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Analysis of directionally specific or causal interactions between regions in functional mag-
netic resonance imaging (fMRI) data has proliferated. Here we identify six issues with
existing effective connectivity methods that need to be addressed. The issues are dis-
cussed within the framework of linear dynamic systems for fMRI (LDSf).The first concerns
the use of deterministic models to identify inter-regional effective connectivity. We show
that deterministic dynamics are incapable of identifying the trial-to-trial variability typically
investigated as the marker of connectivity while stochastic models can capture this variabil-
ity.The second concerns the simplistic (constant) connectivity modeled by most methods.
Connectivity parameters of the LDSf model can vary at the same timescale as the input
data. Further, extending LDSf to mixtures of multiple models provides more robust connec-
tivity variation. The third concerns the correct identification of the network itself including
the number and anatomical origin of the network nodes. Augmentation of the LDSf state
space can identify additional nodes of a network.The fourth concerns the locus of the sig-
nal used as a “node” in a network. A novel extension LDSf incorporating sparse canonical
correlations can select most relevant voxels from an anatomically defined region based on
connectivity.The fifth concerns connection interpretation. Individual parameter differences
have received most attention. We present alternative network descriptors of connectivity
changes which consider the whole network. The sixth concerns the temporal resolu-
tion of fMRI data relative to the timescale of the inter-regional interactions in the brain.
LDSf includes an “instantaneous” connection term to capture connectivity occurring at
timescales faster than the data resolution. The LDS framework can also be extended to
statistically combine fMRI and EEG data. The LDSf framework is a promising foundation
for effective connectivity analysis.
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INTRODUCTION
One goal of cognitive neuroscience is to understand how cogni-
tive level variables (e.g., behavioral responses and actions, mental
states,disorders of cognition related to disease, etc.) can be mapped
onto variables associated with the biology of the brain. Func-
tional magnetic resonance imaging (fMRI) allows for non-invasive
observations of signals indirectly related to local field potentials
(LFP) and to a lesser extent integrated neural firing rates (Logo-
thetis et al., 2001; Logothetis and Pfeuffer, 2004; Logothetis, 2008).
The sampling rate of fMRI is typically around 0.5–1 Hz though
higher rates are possible. Spatial resolution of fMRI is typically
around 16 mm3. These signals can be acquired approximately
simultaneously throughout the brain. Much of the focus in fMRI
image analysis over the last 20 years has been on the localization
of aspects of cognitive processes. Through analysis of regional
responses via mass-univariate statistics, specific functions have
been “localized” to or identified with specific brain regions and
structures. Recently, more interest has been focused on how local

computations in specialized areas are integrated with computa-
tions in other task related regions. Analysis of the task related
integration of multiple regions is referred to a connectivity analysis
(Horwitz et al., 1999; Friston, 1994; Horwitz, 2003).

Several methods have been proposed to analyze task related
integration operationally defined as inter-regional covariance or
related statistical dependency such as correlation analysis, princi-
ple components regression, independent components regression,
graphical models, and partial least squares (Moeller and Strother,
1991; Horwitz et al., 1992; McIntosh et al., 1994, 1996; Bullmore
et al., 1996; McKeown et al., 1998; Andersen et al., 1999; Lohmann
and Bohn, 2002; Smith et al., 2006; Sporns et al., 2007; Bullmore
and Sporns, 2009). This type of analysis, often referred to as func-
tional connectivity, typically ignores the temporal properties of the
data and focuses instead on the identification of multiple spatially
disparate regions that are inter-related via non-causal statistical
dependencies. Functional connectivity is taken to indicate regions
that respond to specific trials or instances of a task in a similar
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manner rather than simply regions which respond to generically
to the task. The dependency of functional connectivity measures
on this trial-to-trial and moment-to-moment variability with a
given task is most obvious in trial correlation methods (c.f., Riss-
man et al., 2004) but within task variability forms the theoretical
basis of all functional connectivity measures (Horwitz et al., 2005).

Also of interest are methods that attempt to identify directional-
ity or causality in the interactions between regions. Directionality
of integration can be defined in terms of temporal relations (i.e.,
causes precede consequences) and/or information flow (i.e., vari-
ation at one site typically coincides with variation a second cite
though variation at the second does not always coincide with vari-
ation at the first). These directional connections are often referred
to as “effective connectivity” (Friston, 1994). Because of computa-
tional limitations,effective connections are often calculated among
a small number of regions of interest (ROIs) believed to be of
primary importance for the task (though see Valdes-Sosa, 2004;
Roebroeck et al., 2005; Valdes-Sosa et al., 2005; Abler et al., 2006;
for whole brain approaches).

A number of methods have been proposed for effective connec-
tivity analysis including structural equation modeling, multivari-
ate autoregressive modeling, dynamic Bayesian models, bilinear
dynamic systems, switching linear dynamic systems, and dynamic
causal modeling (DCM; McIntosh and Gonzalez-Lima, 1992;
Buchel and Friston, 1997; Friston et al., 2003; Harrison et al., 2003;
Penny et al., 2005; Rajapakse and Zhou, 2007; Smith et al., 2010).
Each method has its own specific set of assumptions and benefits
and different methods are often framed to address slightly differ-
ent questions. A full review of the various effective connectivity
methods is beyond the scope of the current discussion. A descrip-
tive review and evaluation of many methods has been presented
elsewhere (e.g., Smith et al., 2011).

Despite wide-spread use of these effective connectivity meth-
ods, several theoretical, and practical issues remain unresolved.
Here, six issues important to the development and application of
effective connectivity models are identified and discussed in turn1.
The first issue concerns the use of deterministic versus stochastic
models to identify effective connectivity. We argue that stochastic
models capture the notion of connectivity better than determin-
istic models, we show that deterministic models provided little
if any information independent of task related activation, and we
demonstrate that the type of stochastic model matters. The second
issue is concerned with the level of variability in connectivity para-
meter values in effective connectivity models. Most estimates of
effective connectivity are constant within conditions or even scan
runs in the case of resting state experiments. We show how a joint
modeling approach can be used to estimate continuously vary-
ing connectivity parameters. We discuss limitations of the joint
model approach and then consider a mixture of multiple models
approach that addresses these limitations. The third issue concerns
identifying the optimal number and location of regions to include
in a connectivity model. We present the first objective approach
to determining the number of regions to include in a effective

1A recent article by Ramsey et al. (2010) discussed six issues related to causality
estimation in fMRI. While similar in spirit and title, the six issues as well as the
potential solutions discussed here are distinct from those in Ramsey et al. (2010).

connectivity model based on dynamic systems theory. We further
show how augmented dynamic systems can be used to identify the
location of additional regions missing from a connectivity model.
The fourth issue addresses the problem of identifying the opti-
mal voxel(s) in an a priori defined anatomic region to include in
a connectivity model. Often researchers wish to include signals
from anatomical regions based on a priori hypotheses concern-
ing the connectivity network. However these hypotheses do not
specify the specific location within a given anatomical area. We
show how dynamic systems and sparse canonical correlations can
be combined within a single model to identify “optimal” voxels
from a region. The fifth issue concerns the interpretation of con-
nectivity parameter values. We argue that identified connectivity
parameter values can only be interpreted within the context of
the other parameters. We introduce orthogonal impulse response
functions, a common network analysis method in econometrics,
to fMRI connectivity analysis to identify the effect of a change in
one region upon the other regions of the network. The sixth issue
concerns the effect of the slow hemodynamic response to brief
neural events on the temporal accuracy of connectivity models.
We argue for and briefly describe a simple statistical combination
of simultaneous EEG and fMRI within the same dynamic system.
Discussion of each issue is presented at a level intended to be of use
to practitioners and consumers of connectivity models as well as
developers. For didactic reasons, a general linear dynamic system
for fMRI (LDSf; Penny et al., 2005; Smith et al., 2010) framework
is presented to facilitate discussion of the issues in concrete terms.
LDSf is a simple model making it easy to understand, and it is
highly flexible making it easy to extend to deal with these issues.
Possible remediation for each issue is presented in the LDSf frame-
work. While the extensions of the LDSf system summarized here
are useful advances, they are incomplete; open questions remain
to be addressed by further research.

