastasis-causing invadopodia2. However, the interactions between 
this network and other cytoskeletal elements, like microtubules and intermediate filaments, have only recently 
been shown to be relevant1,7,8.

Keratin, which encompasses an intermediate filament family containing over 50 isomers split into two 
pH-based subtypes, plays a major role in cell-matrix interactions by stabilizing focal adhesion sites and playing 
a role in traction force generation9,10. Keratinocytes lacking keratin are capable of faster ECM adhesion, and are 
subsequently able to migrate twice as fast as wild type cells11. The loss of keratin isomers found in hepatoma 
cells is sufficient to decrease cancer cell stiffness around force-sensing focal adhesions, as well as interfere with 
actin-RhoA-ROCK mechanotransduction of ECM stiffness, illustrating the importance of keratin in mechano-
sensitive cancer biology12,13. Keratin networks are also capable of responding to local force1,14, underscoring the 
role keratin plays in determining the bulk stiffness of a cell15,16.

Although keratin loss does not affect actin levels or network organization15, there are a number of studies that 
have linked actin microfilaments and keratin intermediate filaments. F-actin assembly inhibition has been shown 
to quickly increase potentially compensatory keratin formation17. The molecular scaffolds stratifin and plectin 
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have been shown to stabilize a complex of actin and keratin intermediate fibers, providing a physical linkage 
allowing for indirect force transmission and giving a malignant cell an arsenal of cytoskeletal components from 
which to initiate metastatic migration and invasion18,19.

Although the intermediate filament vimentin has been heavily implicated in the cancer invasion-conducive 
epithelial to mesenchymal transition (EMT)20,21, keratin has not traditionally been thought of as a key player in 
the mechanical basis of cancer invasion and metastasis. The lack of keratin in invadopodia2 and comparative 
dearth of methods to study intermediate filaments have reinforced this22. However, the use of keratin as a classi-
cal diagnostic and prognostic marker in epithelial tumors and the observed down-regulation of keratins during 
epithelial-mesenchymal transition (EMT) supports the notion that keratins are hardly innocent bystanders dur-
ing the metastasis process23–25. There are conflicting and often cell-type specific effects of keratin knockdown and 
up-regulation in cancer cells, both of which have been found to curtail adhesion, migration, and invasion25–28. 
The ability of keratin to affect cancer cell migration and invasion is likely the result of altered phosphorylation 
dynamics, with effects from both increases and decreases in phosphorylation reported29–31.

Sphingosylphosphorylcholine (SPC) is a naturally occurring lipid capable of activating JNK and Erk kinases, 
which in turn stimulate phosphorylation of K8 and K18 keratins31. SPC also affects the intermediate filament 
vimentin by phosphorylating S71. This phosphorylation of intermediate filaments leads to an increase in perinu-
clear keratin and vimentin organization32,33. SPC has also been shown to enhance migration through micropo-
res33,34 in a manner mirroring the EMT-like effects that have been observed in keratin null or keratin knockdown 
cells11,35. Indeed, primary cancer cells isolated from tumors also exhibited keratin organization typical of SPC 
treatment36. Cancer cells containing keratin mutants corresponding to the same phosphorylation sites that 
SPC targets show increased levels of cell migration and invasion37. As a result of this SPC-mediated priming of 
migratory and invasive machinery, as well as the correlation between certain types of cancer and SPC expression  
in vivo38 and its recent successful evaluation as a treatment target itself39, SPC is a valuable tool for studying the 
role of keratin reorganization in cancer metastasis. This value is magnified when SPC is used in conjunction with 
the presentation of controlled substrate topography, as the cytoskeleton is a key player in a cell’s morphological 
adaptation to topographical ECM cues.

In general, cancer cells are exposed to physical signals that can direct their migration and invasion, and must 
translate those signals into cellular responses in a process known as mechanotransduction40. One example of a 
physical signal providing this stimulation is substrate topography41,42, which is capable of directing cell polariza-
tion and migration in a process known as contact guidance43. This phenomenon can be stimulated and observed 
with the aid of microstructures such as nanogrooves44,45 and micropillars46,47. One goal of creating artificial sub-
strates for in vitro cancer cell studies is to mimic the in vivo tumor microenvironment; by identifying and leverag-
ing molecular mechanisms of cancer behavior in vitro, new treatments can be developed and improved.

It is well known that ECM stiffness is altered in the tumor microenvironment48, although in systems designed 
to test both substrate rigidity and substrate topography in the context of alignment, cancer cells were found to 
be far more influenced by topography than rigidity, including microgrooves and pillars49. Microgrooves with 
widths between 25 and 120 microns have been used to mimic blood vessels present in vascular tumors50, while 
nanogrooves may better mimic the arrangement of nano-scale ECM fibers in the tumor microenvironment43.

In addition to substrate topography, cancer cells are exposed to a wide range of mechanical forces, exerted 
both by the growing tumor and the pulsatile flow encountered during intravasation into the circulatory system. 
Cells exposed to constant strain generally align themselves in the direction of substrate stretch51,52, while those 
exposed to cyclic strain generally align perpendicular to the direction of substrate stretch53,54. While there is a 
clear physiological basis for cyclic substrate strain, it can also be used as an experimental tool to investigate if 
keratin phosphorylation, altered by SPC, affects the overall morphological adaptation to stretch, a question that 
has not been answered in the context of cancer cells. The link between cytoskeletal elements like actin and kera-
tin and the microtopographical features a cancer cell adapts to are inherently linked, presenting a clear need for 
integrative analysis of both systems.

