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Deep echocardiography: data-efficient supervised and semi-
supervised deep learning towards automated diagnosis of

cardiac disease

Ali Madani', Jia Rui Ong?, Anshul Tibrewal? and Mohammad R. K. Mofrad @'

Deep learning and computer vision algorithms can deliver highly accurate and automated interpretation of medical imaging to
augment and assist clinicians. However, medical imaging presents uniquely pertinent obstacles such as a lack of accessible data or
a high-cost of annotation. To address this, we developed data-efficient deep learning classifiers for prediction tasks in cardiology.
Using pipeline supervised models to focus relevant structures, we achieve an accuracy of 94.4% for 15-view still-image
echocardiographic view classification and 91.2% accuracy for binary left ventricular hypertrophy classification. We then develop
semi-supervised generative adversarial network models that can learn from both labeled and unlabeled data in a generalizable
fashion. We achieve greater than 80% accuracy in view classification with only 4% of labeled data used in solely supervised
techniques and achieve 92.3% accuracy for left ventricular hypertrophy classification. In exploring trade-offs between model type,
resolution, data resources, and performance, we present a comprehensive analysis and improvements of efficient deep learning

solutions for medical imaging assessment especially in cardiology.
npj Digital Medicine (2018)1:59; doi:10.1038/s41746-018-0065-x

INTRODUCTION

With the improved quality and accessibility of both medical
imaging equipment and effective healthcare policy, medical
imaging has become an increasingly critical step in modern
healthcare diagnostics and procedures. Interpretation of medical
imagery requires specialized training and is a time-intensive
process. Machine learning and computer vision techniques
provide an avenue to augment insights, improve accuracy, and
optimize workload time for interpretation. Traditional machine
learning techniques in medical imaging involve matching of
features hand-engineered by domain experts, a laborious process
with limited scope and effectiveness.'? Recent advances in deep
learning,>™ a data-driven approach, and the increasing accessi-
bility of powerful graphical processing units (GPUs)®” have made
the automation of image-based diagnosis insights possible.
Researchers have succeeded in applying deep learning techniques
in radiology, cardiology, and dermatology,® '® including detecting
pneumonia from chest X-rays'' and classifying images of benign
versus malignant skin lesions."?

While deep learning holds great promise in automating the task
of medical diagnosis, there remains a set of unique challenges to
be resolved before it can be deployed in practice at scale®
Specifically, deep learning algorithms require massive amounts of
labeled data to achieve human-level classification performance.
Due to privacy laws, differing standards across the healthcare
industry and the lack of medical system integration, medical data
is less available compared to other fields of computer vision. In
addition, medical datasets suffer from class imbalances as certain
conditions occur much less frequently than others. Labeling of

medical images is complex and requires the time of medical
professionals, making it significantly more expensive compared to
other computer vision tasks. In addition, there is a limit to the
effectiveness of current algorithms in processing high-resolution
medical images. As a result, there is a need to identify an optimal
balance between resolution size and computational burden.
Lastly, medical images often contain other metadata that may
be irrelevant for the classification task, leading to less than optimal
performance from deep learning models that are unable to filter
out this extra information.'?

In this paper, we address the above challenges by developing
data-efficient training methodologies in the domain of transthor-
acic echocardiograms (TTEs) classification, the most ubiquitous,
versatile, and cost-effective cardiac imaging modality available.'*
Currently, studies have shown surprising rates of echocardio-
graphic assessment inaccuracy can be up to 30% of echo reports'>
and echocardiographic quality inadequacy in 24% of imaging
studies.'® Automating interpretation of echocardiograms with
trained deep learning classifiers can significantly lower cost,
improve quality, and augment cardiologists in making faster and
more accurate diagnoses. TTE consists of video clips, still images,
and doppler measurements recorded from over a dozen different
viewing orientations.'” Determining the view is the essential initial
step in interpreting an echocardiogram and establishing quality of
recorded medical imaging. This step is challenging due to subtle
inter-view differences and the variability within a single view.'® In
addition, from different view orientations further symptoms can
be visually identified, such as the enlargement of chambers and
thickening of ventricular walls before final prognosis. Left
ventricular hypertrophy (LVH), a condition commonly associated
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with heart disease and hypertension, can be identified by the
thickness and relative size of the left ventricle from
echocardiograms.'®