LINEAR DYNAMIC SYSTEMS FOR fMRI
The form of a discrete time, stochastic LDSf is presented in Eqs 1
through 32. The

xt = Aut xt−1 + Dut vt + εt ; ε ∼ N
(
0, Qut

)
(1)

Zt = [
xt , xt−1, xt−2, . . . , xt−(h−1)

]
(2)

yt = βΦZt + ζt ; ζ ∼ N (0, R) (3)

intent of the LDSf model framework is to model the multiregional
observed fMRI time series as the hemodynamic consequences of
the same number of quasi-neural level variables (Penny et al., 2005;
Smith et al., 2010). The quasi-neural level variables are themselves
functions of the interactions between these variables. In Eq. 3, the
n-dimensional vector yt is the measurement or observation of the
system at time t where t varies from 1 to T, the total number of

2We use the following standards for equations: Bold face is used for matrices, stan-
dard face for vectors, and italic face for scalar values. The tick ′ indicates the transpose
of a vector or matrix and a superscript −1 its inverse. P(a|b) indicates the proba-
bility of a given b, and N (x, X) indicates a normal distribution with mean x and
covariance X with the tilde ∼ indicating“distributed as.”E[x] indicates the expected
value of x.
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observations. For ease of exposition and without loss of general-
ity, the time index is set to the scanner time to repeat (TR). Each
yi variable is the known fMRI time series from a single region,
often detrended or band-pass filtered, and standardized so each
time series has zero mean and unit variance. Thus, yit identifies
the observation of the ith region at time t.

The n-dimensional quasi-neural level time series xt in Eq. 1
is unobserved and must be estimated from the data. These hid-
den states are assumed to be conditionally Gaussian [i.e., P(xt |
y1:t ) ∼ N (xt, Pt)] and are linear functions of the previous hidden
state xt−1 with additive noise εt ∼ N (0, Qut ). The state tran-
sition matrices Aut describe the directed interactions among the
hidden states and can be thought of as defining the effective con-
nectivity among the regions. The matrices Dut represent the effect
of known exogenous inputs vt on the quasi-neural variables. The
superscript ut indicates multiple matrices indexed by the vari-
able u. If u does not vary (i.e., u1:T = 1), the quasi-neural system
in Eq. 1 is simply a linear ARX(1) model with Gaussian error. At
the other extreme where ut = t, all quasi-neural system matrices
vary through time resulting in a highly non-linear, heteroscedas-
tic system. In between these extremes (i.e., u ∈{1:p}; p � T ), the
quasi-neural system in Eq. 1 is a piece-wise linear approximation to
a non-linear heteroscedastic system, often referred to in the litera-
ture as an intervention model (Hamilton, 1989; Lütkepohl, 2007).
It can be assumed that the number of system matrices is equal
to the number of experimental conditions with ut thus being an
indicator variable identifying the condition at time t ; in this case
the variable ut is referred to as the cognitive regime (Smith et al.,
2010).

In Eq. 2, the variable Zt simply contains h errorless lagged copies
of x from xt−(h−1) to xt. The observation, yt, is an instantaneous
linear function of Zt and additive noise ζt ∼ N (0, R) with Rij = 0
for i �= j. The matrix Φ is an a priori known set of basis vectors that
span the variability in the hemodynamic response function such as
a canonical hemodynamic response and its derivatives with respect
to time and dispersion (Penny et al., 2005). The matrix β contains
regionally specific weights for these bases to generate a regionally
unique hemodynamic impulse response function βiΦ. The linear
output βiΦZit is thus equivalent to convolving each quasi-neural
variable with its regional hemodynamic response. Importantly,
each quasi-neural level variable is associated with one and only
one output variable thus localizing the quasi-neural level time
series. It is assumed that the observation and state errors are tem-
porally white and uncorrelated; E[εt εt+τ] = E[ζt ζt+τ] = E[εt

ζt] = 0. It is also possible to vary β with the cognitive regime if
an experimenter believed her manipulations would directly alter
the regional hemodynamic response. The observation error vari-
ance R can also be allowed to vary if noise such as movement
related errors were believed to vary with experimental condition.
These cases of varying observation equations are not considered
further here.

Given the observations of the system y1:τ and knowledge of
the system matrices and sequence of cognitive regimes, one can
infer the states of the dynamic system, xt. Since the quasi-neural
states are conditionally Gaussian, this can be achieved by iden-
tifying the mean and covariance that parameterize the normal
distribution P(xt|y1:τ,u1:τ). Identifying the mean and covariance

of P(xt|y1:τ, u1:τ) can be done efficiently using the Kalman filter
for τ = t or using smoothing algorithms such as the Rausch Tung
Striebel smother for τ > t (Shumway and Stoffer, 1991; Murphy,
1998; Bar-Shalom et al., 2001; Haykin, 2002). Note that the Gauss-
ian assumption on xt is only within a regime, if p > 1 then the full
x time series is a mixture of Gaussians. Time series with multiple
outliers or other leptokurtic distributions can be easily accom-
modated by using a regime with Qut having large values on the
diagonal.

Of primary concern in identifying effective connectivity models
is identifying the parameters of the system matrices, Aut , Dut , Qut ,
β, and R. Optimal parameter estimation is a complex topic and
beyond the scope of the current discussion. Most methods rely on
gradient assent on the LDSf complete data log likelihood function

−1

2

{∑T

t=1

1

T

(
yt − βΦZt

)′
R−1 (

yt − βΦZt
) + . . .

∑T

t=2

1

T − 1

(
xt − (

Aut xt − 1 + Dut Vt
))′

Qut −1

× (
xt − (

Aut xt − 1 + Dut Vt
)) +

∑p

u=1

1

Tu
ln

∣∣Qut
∣∣ + . . .

1

T

(
log |R| + (x1 − x0)

′ P−1
0 (x1 − x0) + 1

T

(
ln |P0| + T n22π

}

(4)

where Tu is the number of observations in regime u3, x0, and P0

are the initial state mean and covariance and | | is the determi-
nant. A simple yet effective means of identifying parameters that
maximize this likelihood is the expectation maximization algo-
rithm (EM; Dempster et al., 1977), In the EM algorithm, an initial
guess at the parameter values is used and the likelihood of the
data given the parameters calculated. This calculation involves
running a Kalman filter to identify the innovations variance and
an RTS type smoother to identify the optimal state space distri-
butions given the data and set of parameters θ, P(xt|y1:T , u1:T ,
θ; Shumway and Stoffer, 1991; Kim, 1994; Murphy, 1998). The
zero point of the partial derivatives of the log likelihood function
with respect to each of the parameters is calculated and used to
update the estimates of each of the parameters (Ghahramani and
Hinton, 1996). The process is continued until the change in the
calculated log likelihood drops below a threshold. Other meth-
ods such as Quasi-Newton gradient ascent or Variational Bayes
are also used (Ghahramani and Hinton, 1998; Beal and Ghahra-
mani, 2001; Doucet and Andrieu, 2001; Oh et al., 2005; Lütkepohl,
2007). Comparisons of some of these methods for similar systems
have been discussed elsewhere and will not be examined here (c.f.,
Makni et al., 2008; Ryali et al., 2011).

An important point often ignored is that these parameter iden-
tification methods are only guaranteed to identify local maxima
in the likelihood function; different initial guesses can produce
different parameter estimates. Stopping criteria for the gradient
ascent can be easily fooled by areas in parameter space with near-
flat surfaces in the likelihood function. It is beneficial to attempt

3For the regime active at time 1, Tu equals the total observations in the regime −1.
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the maximization multiple times with different starting conditions
to better identify globally optimal parameters. Once identified, the
model and its parameters can be used to identify the quasi-neural
time series for multiple runs and multiple subjects performing the
same task (Smith et al., 2010).