In this work, we apply SPC-mediated keratin reorganization, substrate topography, and cyclic substrate stretch 
to cells both independently and in combination to determine if keratin organization affects contact guidance 
and mechanically-induced morphological adaptations in Panc-1 epithelioid carcinoma cells. With the aid of 
several image analysis metrics, we have found that Panc-1 cells with altered keratin networks are capable of 
more dynamic force-sensitive orientation and faster, more directed migration in response to nano and micro-
topographical patterns. We have also made observations on the role of topographical conditions on cancer cell 
migration on grooved and pillared substrates, and documented optimal cyclic strain conditions for cancer cell 
realignment with and without keratin phosphorylation.

Results and Discussion
Keratin phosphorylation does not affect Panc-1 cell area but does affect actin inhibition 
responses. The effects of cytoskeletal elements on cell morphology were analyzed by treating Panc-1 cells 
on flat PDMS substrates with chemical inhibitors of microtubules (nocodazole), and actin (cytochalasin D) in 
conjunction with keratin phosphorylation (SPC). Phase contrast images were captured in 6.5 minute intervals, 
starting 45 minutes prior to treatment and finishing once equilibrium area was reached. Cell area at each time 
point was calculated from cell outlines, with the area at each time point normalized to the area of the cell imme-
diately prior to treatment (Fig. 1A).

In untreated cells, the keratin network spans the cell from the perinuclear region to the cell membrane 
(Fig. 1D)33, while the SPC treatment concentrates the keratin almost completely around the nucleus (Fig. 1E), a 
pattern that is also seen in the intermediate filament vimentin (Fig. 1F,G). The absolute and normalized areas of 
untreated and SPC-treated cells were found to be equivalent over the course of the treatment (Fig. 1B). As with 
SPC treatment alone, nocodazole either alone or in parallel with SPC did not have a significant impact on cell area 
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up to 100 minutes after treatment (Fig. 1B), allowing for the conclusion that microtubules do not play a significant 
role in the stabilization of cell area. Cytochalasin D treatment has previously been reported to be sufficient to 
drastically reduce cell area55, and in Panc-1 cells a 46% reduction was observed (Fig. 1C). Interestingly, this effect 
appears to be enhanced by SPC treatment, with parallel application resulting in a cell area decrease of as much as 
59% (Fig. 1C), significantly larger (p <  0.01) than the decrease in area from Cytochalasin D alone. Based on these 
results, it appears that keratin and actin dynamics are interconnected- when keratin reorganizes, leaving a void in 
the previously enmeshed cortical region of the cell, the actin cytoskeleton may be more free to reorganize without 
the steric hindrance that a well defined keratin network provides. This makes keratin an attractive element for 

Figure 1. Keratin Phosphorylation and Cytoskeletal Inhibitors. (A) Images of single cells were taken both 
45 minutes before and 90 minutes after application of inhibitors or SPC. (B) Average normalized cell area 
was calculated from the time of application to equilibrium (~90 minutes) and (C) final equilibrium values for 
normalized cell area for each treatment showed a significant difference between Cytochalasin D treatment alone 
and treatment in conjunction with keratin phosphorylation (**p <  0.01 by ANOVA). Untreated keratin and 
vimentin distribution (D,F) was altered upon application of SPC and resulted in perinuclear organization (E,G). 
Scale bars =  50 μ m (A,D,E). SPC- Sphingosylphosphorylcholine, Noc- Nocodazole, CytoD- Cytochalasin D.



www.nature.com/scientificreports/

4Scientific RepoRts | 7:45152 | DOI: 10.1038/srep45152

perturbation- on its own, SPC treatment will not affect simple cellular metrics like spread area, but it can free up 
cytoplasmic space through which the more responsive actin network can move.

Keratin dynamics are independent of actin orientation in stretched Panc-1 cells. Structural 
interactions between the actin and keratin networks were analyzed by comparing their spatial orientation in rela-
tion to each other. To do this, cells on flat control and cyclically stretched (2 Hz, 8%) substrates were stretched for 
eight hours and stained for both actin and keratin, and a custom ImageJ macro was used to correlate cytoskeletal 
alignment (Fig. 2A–D). Electron microscopy performed after solubilizing non-keratin cytoskeletal elements33 was 
used to compensate for the fact that immunofluorescence was not sufficient to visualize the keratin network at the 
periphery of the cell (Fig. 2E–H).

For cells on unstretched control PDMS substrates, the orientation of the actin fibers was randomly distrib-
uted, while cells exposed to cyclic strain exhibited fibers aligned perpendicularly to the direction of force. These 
alignment patterns were unaffected by SPC-mediated keratin network phosphorylation (Fig. 2K). Cells plated on 
unstretched substrates showed no preferential alignment of the perinuclear or peripheral keratin network, but 
did exhibit keratin alignment perpendicular to the direction of strain in both the periphery and the perinuclear 
regions, although at a lower magnitude than the actin fiber alignment (Fig. 2I,J). SPC treatment was sufficient 
to suppress this mechanoresponse in the perinuclear region of the cell, but in the periphery, alignment was only 
reduced by 33% (Fig. 2J). Higher levels of keratin alignment in the periphery of the cell during cyclic strain could 
be a result of the increasing role of mechanosensitive focal adhesion activity and turnover56.