Previously,'”® we explored supervised learning techniques for
effective classification of echocardiogram view orientations,
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Fig. 1 Deep learning for echocardiography study diagram. a Two

classification tasks were examined for echocardiography: view
classification and left ventricular hypertrophy (LVH) classification. b
Two different approaches for deep learning models were taken: a
supervised pipeline model that performs segmentation (U-Net)
before classification (CNN) and a semi-supervised generative
adversarial network (GAN) for end-to-end learning. ¢ The data, for
both view and LVH classification, was split accordingly by study and
no test data was utilized in training or validating the model
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reporting a single image classification accuracy of 91.7% over 15
view classes. View classification is an important initial step in terms
of a proof-of-concept to gain confidence that deep learning
networks are performing accurately by learning relevant visual
features, on-its-own as an assistant to sonographers for quality
assurance, and as a precursor toward prediction of clinical
diagnoses; as if an algorithm can learn what anatomical structure
it is looking at, it can conceivably then learn patterns in what is
defined as normal vs abnormal. We expand the previous work'®
by examining both supervised and semi-supervised techniques for
classification of view orientations, segmentation of relevant
structures in echocardiogram images, and classification of left
ventricular hypertrophy with the goal of automating cardiovas-
cular disease prediction as captured in Fig. 1. Our expansion of
work provides an expansion of the depth and breadth of both
algorithms and applications in deep learning for echocardiogra-
phy and medical imaging as a whole. We train convolutional
neural networks (CNNs) on input resolutions of varying sizes and
found an optimal balance between classifier performance and
computational burden at 120 x 160 pixels. Performance of CNNs
trained with default weight initialization were compared with
transfer learning from Resnet50?° and VGG16,>' models that were
pre-trained on the ImageNet*>?* dataset.

We report an accuracy of 94.4% on the same test set, using an
ensemble of CNNs with a single U-Net** for field of view
segmentation. We applied the same techniques on a limited
training dataset for single image LVH classification, obtaining a
test accuracy of 91.2%. We show that generative adversarial
networks (GANs),>> adapted for semi-supervised learning, can
achieve better results than conventional CNNs in settings where
labeled data is limited, achieving a test accuracy of 92.3% for LVH
classification. Together, we present a working CNN system capable
of accurately classifying left ventricular hypertrophy from a single
echocardiogram image and a GAN system for automating disease
predictions in data-limited settings.

RESULTS

An optimum balance exists between resolution size and
computational burden

We examined the effect of resolution size on accuracy perfor-
mance and computational time. Ideally, there is an optimal point
where the resolution is efficiently small without losing excessive
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Fig. 2 An optimal resolution size exists considering performance vs computational time tradeoffs. Plot of validation accuracy and training
time per epoch with input resolution. The optimal balance between computational burden and validation accuracy exists at 120 x 160

resolution
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structural information. For a subset of the echocardiographic data,
we observed that with our VGG16-like architecture, validation
accuracy plateaus at sub-88% accuracy for resolution above 60 X
80. As shown in Fig. 2 and Table 1, computation time scales with
increasing input resolution. For convolution layers, we observed
that filter sizes of 3x 3, same padding, stride of 1 pixel, and
pooling size of 2x 2 works well generally across all resolutions,
while maximum pooling works better than average pooling layers
for resolutions above 60 x 80 pixels.

With only a few samples, custom deep learning segmenters can
be trained to identify focus areas

Learning segmentation maps allows for focusing only the relevant
pixels for subsequent classification. Our trained segmentation
models are able to achieve satisfactory results with minimal
labeling. The segmentation results for both Field of View and LVH
segmentation are shown in Fig. 3. For View Segmentation, our
model reported a pixel-wise cross-entropy loss of 0.3984 on the
test set of 32 images. From visually inspecting the segmentation
on our test set, segmentation of single mode images matches very

Table 1. Table of evaluation results for resolution study

Resolution Training Validation Training Time /
Accuracy Accuracy Epoch

240%x320 94.49% 87.92% (+/—0.06) 781s

120x 160 98.43% 87.82 (+/-0.02) 226

60 x 80 99.10% 87.04% (+/—0.05) 104s

30x40 93.57% 82.30% (+/—-0.01) 79s

Validation accuracy plateaus at sub-88% accuracy while training and
testing time continue to scale with increasing input resolution.
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closely to the labeled map, while segmentation of volumetric and
dual mode is less consistent.