The theoretical limit on the number of parameters that can be
identified for an LDSf model is Tp − 1 where T is the number of
time points and p is the number of regions while the number of
parameters to be identified scales as s(2p2 + pv) + (h + 1)p where
s is the number of regimes, v the number of inputs and h the
leading dimension of the hemodynamic basis. Thus the minimum
number of scans to identify a model is s(2p + v) + h + 1. The prac-
tical limit is certainly much lower. Assuming 400 time points in
a run (TR = 1.5 for 10 min), no inputs, and a requirement of 10
times the minimum number of data points necessary, 18 regions
can be reasonably included in a model with a single condition, 9
in a model with two conditions, 6 in a model with three and so
on. However, multiple runs of the same task in the same subject
can be easily combined to increase the observations and thus the
number of regions in the model; doubling the number of runs
roughly doubles the number of regions that can be modeled.

The LDSf model is quite similar form and intent to DCM
(Friston et al., 2003). Both estimate the states of an unobserved
quasi-neural signal from a small number of regions based on an
explicit forward model of the hemodynamic response. The for-
ward model of DCM is non-linear and biophysically based while
the forward model of LDSf is linear and pragmatically based (see
Friston et al., 2000; Riera et al., 2004; Valdes-Sosa et al., 2011).
However, any non-linearity in the hemodynamic response is neg-
ligible for block designs or event related designs with inter-trial
intervals greater than approximately 3 s. Thus the two forward
models can be expected to yield nearly identical hemodynamic
responses in these cases. The DCM state equations are formu-
lated in continuous (i.e., using derivatives) rather than discrete
(i.e., using differences) time as used in the LDSf model. How-
ever, a direct relation between the continuous time and discrete
time transition matrices exists via the matrix exponential and
matrix logarithm4. Furthermore, assuming the sampling rate is
fixed and constant as is the case in fMRI, estimating a discrete
time model and converting it to continuous time will produce an
essentially equivalent model to estimating the continuous model
directly (Ljung and Willis, 2010).

There are significant differences between LDSf and DCM. DCM
was originally intended as a hypothesis driven method while LDSf
can be used in a more exploratory manner (Smith et al., 2010;
Stephan et al., 2010; Friston et al., 2011). Because the LDSf model
is linear in both state and output space, identifying parameters
of the LDSf model can be more efficient than in DCM and a
larger number of regions can be included in the model. The most

4This fact is not often appreciated. For example in Smith et al. (2011) autoregres-
sive (AR) models are used to estimate connectivity matrices from simulated data
generated in continuous time. The discrete AR matrices are then compared to the
continuous time matrices without the proper transformations. The AR matrices
can contain non-zero elements where the continuous time version is zero and vice-
versa. If the continuous time version is held as “ground-truth” the conversion must
be calculated prior to comparison.

important difference however is that the LDSf model is stochastic
while DCM is deterministic. We examine this difference as the first
issue.

ISSUE ONE: STOCHASTIC VERSUS DETERMINISM
The first issue concerns the choice of deterministic or stochastic
models for use in identifying connectivity. Essentially this is the
question of which effective connectivity model to use in an analy-
sis. While often answered based on popularity alone, the choice
of deterministic versus stochastic model determines the sources
within the fMRI signal that are assumed to reflect connectivity.
Functional connectivity has typically been associated with inter-
regional relations among data variability (Horwitz et al., 2005). In
early PET studies, the variability was related to coherent changes
across subjects (Moeller and Strother, 1991; Horwitz et al., 1992;
Alexander and Moeller, 1994). If the observed signal values of
a set of regions maintained a consistent relationship across sub-
jects, they were identified as functionally connected. This notion
of connectivity was also used in early effective connectivity studies
(McIntosh and Gonzalez-Lima, 1992). In fMRI data, the variabil-
ity is across time from trial-to-trial or moment-to-moment. Early
effective connectivity methods applied to fMRI such as PPI and
SEM considered the residual variability between regions after main
effects of task were removed (Horwitz et al., 2005). This trial-to-
trial and moment-to-moment variability in fMRI is known to
reflect coherent signals relevant to human perception and perfor-
mance (Wagner et al., 1998; Pessoa et al., 2002; Ress and Heeger,
2003; Pessoa and Padmala, 2005; Fox et al., 2006).

In deterministic models, such as the original DCM for fMRI,
the interactions between the quasi-neural level variables are com-
pletely determined by the dynamic model. That is, given a starting
point, x0, the value of xt for any t ≥ 0 would be completely known
for any known set of inputs and regime vector. In the LDSf frame-
work this is equivalent to setting Qut and thus εt to 0 for all t.
The system may still contain measurement error (i.e., ζt �= 0), but
the time course of the quasi-neural variables are determined and
known with complete certainty given x0. Further observations of
the system are not necessary; once x0 is known and given the
model, the fMRI data at later times are superfluous.

In contrast, in a stochastic model the quasi-neural states are
not completely determined by their previous values. For example,
consider a stochastic LDSf system with constant A and Q matrices.
Given a known quasi-neural state defined by a known mean and
covariance in n-dimensional space, x0 and P0, the value of x1 is a
hyper-ellipsoid probability density centered at Ax0 with semi-axes
scaled by Q via

P1 = AP0A + Q (5)

The probability distribution of xt flows through time accord-
ing to the eigenvectors of A. Without new observations of the
system, the magnitude of the variance will spread over time until
eventually the true state is essentially unknown. Each observa-
tion yt provides additional evidence regarding the location of xt,
decreasing the uncertainty of its value.

If all sources of the trial-to-trail variability were known, quan-
tifiable and measured using a few variables and the sampling
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rate was sufficient such that each observation could be labeled
accurately by some combination of these known variables, a deter-
ministic system would be appropriate for capturing connectivity.
If the sources are unknown, the deterministic system cannot cap-
ture the trial-to-trial variability and thus cannot fully capture
connectivity. Figure 1 shows the neural level responses over time
during two blocks identified by a deterministic DCM model of the
attention to visual motion paradigm (Buchel and Friston, 1997)
as estimated by SPM5 according to the online example instructions
(http://www.fil.ion.ucl.ac.uk/spm/data/attention/).The neural sig-
nals of the deterministic DCM were identified by modifying the
function spm_int.m (1044 2007-12-21 20:36:08Z) included in the
SPM5 software package to return the values of the state variables
over time as well as the estimated hemodynamics. Also shown in
Figure 1 are the quasi-neural responses during the same two blocks
as estimated by a stochastic LDSf model. As seen in the figure,

FIGURE 1 | Neural responses over a single block (∼30 s.) in three

regions during the Attention to Visual Motion task as estimated via

deterministic (A) and stochastic (B) models. (A) Connectivity in the
deterministic (DCM) model is seen in the slope of the block onset. The
region V1 (blue) increases first and most rapidly and V5 (green) increases
with a similar slope. The region SPC (red) increases more slowly; its slope is
less similar to V5 than V5 is to V1, thus the connectivity from V5 to SPC is
less than that from V1 to V5. This slope magnitude and slope similarity is
the nature of the deterministic connectivity. (B) In contrast, the three
regions respond similarly in the onset of the block for the stochastic model.
The connectivity is in the covariance within the block. V1 and V5 are more
connected than V5 and SPC because their estimated responses are more
correlated within the block.

directional connectivity in the deterministic model is reflected in
variation in the slope of the response onset for the block. Response
onset slope is sharpest inV1 and decreases inV5 and even further in
SPC. The consequence of this connectivity model is that the neural
response in V5 to attended visual motion takes 5 s to achieve its
50% level while the SPC remains less than 75% of its maximal
response even after 9.2 s of the task. This slow, monotonically
increasing neural response to visual stimulation seems at odds
with data from in vivo recordings where onsets of LFPs would be
effectively instantaneous at the 3.22-s sampling rate of the fMRI
data (Buracas et al., 1998; Liu and Newsome, 2006). In contrast,
the stochastic LDSf estimate shows an early response to attended
visual motion in all regions and interactions between the regions
are reflected in the covariance in moment-to-moment response
levels within the block.

The source of stochastic is also important. Ryali et al. (2011)
propose a bilinear form of the LDSf model. The quasi-neural
system dynamics of their model are

xt = (A + BΛt ) xt−1 + Dvt + εt ; ε ∼ N (0, Q) (6)

If Λ is an input matrix with columns Λi containing binary val-
ues identifying presence or absence of a experimental condition,
the bilinear and multiple model forms can produce equivalent
deterministic behavior by setting Au = A + BΛi; that is, a sepa-
rate Au for each unique BΛ. However, the stochastic behavior of
the two systems is not equivalent as Q, the covariance of the state
noise, does not vary from condition to condition in the bilinear
form. This is of critical importance as Q is used to derive measures
of instantaneous (sub-sampling rate) connectivity.