Correlation coefficients were calculated using orientation values for any actin and keratin fibers found to 
intersect. From these measurements, an average correlation coefficient was calculated for each experimental 
condition (Fig. 2L). Although the orientation of the keratin in the stretch experiments had a slight alignment 
bias perpendicular to the direction of pull, no significant correlation between actin orientation and keratin ori-
entation in fiber intersection points was found, as all values were statistically equivalent to 0. This result is sur-
prising given the fact that both systems realign in the same direction, but it reinforces the hypothesis that the 
two networks behave independently and likely do not bind to each other during the realignment process. In 
special consideration of the fact that keratin alignment in response to cyclic strain has never been reported, only 
SPC-mediated keratin phosphorylation was analyzed in conjunction with substrate topography-based migration 
and morphology.

Figure 2. Actin and Keratin Alignment in Response to Cyclic Strain. (A) Immunofluorescence image 
example used to calculate keratin (B) and actin (C) alignment, followed by alignment correlation analysis 
of intersecting fibers (D). Electron microscopy was used to visualize peripheral keratin alignment on both 
unstrained and strained substrates (E–H). On unstretched substrates, keratin and actin did not display any 
non-random orientation (I–K, top), but upon application of 2 Hz cyclic substrate strain, all fibers realigned in 
a perpendicular direction, with actin responding most strongly (I–K, bottom). Despite both fibers realigning, 
local alignment of actin and keratin did not correlate strongly in the cyclically strained samples (L). Scale 
bars =  20 μ m (A–D), 5 μ m (A–D insets, E–F), 1 μ m (F,H insets). WT =  Untreated (I–L). Arrows indicate 
direction of cyclic strain (G,H).
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Panc-1 cell orientation dynamics as a function of cyclic strain and keratin phosphoryla-
tion. Untreated and SPC-treated Panc-1 cells were found to be randomly polarized on flat PDMS substrates 
(Scontrol =  SSPC =  0.00 ±  0.02) (Fig. S2A), but after nearly 8 hours of uniaxial cyclic substrate strain (2 Hz, 8%), a 
large percentage of the cells had realigned in a direction perpendicular to the strain, mirroring the previous align-
ment of keratin fibers (Fig. 3A).

To investigate the effect of SPC treatment on cell morphology restructuring, the frequency of cyclic substrate 
strain was varied between 0.05 and 2 Hz, both with and without SPC treatment, and cell orientation was analyzed 
after 9 hours. In general, as the frequency increased above a threshold of 0.2 Hz, SPC-treated cells were able to 
realign perpendicular to the direction of strain more efficiently than the untreated cells (Fig. 3B). Thus, keratin 
network phosphorylation and subsequent restructuring plays a role in force-induced cell orientation by increas-
ing the degree of morphological adaptation in response to periodic substrate strain.

To understand if cellular keratin restructuring affects the dynamics of this reorientation, the four frequencies 
of cyclic strain found to induce significantly different orientation parameters in combination with SPC treatment 
(0.2, 0.5, 1.0, and 2.0 Hz) were applied to untreated and SPC-treated cells, and orientation parameters were calcu-
lated at 22 time points over five hours, at which time each cell population had reached an orientation equilibrium. 
The time constant τ  (time to reach 63% of the equilibrium value) was then calculated based on these curves 
using equation 2 (Fig. 3C). Regardless of SPC treatment, τ  decreases as the frequency increases, indicating that 
higher frequencies stimulate faster cell realignment. SPC treatment is capable of augmenting this effect, but only 
up to a point; at 2.0 Hz the time constant is equivalent for untreated and SPC-treated populations. We can infer 
from this that keratin reorganization provides a degree of responsiveness to the cells that can be saturated at high 
stretch frequencies- it is possible that this level of strain may partially induce defects in the keratin network and 

Figure 3. Keratin Phosphorylation and Cyclic Strain Induced Orientation and Migration. (A) Images of 
single cells were taken over the course of 8 hours during the application of various cyclic strain frequencies, with 
most cells aligning most efficiently perpendicular to the direction of strain at higher frequencies and with SPC 
treatment (B). Analysis of the amount of time needed to achieve orientation equilibrium revealed that SPC can 
augment rearrangement speed in frequencies up to 2 Hz, where the effect is lost (C). By tracking cells during the 
experiment (D), migration direction vectors could be calculated and analyzed in the context of alignment (E), 
with higher strain frequencies and SPC treatment both contributing to more directed migration. SPC treatment 
caused the cells to move faster, but strain frequency had no systemic effect on cell migration speed (F). Increases 
in cell speed were statistically significant for control substrates (p <  0.0001), 0.2 Hz (p <  0.0001), 0.5 Hz 
(p <  0.01), and 2 Hz substrates (p <  0.0001), all by one-way ANOVA with Tukey post hoc tests. Scale bars =  50 μ 
m (A), 150 μ m (D). WT =  Untreated (B–F). Arrows indicate direction of cyclic strain (A,D).
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thus show no further effect57. The general observation that an intact keratin network in the cell periphery slows 
down actin-driven cell reorganization provides evidence that keratin may function as a type of cytoskeletal dash-
pot, providing viscoelastic steric hindrance to the more reactive actin network that has been shown to drive cell 
reorganization58.

Cyclic strain influences Panc-1 cell migration. In addition to cell orientation, the migratory properties 
of the Panc-1 cells could be calculated during the stretching experiments. This complements the orientation 
analysis, which focused on cell spanning cytoskeletal networks, by considering the cyclic strain effect on the 
emergence of newly polymerizing lamellipodia-like networks. Cells seeded on flat control substrates without any 
strain moved randomly with no preferred direction (Fig. S2A), while on flat control substrates being stretched in 
the X-direction, cells exhibited biased migration along the Y-axis, perpendicular to the direction of pull (Fig. 3D).