For Left Ventricle Segmentation, our model reported a pixel-
wise cross-entropy loss of 0.1926 on the test set of 50 images.
From visually inspecting the segmentation on our test set,
segmentation of left ventricle is less tight compared to the
labeled segmentation maps. Segmentation of images in dual
mode is less consistent. While images in dual mode were labeled
with a single mask around the left view, the model predicted
segmentation maps around the left ventricle in both views.

Field of view segmentation before classification achieves the
highest reported accuracy for echocardiographic view
classification

For echocardiographic 15-view classification, our CNN model
without segmentation achieved an overall test accuracy of
92.05%. With the field of view segmentation prior to view
classification pipeline as shown in Fig. 4, the same network
architecture achieved an overall test accuracy of 93.64%. We
found that average pooling layer outperforms maximum pooling
layers for input images with Field of View segmentation. The best-
performing model in our experiment is an ensemble of 3 CNNs
with Segmentation that achieved an overall test accuracy of
94.40%. The resulting performance of each model is tabulated in
Table 2. The normalized confusion matrix and accuracy by
individual class for the ensemble is reported in Fig. 5. Both
Resnet50 and VGG16 models achieved lower overall test accuracy
of 91.36 and 83.67% respectively, despite having a more complex
and deeper architecture.

As segmentation is performed in the preprocessing step, test
and training time corresponds with the size of the network
architecture, transfer learning with Resnet50 took more than 8
times the amount of time per epoch compared to the CNN
models.

Predicted Map

Image Applied

Labeled Map Predicted Map

Fig. 3 Figure of image data, labeled map, predicted map and predicted map applied to original image for Field of View (left) and LVH
Segmentation (right). Trained segmentation models are able to accurately discern contours in echocardiogram images and output a map over

relevant areas
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Fig. 4 Field of View (FoV) segmentation and View Classification pipeline. Unet predicts a segmentation map over the main FoV, which is
applied to the input image prior to view classification. FoV segmentation before view classification improved performance of the CNN model

from an overall test accuracy of 92.05 to 93.64%

Left ventricle segmentation and transfer learning enables efficient
classification of LVH using convolutional neural networks

For left ventricle hypertrophy classification, a pipeline model of
segmenters and classifiers was developed as shown in Fig. 6. As
shown in Table 3, after the first stage training our convolutional
neural network model with image segmentation pipeline
achieved an overall test accuracy of 81.318% and F1 Score of
0.5952 on our test set of 182 images. We evaluated the model
after the second stage training, and an overall test accuracy of
91.208% and an F1 Score of 0.8139 were measured. The
normalized confusion matrix is reported in Fig. 7. CNN with
segmentation outperformed our CNN network on both test
accuracy and F1 score. In addition, we attempted training the
CNN network with default initialization but the network failed to
learn well and accuracy was very low.

Semi-supervised generative adversarial networks enable even
higher classification accuracy for scenarios with large sets of
unlabeled data

The advantage of semi-supervised GANs is the utilization of all
available data, whether labeled or unlabeled. For the view
classification task, we studied the effect of training on varying
amounts of labeled data by artificially apportioning part of the
data as labeled and the remaining as unlabeled. The accuracy on
the same test set for the various training scenarios is presented in
Fig. 8 and Table 4. As observed, the relationship between
increasing number of labels and model accuracy is highly
exponential. With less than 4% of the data, the model is able to
achieve greater than 80% accuracy.

For the LVH classification task, we have the scenario of a small
labeled data set (~2000 samples) but access to a large unlabeled
data set (~76000). We assume the distribution of LVH in the
unlabeled data is as probably more severely unbalanced than the
labeled data, yet it does not affect our training methodology. In
Fig. 9, we trained three separate models on the LVH dataset and
compared the accuracies and F1 scores. We also plot the
confusion matrix for an ensemble model comprising the three
models that were trained on the LVH dataset. The accuracy rates
and F1 scores for this task are higher for semi-supervised GANs
than for the pipeline model technique described above.