It can be shown that under mild assumptions, models in the
form of Eqs 1 and 6, which are in so called “reduced form,” can be
transformed into an equivalent “structural form”

xt = Ã0xt + Ã1xt−1 + Dvt + δt ; δ ∼ N (0, Ω) (7)

Here Ω is a diagonal matrix containing the variance of the inno-
vation δ, Ã0 accounts for instantaneous connectivity, and Ã1 is a
new autoregressive coefficient matrix. The conversion from one
form to another is achieved via the relation

(
I − Ã0

)−1
ΩΩ

(
I − Ã0

)−1 = Qu (8)(
I − Ã0

)
Ã1 = Au (9)

The number of unknown elements in Ã0 that can be identified
is restricted (Sims, 1980; Lütkepohl, 2006, 2007; Sims and Zha,
2006). Elements of Ã0 can be identified by maximum likelihood
methods as in Structural Equation Modeling, or more simply by
factoring Ã0 into a lower triangular matrix. The LDL factoriza-
tion, which factors a Hermitian matrix A into a matrix L that is
lower triangular with ones on the diagonal and a diagonal matrix
D such that A = LDL′, has been frequently used to identify instan-
taneous connectivity in autoregressive models (Sims, 1986). The
matrix L then contains the (acyclic) connectivity while D contains
the residual, orthogonal, error variance. Thus by using a constant
Q, the discrete time bilinear model of Ryali et al. (2011) assumes
identical instantaneous connectivity between conditions.
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Examining an LDSf model of the attention to visual motion
data, bootstrap (Sims and Zha, 1999; Benkwitz et al., 2000) analysis
shows none of the inter-regional connections in the Au matri-
ces is robustly different from 0. Thus there is no inter-regional
AR(1) connectivity in this dataset. This is not particularly surpris-
ing given the 2.33-s sampling rate. However, bootstrap analysis on
the instantaneous connections (Ã0) revealed significant changes
in inter-regional connectivity between conditions (see Table 1).
The bilinear form would miss these effects. To the extent that task
dependent inter-regional interactions occurring faster than the
Nyquist frequency exist in the data, the bilinear form will produce
an erroneous result.

While the stochastic model is better reflective of the common
notion of connectivity and does not produce the aberrant behav-
ior of the deterministic model, it remains unclear if the stochastic
model accurately reflects behavioral or neural level responses. The
responses shown are still smooth but can have substantial ringing
when the data are over-fit. The output equation used in the LDSf
framework was originally proposed in the context of single voxel
deconvolution (Penny et al., 2005). Penny et al. (2005) observed
considerable within block variability similar to that shown in
Figure 1B. However, as they note, these quasi-neural time series
are only estimates, and other different time series can potentially
be identified for the same data. This is essentially a result of the
shape of the hemodynamic impulse response function. As can eas-
ily be seen in its Fourier transform, the canonical impulse response
used in the SPM software package (Wellcome Trust Centre for
Neuroimaging UCL, London) essentially passes zero information
at high frequencies. Deconvolution can be performed as division
in frequency space where the spectrum of the convolved signal
is divided frequency-by-frequency by the spectrum of the filter to
produce the spectrum of the unfiltered signal. However, in the high
frequency portion of the signal, above approximately 0.2 Hz, this
naive deconvolution in frequency space is dividing by almost zero,
resulting in enormous estimated power. Care must be taken to
avoid extreme high frequency shifts. In LDSf, this can be achieved
by keeping the diagonal values of R at a high enough level to
avoid ringing. Further tests with known within block response
level changes are needed to better determine if identified quasi-
neural level changes reflect these known task changes within blocks
or trials. Fast and slow variations should be examined to see if there
are limits to the time scales of quasi-neural level response changes
that can be observed with these methods.

Table 1 | LDSf identified connectivity between V1 and V5 in during the

attention to visual motion task.

LDSf V1 →V5 No motion Motion Motion + attention

AR(1) −0.06 ± 0.09 −0.02 ± 0.10 0.07 ± 0.07

AR(0) 0.22 ± 0.03 0.47 ± 0.07 0.65 ± 0.05

Shown are the estimated connectivity parameters and 95% confidence intervals

derived via bootstrap for region V1 to region V5 for three different task conditions.

Connections labeled AR(1) are the lag one autoregressive parameters from the

Au matrices. Connections labeled AR(0) are the instantaneous connectivity (Ã0)

relative to the sampling rate derived from the Qu matrices via Equations eight and

nine. Only the AR(0) connectivity is reliably different from 0.

ISSUE TWO: PARAMETER VARIATION
The second issue concerns the extent of the variability of connec-
tivity parameters in effective connectivity models. Essentially this
is the question of how and when connections between regions are
allowed to change. Despite the complexity of identifying and vali-
dating effective connectivity models, the types of models examined
to date are actually quite simple. Inter-regional interactions (con-
nections) are typically held constant within task conditions and
are repeated without variation over multiple instances of the same
task condition (though see Ge et al., 2009; Havlicek et al., 2010,
2011). Connectivity parameter variation is used only to induce
changes in response patterns between conditions. Within condi-
tion variability in the regional response is ignored in deterministic
models and treated as the result of unmodeled interactions and/or
input in stochastic models.

An additional or alternative means to model trial-to-trial within
condition variability is by allowing the inter-regional connec-
tivity to vary within as well as between task conditions. In the
extreme, the cognitive regime can vary at each time point by setting
u = [1:T ]. This allows for a different connectivity pattern at each
time point. With different parameters for each time point, the lin-
ear equations of the LDSf model can be used to approximate data
from highly non-linear systems. However, the parameters of the
model can no longer be identified using gradient assent methods
as the number of parameters far exceeds the number of observa-
tions. Methods do exist to identify the model parameters provided
additional assumptions are made regarding how the connectiv-
ity parameters change over time. One well studied method is to
treat the elements of the system matrix A (i.e., the connectivity
parameters) as time series generated by another dynamic system
(Cox, 1964; Nelson and Stear, 1967; Ljung, 1979; Nelson, 2000;
Wan et al., 2000; Wan and van der Merwe, 2001; Ge et al., 2009).
The connectivity parameters can vary smoothly over time via a
random walk with a fixed variance, Σ, as in Eq. 10 where θt are the
connectivity parameters at time t.

θt=1 = θt + η; η ∼ N (0, Σ) Σij = 0 for i �= j (10)

Slow parameter dynamics can be achieved by using relatively
small values on the diagonal of Σ and/or including additional
autoregressive terms into the random walk. With a known dynamic
model for the parameters,filtering methods can be used to estimate
P(θ|y) in a similar manner as P(x |y). A so called“joint model”rep-
resentation is formed by including the unknown parameters θ as
part of the state space. For example, if only the system matrix A
is allowed to vary at each time point, the joint state space update
equation would be

[xt+1; vect (At+1)] = [At ; I ] ∗ [xt ; vect (At )] + [εt+1, 0;0, ηt+1]

(11)

This joint model is no longer linear and requires the use of
non-linear filters for identification.

The possible utility of the joint model for temporally vary-
ing state transition parameters is briefly presented here using the
unscented Kalman filter (UKF; Julier et al., 1995) for state estima-
tion (see Havlicek et al., 2011 for a similar method). The UKF is a
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non-linear filter designed to efficiently estimate the propagation of
a Gaussian distribution through any arbitrary non-linear function
with third order accuracy and propagation of an arbitrary non-
Gaussian distribution with at least second order accuracy (Julier
et al., 1995; Wan and van der Merwe, 2001). This compares favor-
ably to other methods such as the extended Kalman Filter and
similar filters based solely on first order Taylor series approxi-
mations. The UKF operates by approximating an n-dimensional
Gaussian with 2∗n + 1 points selected deterministically to opti-
mally reflect the distribution. These points are then propagated
through the non-linear function and recombined for a new esti-
mate. Thus the UKF can be considered a special case of the more
flexible (and computationally intensive) particle filter although
with deterministic particle sampling. Since the true non-linearity
is used in the UKF no derivative information is needed.