To characterize this behavior, the orientation parameter SM was calculated using the angle between the cell’s 
migration vector and the direction of strain (the X-axis) (Fig. S1B). SM was then calculated for each strain fre-
quency f, both with and without SPC treatment. A decrease in SM can be observed with an increase in frequency 
f, which corresponds to an increase in the number of cells migrating perpendicular to the direction of strain. This 
effect is enhanced in cells treated with SPC, but only for frequencies of 0.5 Hz and greater. A decrease in SM at 
high frequencies as a result of SPC treatment was observed, with the frequency required for the cells to reach the 
arbitrary migratory orientation value SM =  − 0.37 halving from 2 Hz to 1 Hz (Fig. 3E).

Additionally, the average velocity of Panc-1 cells exposed to different strain frequencies was determined. A 
large distribution of cellular velocities was observed, with the average speeds of the fastest cells as much as sixfold 
higher than the slowest cells. In many cases, the average speed of cells on stretched substrates was found to not 
be significantly different from those on unstretched surfaces. Thus, the change in migration vector orientation 
was likely not a function of any changes in migration speed (Fig. 3F), as no systemic effect of the stretching on 
speed was observed. On cells treated with SPC, average cell velocity was significantly higher for most stretching 
conditions, including the unstretched control. This is consistent with our hypothesis that the restructuring of the 
keratin network provides a less hindered environment for the cell migration-driving actin network to function 
more efficiently, with the output in this case being an increase in cytoskeleton-generated velocity.

Panc-1 cell migration on grooved substrates is dependent on keratin phosphorylation and 
groove depth. To examine the relationship between contact guidance and keratin network organization, 
untreated and SPC-treated Panc-1 cells were grown on substrates with and without grooves. On grooved sub-
strates, immunofluorescence staining revealed that the actin network tended to show groove direction-dependent 
patterns, while the keratin network did not respond as noticeably (Fig. S3). In general, cells plated on grooved 
substrates tended to align and migrate along the grooves (S >  0), as opposed to the random alignment and move-
ment on flat control substrates (S ≈  0) (Fig. 4A,B). The angular distributions of untreated and SPC-treated cell 
migration were plotted in the first quadrant (Fig. S2B), illustrating this bias in migration direction. Furthermore, 
a decrease in x-axis directed migration is seen in SPC-treated cells on grooved substrates. Thus, the microstruc-
tured surface can affect the migration direction of Panc-1 cells, and this effect is enhanced by destabilization of the 
keratin network. This could potentially be due to an increased degree of cell body deformation into and around 
the physical microenvironment as a result of the reduction in the stiff keratin network in the periphery of the cell.

By altering the depth or width of the grooves, several important observations could be made. First, the Panc-1 
cells aligned along the grooves for all substrates, regardless of the groove dimensions or SPC treatment (Figs 4A,B, 
S2B). SPC treatment did result in an increased alignment along the grooves for all tested dimensions. Increasing 
the depth of the grooves from 200 nm to 350 nm and increasing the width of the grooves from 2 μ m to 4 μ m were 
both sufficient to increase alignment, with the biggest effect coming from increasing depth. SPC treated cells 
were also more aligned on deeper grooves, but the groove width and spacing had no effect on SPC treated cells 
(Figs 4B, S2B).

On control substrates, the ratio of Y-axis movement to X-axis movement is equivalent to 1, indicating unbi-
ased migration. For untreated cells, this ratio increases with increasing groove width and depth, indicating migra-
tion parallel to the groove structures. SPC treatment results in further increases in My/Mx, but again, among 
SPC-treated populations, the only physical parameter that resulted in different migration characteristics was 
groove depth (Fig. 4C). Increases in groove depth and width also spurred an increase in directional persistence, 
indicating smoother, more biased migration, while SPC-treated populations were only affected by increases in 
groove depth and unaffected by groove width dimensions, although migration persistence was higher across the 
board in treated cells compared to untreated ones (Fig. 4D). Interestingly, groove dimensions played no role in 
cell velocity, as all conditions resulted in untreated cell velocities of approximately 0.5 μ m/minute. The same was 
true for the SPC-treated populations, which are generally faster than untreated cells on control substrates. Their 
velocity was independent of groove dimensions at approximately 0.75 μ m/minute (Fig. 4E). It is of note that these 
observed velocities were statistically similar to values obtained on flat control PDMS surfaces, indicating that 
grooved substrates do not alter the inherent cell velocity of Panc-1 cells.

Altogether, it is clear that the grooved substrates are capable of biasing untreated cell alignment, migration 
direction, and directional persistence, and that this effect is amplified by both deeper and wider grooves, as 
opposed to SPC-treated populations that are only affected by groove depth. Despite the fact that SPC treatment 
did not play a role in the mechanotransduction of wider grooves, the response to groove depth was generally 
stronger than in untreated cells, suggesting improvements in contact guidance. For the treated cells, this contact 
guidance enhancement can be explained by noting that the cells are mechanically softer as a result of the loss of 
an intact keratin network, allowing them to physically adapt better the grooves or other microscale features. To 
see if other microscale features also effect differences in contact guidance, cells were next analyzed on PDMS 
micropillars.
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Migration on pillar substrates. As an alternative to the grooved structures, pillar substrates were used in order 
to present a micro-structured surface to the cells with a different type of anisotropy. In contrast to the flat control PDMS 
and the grooved substrates, the fibronectin was only added to the tops of the pillars. As a result, cells could only adhere 
to the pillar tops via focal adhesions (any cells moving between the pillars were excluded from analysis). This results in 
a cell morphology in which the periphery is supported along the tops of the columns (Fig. 5A).