Figure 10 shows the progression of results from the generator
which was used in the GAN training process to perform semi-
supervised learning. We observe the quality of generated samples
improves after a few epochs and that medically-relevant
structures are discernable by the time of convergence as opposed
to random noise. This affirms that the model is capturing and
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understanding the relevant features that comprise our data
distribution.

DISCUSSION

Deep learning has revolutionized the development of automated
algorithms across multiple computer vision tasks.” For each
domain, there are specific considerations that become more
relevant in the development of deep learning models. In
particular, medical imaging—across modalities—will often come
in a DICOM format and have either high resolution images or
varying resolution images per acquisition. Pre-processing the data
to standardize the resolution is a prerequisite step before building
deep learning models with non-trivial implications downstream.
Keeping all pixel information can be superfluous and lead to
excessive number of weights to learn and computation time.
Downsampling is usually performed on input images while
attempting to avoid loss of visual features that can be used to
distinguish between multiple classes. Our results show that for a
computer vision domain and task, we can quantify a study of ideal
resolution size. For our study, there exists a critical resolution at
around 60 x 80 pixels which provides the minimal amount of
visual information necessary for accurate view classification.
Naturally, the ideal amount of downsampling will vary based on
the size and complexity of visual structures for a particular task.
However in general, the computation time increases rapidly with
increasing input resolution as the network architecture increases
in depth and convolution per layer quadruples. We also found that
the model architecture with highest validation accuracy varies
across each resolution. For 240 x 320 resolution, a filter size of 7
for first two convolution layers outperforms a filter size of 3 as a
3x3 patch of the input image is contains insufficient visual
information for effective classification. In the varying resolution
study, our training set had less than a quarter of the available
training data to allow for rapid experimentation. While we
attempted to identify the best architecture for each resolution,
there remains scope for further optimization.

Our segmentation model effectively removes visual features
that are less relevant for View and LVH classification. Utilizing
segmentation before classification provides an elegant method to
localize the attention of predictive models to pixels with relevant
visual features. This is enabled and made practically feasible by
the fact that only a small sample of labeled segmentation masks
are required for training. These masking subtasks can be
abstracted away to lower-cost labeling labor as well. Lastly, we
observed that even in cases where there is a large difference
between the labeled and the predict map, there is very limited

Scripps Research Translational Institute
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Table 2. Table of evaluation results for each model for view classification
Model Train Accuracy Test Accuracy Training Time/Epoch
CNN 95.39% 92.05% (+/—0.72) 919s
CNN with Segmentation 95.18% 93.64% (+/—0.61) 903s
Resnet50* 92.61% 91.36% (+/—1.43) 7482s
VGG16* 98.15% 83.67% (+/—2.68) 4559
(second stage)
Ensemble — 94.40% (+/—0.52) —

Highest performing model by overall test accuracy is an ensemble of three CNN models with field of view segmentation, while transfer learning from Resnet50
and VGG16 models yielded lower test accuracies compared to a single CNN model.

amount of information loss after the predicted map is applied as
shown in Fig. S2. The U-Net tends not to mask over areas where it
is less confident of.

There is an improvement (+1.59%) in overall test accuracy with
the segmentation pipeline compared to the initial CNN model,
which confirms our initial hypothesis that the removal of auxiliary
information using the U-Net segmentation model helps to simplify
the view classification problem. While end-to-end learning is
growing in popularity with the increasing size of datasets and
network depth, having a sequential pipeline of different neural
network models each performing a heuristic-based classification
task that simplifies the classification problem for the next network
can be more effective depending on the problem domain. We
view this as the primary reason behind the improvement of view
classification accuracy from our previous study.'®

Transfer learning from pre-trained VGG16 and Resnet50 models
was computationally expensive and failed to match the accuracy
of the simpler CNN model with default weight initialization. While
transfer learning has been used successfully in the domain of
disease classification,?® this strengthens our view that transfer
learning from models pre-trained on the ImageNet dataset may
not be as effective or computationally feasible for datasets that
with significant structural differences. Lastly, as with previously
published results,” we were able to exact accuracy improvements
on our test dataset by applying an ensemble technique to average
predictions of multiple models.

In our left ventricular hypertrophy study, we observed that
using transfer learning techniques from the view classification
model enables the neural network to learn more effectively
compared to default weight initialization. Applying left ventricle
segmentation to the apical 4 chamber images produced an even
larger improvement in overall test accuracy compared to our view
classification study, corresponding to the larger area of image
removed during the segmentation step.