Five hundred observations of a three region LDSf model were
simulated using known parameters and an assumed TR of 1 s.
Orthogonal white noise was added to both the state and obser-
vations with SD of 0.2 and 0.1 respectively. The observations of
the model were generated by convolving the state space with a
canonical hemodynamic response. Of the nine inter-regional con-
nectivity parameters, the autoregressive self-connections were set
to constant values, four off diagonal connections were set to zero,
and the remaining two parameters, from region 1 to region 2 and
from region 1 to region 3, were allowed to vary [0:1] according to
1/175 Hz cosine and sine waves respectively. A joint model of the
resulting time series was identified using a combination of UKF
and the EM algorithm. Variance of the random walk was set to 0.1.
The UKF was used to estimate a joint state consisting of the quasi-
neural state and all nine connectivity parameters. Estimates from
a “forward” UKF and “backward” (i.e., temporally reversed) UKF

were combined to create smoothed estimates [i.e., P(xt,θt|y1:T );
Wan and van der Merwe, 2001]. These estimates were used to
update the remaining model parameters via EM. The smoothed
estimates are shown in Figure 2. Values of the static connections
remain fairly close to their true values though there is substantial
variation of the parameter values through time. The connection
from region 1 to region 2 appears quite accurate and the connec-
tion from region 1 to region 3 captures at least some of its correct
shape.

Further research is needed to determine the applicability of
the joint model for temporally varying connectivity parameters in
real fMRI data. The ability of the joint model to track changes in
connectivity without knowledge of any task parameters suggests
this method may be particularly useful for resting state and sim-
ilar constant task paradigms. Unfortunately, the joint modeling
method is ill-suited for most active task paradigms. The variance
parameters of the random walk in Σ govern how quickly the para-
meters can change over time. To account for abrupt, non-smooth
changes in connectivity that likely occur at the boundary between
task conditions these parameters must be set to large values. The
large variance allows the connectivity parameters to make large
“jumps” to their new values. However, if Σ is held constant, large
values would also increase the assumed variance of the parame-
ters within each task condition. The within condition connections
would then be free to attempt to non-smoothly vary in response
to any noise in the data. This can be seen in Figure 2 where the
joint model identified parameter variability as the source of vari-
ance in the states when the variance was due to noise. Thus the
applicability of joint modeling to fMRI remains an open question.

What is needed is a model framework that can produce smooth,
slow changes while allowing abrupt changes when necessary.

FIGURE 2 | Actual connectivity parameter values from simulation (smooth lines) versus LDSf parameter estimates using the joint model (jagged

lines). True parameter values in (A,B) vary according to sine waves while true parameter values in (C,D) are constant.
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Recently, an LDSf type model was introduced that can deal with
both of these types of changes. The switching linear dynamic sys-
tem for fMRI (SLDSf) can produce infinite variability over time
in connectivity parameter values including instantaneous connec-
tivity by probabilistically mixing a small number of static model
regimes (Smith et al., 2010; see Murphy, 1998 for more detail on
switching linear dynamic systems in a general context). Smith et al.
(2010) discuss varying the cognitive regime over a small set, u ∈
{1:s} where s � T. The probable value of ut can be estimated by
assuming Markovian dynamics for u given by a transformation
probability matrix Π as

P (ut = i) =
∑s

j=1
Πij P

(
ut−1 = j

)
(12)

with P(u0) = π. The probabilities of each regime can then be used
for a “soft-filtering” update on the expected value (mean) of the
state variable at time t as

E
[
xt |y1:t

] =
∑s

j=1

(
Wtj

(
Aj xjt−1 + Kjt ξjt

)
(13)

where Wtj = P(ut = j | y1:t ), xjt is the expected value of xt assum-
ing regime j, and Kjt and ξjt respectively are the Kalman gain and
innovation associated with regime j at time t. Similar formulas
can be given for “soft-smoothing.” In Smith et al. (2010), a three
regime model was identified for a single subject performing a fin-
ger alternation task with three conditions: tap left, tap right, and
rest. This three regime model was then used to estimate the quasi-
neural state xt and probability of each regime P(ut = j) at each
time point for the same data, a second run of the same subject
performing the same task with a different task ordering, and two
runs from a second subject performing the same task. Results are
shown in Figure 3. Probabilities for each regime are plotted along
with a grayscale code of the correct task. The time course of the
combined connectivity weights are also shown for several connec-
tions. Fast weight changes are seen at block onsets when regime
probabilities change dramatically while slow weight variability is
seen within blocks where regime probabilities are more stable.

A mixture of only a few different regimes may be insufficient
to adequately model a given set of tasks. In the SLDSf model,
the number of regimes does not need to be equal to the number
of known tasks. Additional regimes can be identified for differ-
ent portions of blocks, different stages of the scanning run, as
well as “noise” regimes with identity state transitions and large,
approximately uniform variance to account for outliers (c.f., Mur-
phy, 1998). An alternative to increasing the number of regimes
may be to combine a Viterbi SLDSf (i.e., only the most probable
regime is active) and joint UKFs. Smooth parameter variations
within a regime can be modeled by the joint filter with a small
random walk variance while large or abrupt parameter transitions
can be modeled as regime changes. This method is a candidate
for future study in the context of fMRI. It is also possible to
simultaneously learn the boundaries or regimes as well as the
regime parameters with only an assumption on the number of
regimes. Modeling a priori unknown regime boundaries may be
particularly useful for resting state studies or studies with patient
populations.

FIGURE 3 | Parameter values in switching linear dynamic system.

Shown are the parameter values for three regions (A) and the probability of
each cognitive regime (B). Parameters are mixtures of the stationary
models from each regime weighted by the probability of being in each
regime. The connectivity parameter values are similar but not identical for
repetitions of the same condition and the parameters vary within a block of
the same condition as well. However the main source of variance in the
parameters is the change from condition to condition.

Switching linear dynamic system for fMRI models are not
without problems. Of particular concern for fMRI is the stan-
dard approximation used in SLDS smoothing due to Kim (1994).
While smoothing, the true smoothed regime probabilities P(ut = j
| ut+1 = k, y1:T ) are typically approximated as P(ut = j | ut+1 = k,
y1:t ) to avoid computational complexity. The approximation is
considered relatively accurate provided the future observations
(yt+1:yT) do not provide much additional information about
ut beyond that contained in ut+1 (Kim, 1994; Murphy, 1998).
Obviously this is not the case for fMRI where the hemodynamic
response causes a substantial delay in the observable consequences
of neural changes. This can produce overly smooth regime prob-
abilities that rely heavily on Π and less on the observed data.
Other methods exist that do not rely on this approximation
(Barber, 2006) and are likely needed for better application to
fMRI, particularly for fast regime switches as seen in event related
designs.

ISSUE THREE: REGION NUMBER AND LOCATION
The third issue concerns the number and location of regions
to-be-included in effective connectivity models. This is essen-
tially the question of how many regions one should include in
a model and where are they? If the model is too limited, the dan-
ger of spurious influence is increased and if the model has too
many degrees of freedom, the danger of over-fitting, and poor
generalization is increased (Roebroeck et al., 2011). Hypothe-
ses derived from existing theories concerning the location of the
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to-be-included regions are often based on anatomical structures
or Brodmann areas. As such they are spatially imprecise rela-
tive to the resolution of fMRI data. Structurally defined regions
may contain thousands of voxels with heterogeneous responses.
Dimension reduction of the structure via Principle Components
Analysis may result in signals that represent the variance within
the structure, but not necessarily the variance in the structure
associated with other areas. Using t statistics from univariate
task analyses to select voxels identifies voxels with minimal vari-
ance beyond that explainable by the task. As discussed in Issue
One, this minimizes the within task variance assumed to underlie
connectivity.

Smith et al. (in review) present a principled approach for
dealing with these two issues. Singular spectrum analysis (SSA;
Broomhead and King, 1986; Vautard and Ghil, 1989; Ghil et al.,
2002) is used to estimate the number of variables to include
in the network. The augmented LDSf method of Smith et al.
(2010) is then extended to identify multiple regions to-be-included
in dynamic connectivity models starting from a single seed
region.