The average velocity of cells on the pillars was calculated to be 0.45 ±  0.02 μ m/minute, not significantly differ-
ent from velocity on control substrates. SPC treatment increased the speed of the cells to 0.58 ±  0.02 μ m/minute, 
which was a lower increase than that observed on control and grooved substrates.

Trajectories of untreated and SPC-treated cells migrating on pillars with 4 μ m diameters, 8.7 μ m heights, and 
6 μ m spacings were calculated (Fig. 5B,C). The difference between untreated and SPC-treated cells is smaller than 
the differences observed on grooved substrates, but close inspection reveals that SPC-treated cells tend to prefer 
movement in either the X- or Y-axis. To investigate this, frequency histograms of the migration trajectories of 
untreated and SPC-treated cells were constructed (Fig. S2C)59. The untreated plot shows the characteristic flat 
distribution expected for randomly migrating cells, but the SPC-treated plot shows distinct peaks in both the 
vertical Y-axis direction and the horizontal X-axis direction, indicating a clear orthogonal bias in migration. This 
corresponds to the axes of symmetry in the pillared substrates leading to the conclusion that keratin phosphoryl-
ation is capable of enhancing the mechanosensitivity of migrating cancer cells, as on the pillars the X- and Y-axis 
directions correspond to the closest physical signal available to the cells.

Figure 4. Keratin Phosphorylation and Groove Depth Induce Alignment and Directed Migration. Images 
of cells on flat control substrates and grooved substrates with different dimensions were obtained, with deeper 
grooves causing stronger alignment and directed migration (A). Analysis of the cells on the grooved substrates 
revealed that groove width was not as important as groove depth for cell orientation (B), cell migration vector 
orientation (C), or migration persistence (D). While keratin phosphorylation caused an increase in cell velocity, 
substrate grooves did not alter the velocity profile of either the untreated or SPC treated cells (E). Cell speed 
increases as a result of SPC treatment were statistically significant (p <  0.0001) by one-way ANOVA with Tukey 
post hoc tests for all culture conditions. Scale bars =  150 μ m (A). WT =  Untreated (B–E).
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Figure 5. Keratin Phosphorylation and Influences Cell Migration on Pillar Substrates. Panc-1 cells were 
plated onto substrates containing ECM protein atop pillars, confining adhesion to these points (A). Tracking 
cell migration over a period of eight hours revealed distinct migration patterns in (B) untreated and (C) SPC-
treated cells. Scale bars =  30 μ m (A), 150 μ m (B,C).
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For both the untreated and SPC-treated cell populations, the average orientation parameter S was 0.00 ±  0.04, 
indicating random cell alignment. This result appears to be at odds with the orthogonally aligned results from 
SPC-treated cells shown in Fig. S2C, but this is likely due to preferred alignment in the X or Y direction being 
cancelled out. This is similar to the calculation of the My/Mx parameter, which was found to be 1.01 ±  0.04 for 
untreated cells and 1.02 ±  0.06 for SPC-treated cells. Overall, treatment of Panc-1 cells with SPC and the resultant 
keratin reorganization can influence the migration dynamics of Panc-1 cells on pillars in a similar manner to that 
found on grooved substrates.

Conclusions
In general, cells with less keratin expression have been shown to be softer and more susceptible to deformation16. 
Furthermore, invasive cancer cells have been found to be much softer than both healthy cells and non-invasive 
cancer cells60,61. In many cases, this loss of stiffness has been analyzed in the context of three-dimensional cell 
migration and invasion16,60. While the migratory mechanisms underlying three-dimensional invasion are in many 
ways distinct from those guiding two-dimensional migration, there is evidence that nanoscale topography of 
two dimensional substrates is correlated with alterations in cell stiffness62. As the interactions between nanoscale 
substrate conditions and cancer cells has been shown to play a role in cancer treatment in vivo63, an elucidation 
of this link in vitro is important. We have shown that in Panc-1 pancreatic cancer cells, the phosphorylation of 
keratin leads to perinuclear reorganization, in agreement with previous work64. Our observation that Panc-1 cells 
align perpendicularly to cyclic substrate stretch is in line with previous observations in other cell types57, but in 
contrast to a study on tumor capillary endothelial cells, which showed reduced perpendicular rearrangement after 
exposure to a 1 Hz, 10% uniaxial strain65. This may be due to differences in tissue origin; it is intriguing to wonder 
whether and how SPC treatment might play a role in stretch-responsive orientation in other cancer cell lines 
similar to the effect seen in Panc-1 cells. Ultimately, this effect may be due to the effects of steric hindrance. As the 
keratin network (and likely the vimentin network, based on recently published studies32 and the data in Fig. 1G) 
becomes destabilized and reorganizes around the nucleus, the cell volume in the periphery becomes less entan-
gled. This reduction in steric hindrance or entanglement may then be enough to generally unencumber the actin 
cytoskeleton, which has been shown in many studies to be a key player if not the main effector of a wide variety of 
cytoskeleton-based characteristics, including cell orientation, migration, and mechanotransduction66–68.