While the final model achieved 91.2% (+/—0.41) accuracy with
95.7% specificity and 76.7% sensitivity, it is within reasonable
limits given that there were 4 times the amount of training data
for the former. The success of our LVH classification model
demonstrates that deep learning models adapted for echocardio-
gram datasets can generalize well from view classification to
disease classification even with a small training set.

In addition to a pipeline deep learning model with solely
supervised classifiers, semi-supervised GAN models were explored
as a generalizable approach that leverages learning from both
labeled and unlabeled data. For computer vision tasks in medical
imaging, we often have scenarios where there is a larger
unlabeled dataset and only a portion of the data can be accurately
and cost-effectively ground-truthed.

The semi-supervised GAN model was trained and tested on the
view classification problem first as we could designate varying
proportions of data for labeled vs unlabeled to observe the effect
on classification performance. The results show that semi-

Scripps Research Translational Institute

supervised GANs require an order of magnitude less labeled data
(~4% of total data) to achieve adequate performance. We also saw
that the GAN still performs well in asymmetrically distributed
categories for our view classification. These results provided
motivation to train for the LVH classification task where only a
small portion of data existed with LVH labels (~2200 samples). For
the LVH classification task, the semi-supervised GAN is able to
learn from both the labeled and unlabeled data, even with highly
unbalanced classes, to achieve an accuracy of 92.3% (-+/—0.57),
with specificity of 97.0% and sensitivity of 79.1%.

The semi-supervised GAN loss function is formulated to account
for contributions from unlabeled, labeled, and generated samples.
On a high level, the GAN through the sigmoid real/fake loss for
unlabeled samples becomes better at training filters which can
identify salient features of an image while the labeled samples are
utilized mostly for implicitly training the layers which performs the
final classification. GANs also implicitly are performing data
augmentation as the generator converges—producing more
realistic images which allow the GAN to explore probability
spaces of the data not covered in the original training data. Future
areas of exploration include more robust loss functions, con-
ditioning the generated noise, and normalization techniques.?®%°

One of the most important aspects of our study is the usage of
GANs for biomedical image classification tasks. Although the
particular hyper-parameters and implementation details may vary
outside this dataset and prediction task, the overall model
considerations in addition to the data and experimental pipeline
is applicable across medical domains and tasks. We shed light on
the development and improvements of semi-supervised GANs,
relevant performance metrics, and functional intuitions as to
promote its application both within and beyond echocardiogra-
phy and cardiology. To do so, we experiment with two different
prediction tasks in addition to a comparative analysis with
reference to traditional deep learning architectures such as a CNN.

As with all studies, there are natural limitations to our work. It is
important to be stated that although we focus on improving
image classification tasks in echocardiography, image classifica-
tion is only one aspect of clinical diagnosis as clinicians utilize
other forms of cognition to both understand and treat a patient’s
iliness. We view this line of work as not a replacement of the
clinician but as an assistant for relevant tasks that a clinician
performs. Also, it is also worth noting that our sample sizes are
limited due to practical reasons—which is a common medical
imaging issue that beckons for data-efficient, generalizable
techniques presented in this study. We look forward to future
work and validation that is conducted on even larger sample sizes
that include both more patients and also variations in acquisition
(i.e. different institutions, field of views, and more).

To conclude, the focus of our study is on data-efficient deep
learning models for classification tasks in medical imaging.
Initially, we investigate the trade-off between resolution size and
computational burden. We then explore two main techniques: (1)
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two classes

supervised pipeline models to first extract relevant structures then
pass through a CNN classifier (2) semi-supervised GAN models for
end-to-end training. With customized segmentation models and
the extra effort to label additional segmentation maps, the first
method is able to achieve the highest reported accuracy for view
classification in cardiac ultrasound imaging and relatively high
performance for LVH classification. Often in practice, labeled data
in medical imaging is scarce, locked by privacy or regulatory
concerns, or expensive to annotate. Utilizing both labeled and
unlabeled data and with a generalizable end-to-end training
strategy, the second method is able to achieve high performance
for LVH classification. We provide avenues and trade-offs for
practitioners and researchers with the aforementioned techniques
for their computer vision tasks in medical imaging.