The problem of the number of nodes needed in a connectivity
network can be formalized as the number of variables required to
generate observed data. Fortunately the problem of the number of
variables operating in a non-linear dynamic system has been stud-
ied in other fields (Schouten et al., 1994; Abarbanel, 1995; Patel
and Haykin, 2001). It has been proven (Whitney, 1936; Mañé,
1981; Takens, 1981) that the number of interacting variables in
a dynamic system can be reliably estimated from observations of
any smooth function of any number of the variables in the system.
Thus it is theoretically possible to identify the number of variables
active in the dynamic system operationally defined as “a brain
performing a task” by observing data from one variable (voxel)
involved in the network. While Takens’ theorem holds for noise-
less systems, for noisy systems other researchers have developed
a related concept of Statistical Dimension, defined as the number
of variables in a dynamic system that can be reliably identified
above noise from a specific data set (Vautard and Ghil, 1989; Sar-
danyés and Solé, 2007). The magnitude of the signal relative to
the noise imposes limitations on how well the number of variables
can be identified. Thus the Statistical Dimension of the data series
is a function not only of the dimension of the true underlying
dynamic system, but also the quality of the observations of that
system (e.g., for fMRI data, the quality of the observations will
be related to the field strength, TR, subject movement, etc.). The
number of regions to include in a dynamic connectivity model
can be determined by identifying the Statistical Dimension of the
system.

Singular spectrum analysis is a method for estimating the Sta-
tistical Dimension of any arbitrary non-linear system corrupted
by noise (Packard et al., 1980; Broomhead and King, 1986; Vau-
tard and Ghil, 1989; Cheng and Tong, 1992; Kimoto and Ghil,
1993; Read, 1993; Plaut and Vautard, 1994; Allen and Smith, 1996;
Ghil et al., 2002 and references therein). Full discussion of SSA is
beyond the scope of this article. Briefly, SSA involves the Eigen-
decomposition of a delay matrix, Ψ, created by concatenating
m-length data vectors, Yt, from sliding windowed views of the

full data y1:T

Y (t ) = [y(t − (m − 1)), y(t − (m − 2)), . . . ,

× y(t − (m − m)) ]′. (14)

ψ = [Y (m), Y (m + 1), Y (m + 2), . . . , Y (T )] (15)

The covariance of Ψ will have p eigenvalues from the signal
and m−p eigenvalues for the noise. Assuming white noise with
uniform spectral power, the m−p eigenvalues associated with the
noise will all be approximately equal and the p signal eigenval-
ues will be larger than this noise “floor” (Broomhead and King,
1986; Abarbanel et al., 1993). Pairs of equal eigenvalues occur
when one variable is oscillating while unique eigenvalues occur
for non-oscillating variables.

To demonstrate the utility of SSA, Smith et al. (in review) apply
the method to the well known Lorenz attractor system (Lorenz,
1963)

dx1

dt
= σ (x2 − x1) (16)

dx2

dt
= ρx1 − x2 − x1x3 (17)

dx3

dt
= −βx3 + x1x2 (18)

A scalar observation signal was created from the product of
the three x variables numerically integrated using Fourth Order
Runge Kutta (further details are in Smith et al., in review). The
first 20 eigenvalues obtained by SSA for varying window (m) sizes
are plotted in Figure 4. Clearly, the first six eigenvalues form into
three pairs of equivalent eigenvalues and eigenvalues past number
six are all roughly equivalent to each other forming the noise floor.
Frequency analysis of the eigenvectors confirms that each pair con-
sists of a single frequency pattern differing from each other only by
phase. Thus, each pair defines a single oscillating variable and the
correct number of variables, three, was identified for the Lorenz
Attractor system. Smith et al. (in review) also applied the SSA
method to determine the dimension of the left motor cortex in a
finger alternation task.

When the locations of the regions participating in a network
are not all known a priori, LDSf can be extended to identify miss-
ing regions (Smith et al., 2010). To maintain localization of the
quasi-neural state space, the dimension of this state space is set
equal to the dimension of the hemodynamic observations and a
one-to-one mapping from neural states to hemodynamic obser-
vations is enforced. Smith et al. (2010) showed how additional
regional signals could be identified by increasing the dimension
of the neural state beyond the dimension of the hemodynamic
observations while maintaining the one-to-one mapping. The
additional neural dimension cannot directly influence the hemo-
dynamic observations, but can interact with the other localized
quasi-neural variables via the transition matrices Aut . The time
series of the additional quasi-neural variable along with the local-
ized variable(s) can be estimated using Kalman filtering and RTS
smoothing as above (see Smith et al., 2010). Once identified, the
time series of the additional quasi-neural variable at each time
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FIGURE 4 |The eigenvalues (A) and eigenvalue spacing (B) identified

by SSA for the Lorenz system at varying window sizes. Eigenvalues are
correctly identified in three pairs, each pair representing a single variable
from the system. The three pairs clearly rise above the zero floor.

point can be convolved with a canonical hemodynamic response
function, and used to predict each voxel in the brain via linear
regression. The best fitting voxel is then the most likely candidate
to be added to the model.

ISSUE FOUR: VOXEL SELECTION
The fourth issue concerns the location of the optimal voxel from
an a priori selected anatomical region to include in an effective
connectivity model. This is essentially the question of which voxel
should I use? While building up models from data alone is use-
ful, often specific anatomic structures are of interest to researchers
who wish to test hypotheses regarding the interactions between
that structure and others. However, these hypotheses are often
vague relative to the spatial frequency of the data as even relatively
small structures such as entorhinal cortex can still contain several
hundred voxels that do not all have a uniform response. Larger
structures, such as fusiform gyrus, contain multiple distinct func-
tional regions, the total number, and boundaries of which may not
be known a priori. Further problems may be caused by the possi-
bility that the optimal locus of inter-regional interaction within a

structure may change from one task condition to the next. Select-
ing the exact voxel or combination of voxels to use in connectivity
analyses has been a subject of continuing research (Goncalves and
Hall, 2003; Spiridon et al., 2005; Friston et al., 2006; Saxe et al.,
2006; Deleus and Van Hulle, 2009; Cole et al., 2010; Van Dijk et al.,
2010; Marrelec and Fransson, 2011).

The most common method is to use univariate t statistics from
task regression analysis to identify the most task related voxels
within an anatomical region of interest and then use that voxel
or small region of interest centered on that voxel as a node of the
network. This method has obvious surface validity and reflects
the secondary position of connectivity analysis in most functional
imaging studies. That is, researchers often first seek to answer
the functional localization question of which voxels responded
most robustly to a task and only then attempt to address the
functional integration question. However, t statistics represent
ratios of known to unknown variability. The known variability
is often impoverished consisting of little more than a uniform
response to each instance of the task. The unknown variabil-
ity thus contains both meaningful trial-to-trial variability as well
as noise from measurement error or other sources. Selecting a
voxel via t -ratios may lead to identification of voxels that are
minimally affected by precisely the trial-to-trial variability that
we wish to analyze as connectivity. What is necessary then is to
identify task related voxels that have maximal variability associ-
ated with connectivity but minimal additional noise; suggesting
that localization and integration should be computed concur-
rently. In continuous task or resting state experiments, t statistics
are not available. Here again, while anatomical regions may be
known (e.g., posterior cingulate and superior parietal cortex) the
exact locations maximally connected between these regions are
not known.

The most straightforward solution is to alter the output equa-
tion to allow multiple voxels to be associated with a single neural
time course

ω′
iYit = βiΦZit (19)

ω′
jYjt = βjΦZjt (20)

where Yi and Yj represent different anatomical region 2. The vec-
tor Yit is n by 1 in dimension where n is the number of voxels in
the anatomical region. The vector ωi is an n by 1 vector of voxel
weights. If Φ is a single basis vector (e.g., canonical hemodynamic
response only) ωi can be identified by setting βi to one and solving
for 1/ωi via maximum likelihood

1

ωi
= (

ΦPiΦ
′)−1

ΦZiY
′
i (21)

where Pi is the maximum likelihood estimate of P(Z′
i Zi |Y1:T).

Note the similarity between this update and the regression solu-
tion. A separate ω can be identified for each regime (i.e., ωu) to
allow for task related differences in voxel weights.