Materials and Methods
Cell Culture. All chemicals were purchased from Life Technologies (Darmstadt, Germany). Human pan-
creatic cancer cells (Panc-1) (ECACC #87092802) were used for all cell experiments due to their previous ker-
atin cytoskeleton characterization33. Cells were cultured at 37 °C and 5% CO2 in 75 cm2 (T-75) flasks in a media 
composed of Dulbecco’s Modified Eagle Medium (DMEM) 11960 supplemented with 10% (vol/vol) fetal bovine 
serum (FBS) (PAA Laboratories, Cölbe, Germany), 1% (vol/vol) penicillin/streptavidin (Pen/Strep), and 1% (vol/
vol) L-glutamine. Media was replaced every 2–3 days, and cells were passaged with 2.5% trypsin-EDTA upon 
reaching 70–80% confluency. Chemical inhibitor concentrations for Cytochalasin D (1 μ M), Nocodazol (3 μ M), 
and SPC (10 μ M) were used in accordance with reported literature values34,69,70.

Sample Preparation. PDMS substrates were cleaned in 70% ethanol followed by PBS for 5 minutes each. 
The substrate surface was then coated with 50 μ g/mL human fibronectin (Calbiochem #341635, Germany) for two 
hours, followed by two PBS rinses. Panc-1 cells were then seeded at a concentration of 80 cells/mm2 and stored 
overnight in an incubator. One hour prior to the start of an experiment, the substrate was mounted, leveled, and 
allowed to equilibrate in experimental media (5% FBS) in an incubating chamber and the cells were also placed in 
experimental media. For inhibitor experiments, the experimental media was dosed to a concentration of 10 μ Μ .

Immunocytochemistry. Cell populations selected for IF staining were rinsed with PBS and incubated 
with a preheated 4% (wt/vol) paraformaldehyde (PFA) fixative solution in PBS for 10 minutes at 37 °C. Cells 
were then rinsed three times in PBS for 8 minutes, followed by permeabilization in 0.5% (vol/vol) Triton X-100 
(Carl Roth, Karlsruhe, Germany) in PBS for 15 minutes. After another two PBS rinses, cells were blocked for 
three hours at room temperature with 0.2% (vol/vol) fish gelatin in PBS (Sigma) to prevent non-specific bind-
ing. For immunostaining of keratin, the mouse anti-pan-cytokeratin antibody (KL1, Immunotech SAS/Beckman 
Coulter, Marseille, France) was used at a 1:200 dilution in 0.5% Triton X-100/0.2% fish gelatin. After rinsing in 
PBS, the cells were stained with the following solution for one hour: AlexaFluor 488 chicken anti-mouse (1:250), 
AlexaFluor 568 Phalloidin (1:50), and Hoechst 33342 (1:1000) diluted into 0.5% Triton X-100/0.2% fish gelatin 
in PBS. The stained cells were then mounted with Aqua-Poly/Mount Media (Polysciences, Eppelheim, Germany) 
onto a glass slide.

Microscopy. Phase contrast images were obtained with a Zeiss Axiovert 200 M microscope used in con-
junction with four different lenses (5X A-Plan 0.12 Ph0, 10X A-Plan 0.25 Ph1, 20X EC Plan-Neofluar 0.50 
Ph2, and 40X LD A-Plan 0.50 Ph2), an X-Cite 120 W DC metal halide lamp (EXFO Europe, England), a 
microscope-mounted cell culture chamber (EMBL, Heidelberg, Germany) maintaining constant culture condi-
tions of 37 °C and 5% CO2, and an AxioCam MR CCD camera (Zeiss).

Fluorescence images were obtained on both a Zeiss AxioObserver Z1 transmitted light microscope and an 
Imager Z1 upright microscope, both used in conjunction with 3 different lenses (20X LD Plan-Neofluar 0.40 Ph2 
Corr., 40X LD Plan-Neofluar 0.60 Corr., and 63X LD Plan-Neofluar 0.75 Corr.), a Colibri fluroescent lamp with 
365, 470, 505, and 590 nm LED modules and the corresponding filters (60HE, 62HE) (Zeiss), and a cell culture 
chamber.
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Additional images were taken with a scanning electron microscope (SEM) (Ultra-55 Field Emission SEM, 
Gemini, Zeiss, Germany) and a white light interferometer (WLI) (Zygo NV5000, Middlefield, CT).

Cell Substrate Stretching. Cell substrate stretching was performed using a stretching device developed 
and elaborated on in previous works57, consisting of a DC servo motor (Faulhaber, Schöneich, Germany) which 
can apply a periodic stretch to clamped PDMS substrates along a single axis. The stretching device and micro-
scope were controlled by an integrated, custom-built Visual Basic program (Microsoft, USA) in AxioVision soft-
ware. The stretch frequencies used were 0.05, 0.1, 0.2, 0.5, 1.0, and 2.0 Hz with a constant amplitude of 8%. Three 
independent experiments were performed for each frequency setting, each with a duration of 8 hours.

Morphology Analysis. Time-lapse phase contrast images were used for cell morphology analysis in ImageJ 
(NIH). Metrics calculated were cell orientation, a time constant representing the response to strain over time, 
and cell area. For each metric, multiple cells from three independent experiments were averaged. The orientation 
parameter S was calculated from outlines of each cell manually drawn in ImageJ and corresponding fitted ellip-
ses. The angle between the major axis of the ellipse and the direction of substrate stretching was then calculated. 
In control experiments, the X-axis was used as a reference direction. The average of the orientation of cells in 
response to the cyclic strain of the substrates was quantified by the non-polar orientation parameter S in equation 
157,59. The angular distribution function f(ϕ) and the orientation angle ϕ are given by the Fokker-Planck equa-
tion71 from which a order parameter can be calculated.

∫ϕ ϕ ϕ ϕ= =S f dcos 2 ( )cos 2 (1)

The orientation parameter Si was determined for each individual cell, and the average of all orientations S for each 
time point was determined = ∑( )S S

n n
1 , where n is the number of cells analyzed. The characteristic time τ  

describes the time it takes for a population of cells to proceed from their initial average orientation 〈 cos 2ϕ〉 0 to 
63% (1/e) of their final average orientation 〈 cos 2ϕ〉 Max. To calculate this, the time course of the mean value of the 
orientation parameter S (equation 1) was plotted and fitted in Origin 6.0 by equation 2.

ϕ ϕ ϕ ϕ τ= = +  − 
 −S t t t( ) cos 2 cos 2 cos 2 cos 2 exp( / ) (2)Max 0 Max

For each experiment, an average τ  value was calculated. The cell area A was determined by manually outlining 
cells in ImageJ and calculating the enclosed area. This value was obtained for multiple cells at each time point 
during long-term experiments, and then normalized to the initial area value.

Cell Migration. Cell migration was assessed in ImageJ using phase contrast images from time points ti with 
the manual tracking plugin to track the center of each cell, with all analyzed cells followed for at least five hours. 
Speed and direction of migration were obtained in Microsoft Excel, and the Chemotaxis and Migration Tool 
1.01 ImageJ application (Integrated BioDiagnostic, Martinsried, Germany) was used to analyze cell migration on 
grooves and pillar substrates, with the Directionality D of migration determined as shown in equation 3.

=D
d
d (3)

i
i euclid

i accum

,

,

Here, di,euclid represents the overall distance that the cell has covered, while di,accum represents the cumulative sum 
of distance from each individual step. Time-lapse images were also used to measure the angular distributions of 
cell migration, which were then organized in histograms.

For cell speed calculations, the average speed of each cell was calculated by averaging all instantaneous speeds 
found at each time point and displayed in Figs 3F and 4E. For experiments with different substrate stretch fre-
quencies, data was collected from between 2 and 4 individual experiments, with 17,573 instantaneous speed 
measurements performed over 758 cells altogether. For experiments with different grate dimensions, data was 
collected from between 2 and 4 individual experiments, with 96,324 instantaneous speed measurements per-
formed over 742 cells altogether.

Analogous to the metric of chemotactic index45, a parameter measuring the cell migration projected onto two 
perpendicular axes was calculated. For this study, the X-axis corresponded to the direction of pull in strain exper-
iments, while the Y-axis corresponded to the direction of the grooves in the grooved substrates. In control exper-
iments, the X-axis corresponded to the arbitrary axis. The movements of a given cell along these axes were 
determined using equation 4 for every migration step, allowing for the ratio (My/Mx)i to be calculated. A mean 
value for each cell could be calculated by averaging the ratio from each time point, shown here as 

= ∑( )M M M M/ /y x n y x n

1 . Finally, a mean value can be obtained for each condition by averaging the ratio from 
each cell, shown here as = ∑( )M M M M/ /y x n y x n

1 .

= + + + = + + + M x x x M y y y, (4)x n y n1
2

2
2 2

1
2

2
2 2

Actin and Keratin Orientation. The orientation of actin and keratin networks was observed by both ICC 
staining and EM images and processed with custom ImageJ macros. A Single Alignment Macro (SAM) analyzed 
the orientation of actin or keratin networks by first dividing a single channel fluorescence image into sub-areas 
with dimensions of 32 ×  32 pixels. Following this, the overall orientation of the texture in the subarea was 
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determined by measuring the moment of inertia in the fast Fourier transform subimage72. As a result, the orien-
tation and corresponding angle υ  of the filaments with reference to the x-axis in the sub-areas were determined 
and graphically displayed (Fig. 2B). The mean υ=S cos 2  of all the filaments in all the sub-areas revealed the 
average orientation of the network in the cell. The results shown were calculated from the average of all investi-
gated cells = ∑( )S S

n n
1 , where n is the number of cells analyzed. A Double Alignment Macro (DAM) was used to 

analyze the orientation of actin and keratin networks in reference to each other using an ICC image with two 
channels corresponding to the two networks. If a sub-area has both actin and keratin networks, orientation angles 
υ actin and υ keratin are determined and then analyzed with Microsoft Excel’s Autocorrelation Function, yielding a 
paired correlation coefficient r. Final results r are based on the average of r over multiple cells.