To be identifiable, this regression based method requires that
the hemodynamic response in each voxel of the anatomical region
be a multiple of the single basis Φ. Substantial deviation between
the true hemodynamic responses in the region and canonical basis
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may produce erroneous results. A more significant problem with
the above method is the regression formulation. It can be shown
that the Kalman filter solution to the multi-voxel LDSf model
above will minimize the sum over t for the following cost function

(
yt − ω−1ΦZt

)′
R−1 (

yt − ω−1ΦZt
)

+ (
Xt |yt − Xt |yt−1

)
Q−1 (

Xt |yt − Xt |yt−1
)

(22)

where Xt|yi is the maximum likelihood estimate of P(xt | y1:i). The
first term in Eq. 22 is a squared error in hemodynamic space. Thus
it is clear that the above regression method will attempt to min-
imize the error for all voxels in the anatomical region. This will
have the effect of steering ω−1 toward the first eigenvector of the
anatomical region. To the extent that the anatomical region is uni-
form, the summation over the error in all voxels is not a problem,
but this negates any benefit of the above method over reducing the
region to a single vector via Principle Components Analysis.

An alternative method is to replace the first squared error term
of the cost function in Eq. 22 with a new one based on canonical
correlations as in Eq. 23.

(
ω′YZ′Φ′β′) (

ω′YY′ω
)−1/2

(
βΦZZ′Φ′β′)−1/2

(23)

The solution to Eq. 23 is ω and β that maximize the correla-
tion between Y and Z. Unlike Principle Components (eigenvector
analysis) or Partial Least Squares, Canonical Correlations does not
include a penalty for the variance accounted for within a region.

All that is required is that the correlation between the weighted
Y and Z is maximized. The number of voxels from the region
participating can be minimized and spurious correlation avoided
by using a sparse canonical correlation which maximizes the cor-
relation while setting the majority of the elements of ω to zero
(Parkhomenko et al., 2009).

The utility of the combination of sparse canonical correlations
and LDSf is demonstrated via a simple simulation. Five hundred
observations of an LDSf model with five quasi-neural variables
were simulated as above using known parameters and an assumed
TR of 1 s. Quasi-neural variables one through three were mutu-
ally interconnected as were variables four and five thus forming
two distinct subnetworks. No connections existed between the two
subnetworks however a common input vector was used for vari-
ables three through five (see Figure 5). Orthogonal white noise was
included in both the state and observations with SD of 0.2 and 0.1
respectively. Observations for the first two regions of the model
were generated by convolving their state space with a canonical
hemodynamic response. One hundred “voxels” of a third anatom-
ical region were simulated by mixing the time series of variables
three through five according to weights as shown in Figure 5. All
weights were non-zero. These mixed time series were convolved
with a canonical hemodynamic response. One hundred data sets
were generated from this model with different noise series. Three
region LDSf models using the modified sparse canonical correla-
tion cost function were then identified for each data set. Results
of a typical run are shown in Figure 6 as is a histogram of the
correlations between the estimated quasi-neural time series of the

FIGURE 5 | Model used for CCA-LDSf simulations. Model
connectivity is shown in (A). The model contains three anatomical
regions (blue circles). Regions 1 and 2 contain a single signal each
while region three contains three signals (red circles). The signals form

two distinct task related networks [1,2,3] and [3,4,5]. (B) For
anatomical region 3, 100 voxels were created by mixing signals 3, 4,
and 5 by known weights that varied by voxel. The weights were always
non-zero and positive.
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FIGURE 6 | Results from the CCA-LDSf model. CCA-LDSf was used to
identify a small number of “best” voxels from the 100 voxels in region 3
that interacted with regions 1 and 2 (see Figure 5). Signal three contains
the optimal signal. Voxels with high weights on signal three (red weights)
should be selected while voxels with low weights on signal three should be
avoided. Values of weights for each voxel as estimated by the CCA-LDSf
model are shown in bars. A voxel with near maximal true weight on signal 3
was chosen as the optimal voxel by the CCA-LDSf.

multi-voxel region and the third variable which constituted the
“true” network variable. A clear preference for voxels from near
the maximum of the correct weight distribution is evident. Thus
the modified LDSf method was capable of selecting a voxel partic-
ipating in the true generative network from a larger non-uniform
anatomical region.

While the modified sparse canonical correlation LDSf is
promising, it is not without potential pitfalls. The sparseness
constraint results in a dramatic increase in the number of local
minima of the likelihood function that is maximized to identify
the model parameters. Poor choice of starting values or early set-
tling on a sparse set of voxels may produce dramatically different
results. Research toward determining better parameter identifi-
cation methods as well as exploration of additional constraints
such as non-negativity will be necessary before the method can
be more generally applied. In addition, the simulations used here
have a limited relation to real fMRI data. The results should be
considered a proof of concept only. Further testing with real fMRI
data is needed.

ISSUE FIVE: PARAMETER INTERPRETATION
The fifth issue concerns the interpretation of the parameters iden-
tified in an effective connectivity model. This is essentially the
question of now that I have a model, how do I know what it means?
The typical focus of effective connectivity studies is the value of
the connectivity parameters (i.e., the elements of the Aut matri-
ces or similarly the A and B matrices in DCM). Questions such
as “is the connection parameter non-zero?” or “is the connection

parameter different between these conditions?” are common. In
LDSf, multiple means can be used to assess the statistical robust-
ness of parameters and parameter differences. Variational Bayesian
methods of parameter identification naturally provide uncertainty
parameters for the identified connections (Makni et al., 2008; Ryali
et al., 2011). These variances are then easily used to assess parame-
ter robustness. If parameters are identified using Quasi-Newton
methods, the estimated information matrix (inverse Hessian) can
be used to approximate parameter variances and thus t tests
(Lütkepohl, 2007). The information matrix can also be calcu-
lated independently using matrix derivative methods (Smith et al.,
2010). The information matrix based methods are known to suf-
fer when the estimated-parameter-number to time-point ratio is
large (Lütkepohl, 2007). Parameter variances can also be estimated
using bootstrap methods though this can be time consuming and
suffers similar small sample problems (Lütkepohl, 2006). More
general structural model selection methods such as tests of time
varying versus non-time varying connection parameters can be
assessed using likelihood ratios and chi-square tests as in tests of
intervention models (Lütkepohl, 2007). In addition, an elegant
structural model selection framework has been developed around
DCM (Penny et al., 2004, 2010; Stephan et al., 2009).

Tests of connection parameter values or structural differences
between models can be useful for testing hypotheses regarding
existence of experimental effects and network alterations due to
disease (Rowe, 2010). However, interpreting the effect of individ-
ual parameters or even individual parameter changes on other
regions in a network is quite complex (Kim and Horwitz, 2009).
Knowing that a connectivity from region a to region b equals 1
during one condition and then changed to −1 during another is
meaningless by itself if the time series data are centered. Rather
than reflecting an “excitatory” versus “inhibitory” response, the
effect depends on the values of the estimated quasi-neural state
of a within the conditions. Obviously if the mean quasi-neural
state of a is negative, the positive connection weight will reduce
the values of the quasi-neural states in b. The effect can even be
non-constant if the values of the a quasi-neural states cross zero
during a condition. Further, unless the model is deterministic or
has a diagonal Q matrix, the instantaneous connections need to
be considered. Changes in variance during a condition also need
to be considered. Finally, the effects of connectivity parameters are
all relative to the other parameters in the network. Despite having
a non-zero connectivity value, a positive connectivity parameter
from region a to region b may have no effect at all if a negative
connectivity parameter also exists between region c and region b
and a and c have similar values.

To better interpret the effects of one variable on another, the
network orthogonal impulse response functions can be identified
(Sims, 1980; Sims and Zha, 1999). Using the relation between the
reduced and structural forms given in Eqs 8 and 9, an orthogonal
system can be created

xt = (I − Ã0)Ã1xt−1 + (I − Ã0)δt (24)

Setting δ0 to Ω, δt = 0 for t > 0, x0 to a known value (e.g., its
mean), and iterating through the system in Eq. 24, the effects of 1
SD shocks to the variables can be traced through the network over
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time. Setting all but one element of δ0 to zero allows the effect of
a 1 SD change of a single variable to be observed. Bootstrap error
bars for these network impulse responses can be easily calculated
(Runkle, 1987; Kilian, 1998; Sims and Zha, 1999; Benkwitz et al.,
2000; Kilian and Chang, 2000; Lütkepohl, 2006).