Photolithography. Photolithography with S1818 positive photoresist was utilized to produce the groove 
and pillar structures. A 3-inch p-type silicon wafer (100 orientation, Siegert Consulting, Aachen, Germany) was 
placed in Piranha solution (3:1 sulfuric acid to 30% hydrogen peroxide) for 2 hours. Next, the wafer was rinsed in 
acetone and isopropanol for three minutes each, followed by a rinse in ultrapure water and heating for 10 minutes 
on a 200 °C hotplate. The wafer was then centered on a spin coater (WS-400B-6NPP-Lite, Laurell Technologies 
Corp., USA) and blown dry with a nitrogen gun. 3 mL of S1818 positive photoresist were added to the center of 
the wafer, and the resist was spread in a two step spinning program (500 rpm for 5 seconds, followed by 3000 rpm 
for 30 seconds) optimized to obtain a desired photoresist thickness of approximately 1.8 μ m. Excess solvent was 
then evaporated by heating at 115 °C for one minute, and the wafer stored at room temperature for five hours. 
Alignment with a micropatterned chrome photomask (ML&C, Jena, Germany) displaying either 1 cm2 fields of 
circles of diameter 4 μ m and center spacing 10 μ m in a square arrangement or 1 cm2 fields were filled with long 
rectangles of 2 or 4 μ m width and 2 or 4 μ m center spacing was performed in an MJB4 manual mask aligner 
(Sweet and Microtech, Germany) with an LIF350 filter. Exposure was carried out using a 350 W mercury vapor 
lamp with a wavelength of 365 nm for two seconds with hard contact wedge error correction (WEC) at 1.7 bar. 
Areas of photoresist exposed to UV were dissolved and washed away in 30–40 seconds using MF-319 Microposit 
developer (MicroChem, USA) followed by rinsing with ultrapure water and drying with a nitrogen gun.

Reactive Ion Etching (RIE). RIE with the ion etcher Plasmalab 80 Plus (Oxford Instruments, England) 
was used in conjunction with photolithography to achieve the high aspect ratios associated with micropillars. 
After the photolithography-patterned mask was placed inside the etcher, the chamber was cooled to − 20 °C 
to increase etching selectivity. The etching process consisted of 4 sub-steps constituting one cycle. After each 
etching and passivation step, the chamber was pumped with a vacuum to eliminate waste products. Table 1 
contains the complete steps and parameters for the entire etch process. A mixture of SF6 and HCF3 at a ratio 
of 5:6 was used as the etching gas, and during passivation steps only HCF3 was introduced into the chamber. 
The photoresist-covered Si wafers were subjected to 150 cycles, providing an etch depth of approximately 8.7 μ 
m. A polyurethane polymer consisting of 66% EBECRYL284 diacrylate prepolymer (Cytec Surface Specialties, 
Germany), 30% M3160 (MIWON, Korea), 1.5% Irgacure184 and 1.5% Darocur1173 (Ciba Chemicals Specialty, 
Switzerland) and 1% Rad2200N (Tego Chemie Service, Germany) was then cast to make the final mold. The 
sample was stored for 30 minutes at room temperature to remove air pockets, then placed in an ultraviolet radi-
ation chamber (UVACube 100, Honle UV Technology, Germany) and irradiated for one minute with UVA light, 
followed by baking for one hour at 65 °C. Following this, the polyurethane mold was mounted in a metal frame 
and used as a master mold for the fabrication of PDMS substrates.

Thermal Chromium Deposition. Following the fabrication of grooved surfaces on silicon wafers with pho-
tolithography, thermal deposition with a PVD system (ZWE Thin Film Laborator, MPI, Stuttgart, Germany) was 
used to coat the wafers with either 200 nm or 250 nm of chromium, dictating the height of the grooves. The chro-
mium coated wafers were then heated for 2 hours at 65 °C to drive voltages in the chromium layer, then placed in 
a glass dish and covered with S1818G2 developer (MicroChem, USA) and sonicated for one minute, yielding a 
Si-chromium master mold for use with PDMS.

Substrate fabrication and characterization. The silicone-based elastomer polydimethylsiloxane 
(PDMS) (Sylgard 184, Dow Corning, USA) was used as a bulk material at a 10:1 base to crosslinker ratio for 
the fabrication of the substrates, yielding substrates with a Young’s modulus of approximately 2 MPa. Degassed 
PDMS was poured into the appropriate molds, with control substrates fabricated against a flat mold, and allowed 
to polymerize overnight at 65 °C. PDMS substrates containing no features (control), grooves, and pillars were 
prepared and characterized by white light interferometry (Zygo NewView 5000, Middlefield, CT, USA) as shown 
(Fig. S4A). The grooves were found to have a width B of 4.01 μ m ±  30 nm, a center spacing A of 6.02 μ m ±  40 nm, 
and a depth H of 351 nm ±  5 nm (Fig. S4B). The average height of the pillars was 8.7 μ m ±  50 nm, the average 

Step t(s) p(mTorr) SF6(sccm) CHF3(sccm) PRF(W) PICP(W)

Etching 5 40 15 18 30 300

Pumping 7 40 0 0 0 0

Passivation 8 70 0 50 30 100

Pumping 7 40 0 0 0 0

Table 1.  Reactive Ion Etching Settings.
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width B was 4.02 μ m ±  40 nm and the distance between the center positions of the pillars A was 10.03 μ m ±  50 nm 
(Fig. S4C), confirming that the dimensions of both the column substrates and the groove substrates match the 
dimensions of the patterned masks used during the photolithography process.

Statistics. All experiments were performed in triplicate unless otherwise indicated. Error bars shown 
are the standard error of the mean (s.e.m.), except in Figs 3F and 4E, which display 95% confidence intervals. 
Significance for single comparisons was assessed by t-test at a significance threshold of p <  0.05 or lower as indi-
cated. Significance for multiple comparisons was assessed with ANOVA and a post-hoc Tukey test at a signifi-
cance threshold of p <  0.05 or lower as indicated. Values less than 0.1 were noted. For instances where data is not 
significantly different, N.S. is stated.
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