The network impulse response analysis can then be used to
understand the effects of the quasi-neural variables on each other
in a graphical or quantitative manner (Lütkepohl, 2007). To
demonstrate the utility of the network impulse response func-
tions, the LDSf model of the finger alternation task identified in
Smith et al. (in review) was analyzed. During right hand tapping,
the connection from left premotor cortex to left motor cortex
was 0.115 while the reciprocal connection was −0.174. From these
parameters alone the direction of causality is unclear. The network
impulse response to a 1 SD change in premotor cortex is shown
in Figure 7A while the response to a 1 SD change in motor cortex
is shown in Figure 7B. Clearly increased response in motor cortex
is caused by premotor cortex while increased response in motor
cortex reduces activity in premotor cortex.

The network impulse responses tell how the changes in mod-
eled quasi-neural activity in a set of regions affect the activity in
other modeled regions while performing the modeled task. They
can also be extended to estimate the effects of a change in the
hemodynamic activity of one region on the neural activity in
another region. While useful in understanding network interac-
tions, the impulse response functions are not without problems.
First and foremost, they should not be confused with neural
impulse response functions as they are not measures of expected
neural activity. Rather, they are a tool for analysis of an estimated
effective connectivity network. The choice of impulse δ0 initially
added to the network is rather arbitrary and may not reflect a
realistic state of the network. The surface validity of orthogonal
impulses should be considered (e.g., how likely is driving activ-
ity from only one premotor cortex as opposed to both). The
network impulse response does provide more information than
examination of single parameters and should be calculated prior
to interpretation of regional interactions.

ISSUE SIX: TIME
The final issue concerns time and its role in causality in fMRI.
Essentially this is the question what does an AR or other dynamic
model of quasi-neural activity mean when the observations are
space 1–0.5 Hz apart? Addressing this issue fully is beyond the
scope of the current manuscript. However, several points should
be made. Connectivity in LDSf (as well as DCM) is essentially
between “deconvolved” fMRI signals temporally localized to indi-
vidual task conditions and spatially localized to individual brain
regions. The goal then is to describe the interactions in a LFP
space. However, the fMRI data exists at a sampling rate that is
orders of magnitude slower than typically examined with in vivo
recordings. Modeled at 0.5 Hz, it is not clear what “quasi-neural
interactions” mean. The solution in DCM is to model the fMRI
data in continuous time such the interactions between regions are
integrated over the time period of an observation. While interac-
tions now occur at intervals more typically associated with LFP, in
truth there is no improvement. Such continuous–discrete mod-
els (continuous dynamics and discrete observations) must blindly
integrate between observation times. Unless the parameters of the

dynamic model are well defined a priori, there is no information
to constrain them beyond that at the sampling interval. This issue
is further compounded by the low-pass filter nature of hemody-
namics such that there is limited information even at the sampling
interval.

One attractive solution is to combine the high temporal fre-
quency information available in EEG with the high spatial fre-
quency information from fMRI (Horwitz and Poeppel, 2002;
Menon and Crottaz-Herbette, 2005; Babajani and Soltanian-
Zadeh, 2006; Debener et al., 2006; Ritter and Villringer, 2006;
Valdez-Sosa et al., 2008). Both fMRI (Logothetis et al., 2001; Logo-
thetis and Pfeuffer, 2004) and EEG (Steriade, 2001; Niedermeyer
and Lopes da Silva, 2004; Freeman et al., 2009) are driven indirectly
(fMRI) or directly (EEG) by the dendritic currents responsible
for LFPs. This suggests some non-trivial level of agreement can
in principle be identified between EEG and fMRI signals. While
progress has been made with model driven EEG/fMRI fusion, a
biophysical model fully combining the spatial resolution of fMRI
and the temporal resolution of EEG remains elusive (Valdez-Sosa
et al., 2008). However, data driven (i.e., statistically based) methods
have had success (e.g., Martinez-Montes et al., 2004).

As a simplistic demonstration, LDSf model can be augment
with a second output matrix to estimate simultaneously recorded
EEG data as well as the fMRI data using the same regionally
localized quasi-neural hidden states

xt = Aut xt−1 + Dut vt + εt ε ∼ N
(
0, Qut

)
(25)

Zt = [
xt , xt−1, xt−2, . . . , xt−(h−1)

]
(26)

yt = βΦZt + ζt ; ζ ∼ N (0, R) (27)

EEGt = Cxt + ψt ; ψ ∼ N (0, S) (28)

To illustrate, simultaneous EEG and fMRI data were collected
from a single healthy, right-handed subject performing a blocked
finger alternation task (Smith et al., 2010). After preprocessing the
EEG data to remove artifacts, tensor partial least squares (tPLS)
was used to identify EEG electrodes and frequency bands whose
weighted combination produced time signatures in hemodynamic
space that varied with task condition and were significantly related
to fMRI data from brain regions identified as activated by the task
(Martinez-Montes et al., 2004) A high beta oscillation centered
at 29 Hz was identified with six electrodes participating at statisti-
cally significant levels. The fMRI spatial signature of this oscillation
included broad areas in the frontal lobes including motor, premo-
tor, and supplementary motor cortex, anterior cingulate, and the
head of the caudate nucleus.

The unweighted, unconvolved 29 Hz oscillations from each
of these six electrodes were entered into the SLDS model. Eight
bilateral regions were selected from the fMRI data based on
a separate univariate SPM analysis as well as the tPLS result
including primary motor cortices, premotor cortices, two dis-
tinct supplementary motor cortex regions, and two distinct ante-
rior cingulate cortex regions. All data were detrended using
polynomials up to the third order, centered and normalized
to unit variance. The SLDS model was able to identify a sin-
gle quasi-neural time series from each brain region capable
of generating both the observed fMRI and EEG data with
considerable accuracy (mean ± SD EEG r = 0.67 ± 0.19, range
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FIGURE 7 | Network impulse response functions for left primary motor

and premotor cortex during right hand tapping. Probability density
(0.025–0.975) estimated via bootstrap is color-coded for each response

function. A 1 SD impulse to the premotor cortex causes a small but sustained
increase in the motor cortex while a 1 SD impulse to the primary motor
cortex causes a smaller, less sustained decrease in the premotor cortex.

0.44–0.90; mean ± SD fMRI r = 0.84 ± 0.09, range 0.71–0.97).
LDSf on the fMRI alone also achieved considerable accuracy
(mean ± SD fMRI r = 0.82 ± 0.08, range 0.70–0.97). However, the
correlation between the estimated quasi-neural time series for

each anatomical region from the two models, while statistically
significant, was often limited (mean ± SD r = 0.50 ± 0.15, range
0.32–0.74) suggesting different underlying quasi-neural time
series were identified by the two models. Statistically combining
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EEG and fMRI at a quasi-neural level using LDS is a potentially
useful means of identifying task related connectivity at a higher
temporal resolution than possible with fMRI alone.

The form of fMRI/EEG combination described above is data
driven rather than biologically based. The EEG signal is treated
more as an aid to the deconvolution of the fMRI signal rather than
a signal of interest in its own right. The EEG power data entered
into the LDS are a non-linear function (power at 29 Hz/s window)
of a linear mixture of signals yet the model treats them as a linear
mixture of a non-linear function. Ultimately a biologically justi-
fied combination of the two data sets will be needed to produce
more meaningful models.

CONCLUSION
The number of studies utilizing connectivity measures has dra-
matically increased in recent years (Friston, 2011). However,

connectivity methods are still in development; several issues must
be addressed to achieve the full utility of these methods. Here
we identified six issues with existing connectivity methods we
believe are most important. For each problem we provide a possi-
ble solution using extensions of the LDSf framework. Considerable
future research is needed to validate each of these methodologi-
cal sketches or incorporate these ideas into other methods. We
believe the LDS framework is a promising foundation for effective
connectivity analysis.
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