METHODS

Echocardiographic Data

All datasets were obtained and de-identified, with waived consent in
compliance with the Institutional Review Board (IRB) at the University of
California, San Francisco (UCSF). Methods were performed in accordance
with relevant regulations and guidelines. Echocardiographic studies were
extracted then videos and still images were stripped of identifying
metadata and flattened to individual frames. Data comprised of studies
between 2000 and 2017 at random from UCSF's clinical database. These
studies included men and women (49.4 and 50.6 percent, respectively)
ages 20-96 (median age, 56; mode, 63) with a range of body types (25.8
percent obese) and were acquired with equipment from several
manufacturers (eg. GE, Philips, Siemens). For view classification, the
number of studies taken were N =267 and fifteen common views were
utilized including: parasternal long axis, right ventricular inflow, basal short
axis (aortic valve level), short axis at mid (papillary muscle) or mitral level,
apical two chamber, apical three chamber (apical long axis), apical four-
chamber, apical five chamber, subcostal four-chamber, subcostal inferior
vena cava (IVC), subcostal abdominal aorta, suprasternal aortic arch,
pulsed-wave Doppler, continuous-wave Doppler, and m-mode. For LVH
classification, the number of studies taken were N =455 and the diastolic
frames in the apical 4 chamber view were selected and comprised of the
following clinical labels: normal, moderate-to-severe asymmetric LVH,
severe asymmetric LVH, moderate concentric LVH, moderate-to-severe
concentric LVH, severe LVH. Further information regarding source data can
be found in the previous literature."®
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Varying Resolution Study

We divided our subset of 103102 images into a training set containing
75937 images, a validation set containing 11696 images and a test set
containing 15469 images, in an approximate (74:11:15) split. There is no
patient overlap between the training, validation and test set. Downsizing
of images originally in 600 x 800 pixels to the image resolutions of 240 x
320, 120 x 160 60 x 80, 30 x40 and 15 X 20 pixels were completed using
Scipy’s imresize function with the nearest interpolation mode. Figure 11a
displays sample images from each resolution for three classes.

Our neural network architectures were designed in Python using the
Keras library with TensorFlow backend,*® primarily based on the VGG16
Network,?’ which won the ImageNet Challenge in 2014.2%>?* OQur
architecture consists of multiple convolution layers, followed by fully
connected layers. We applied Batch Normalization®' and rectified linear
activations? after each layer. Softmax activation was applied to the final
fully connected layer for classification over the 15 output classes. Dropout®
and L2 Regularization were added in the fully-connected layers to prevent
overfitting.

We further experimented with various architectures for each resolution
and the architectures with the highest validation accuracy are reported in
the Supplementary Material. For convolution layers, filter sizes of 3 x 3,
same padding, stride of 1 pixel, and pooling size of 2 x 2 were used for
each resolution except 240 x 320, for which a filter size of 7 x 7 were used
for the first two convolution layers. Maximum Pooling were used for
resolutions 60 x 80 pixels and above, and Average Pooling for resolutions
below 60 x 80 pixels.

Data augmentation was applied during training with up to 10 degrees
rotation and 10% height and weight shifts. Adam optimizer with default
parameters was used to minimize the categorical cross-entropy loss.
Learning rate was set to 0.02, with decay per epoch of 0.85. Early stopping
was applied once validation loss stops decreasing for two consecutive
epochs. Training was performed on Nvidia GTX1080Ti GPUs, with batch
sizes of varying sizes used for the different resolutions to maximize GPU
memory usage. We evaluated our final models by computing the overall
validation accuracy, average time to train and validate per epoch.

Relevant Structure Segmentation

From our varying resolution study, we selected 120 x 160 as the optimal
resolution for our subsequent experiments. It provided an ideal balance
between accuracy and computational time as discussed in Results.

We employed relevant structure segmentation as preprocessing for
removal of irrelevant details in the images to simplify the classification task.
We trained a convolutional neural network on two different datasets for
segmentation of the main field of view (FoV) in echocardiogram images

Scripps Research Translational Institute
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respective disease classification pipeline. a4c images are routed to a4c segmentation Unet, which predicts a segmentation map over the left
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Table 3. Test accuracies and F1 Scores for LVH classification models
Model Test Accuracy F1 Score
CNN (Stage 1) 84.07% (+/—1.23) 0.6027
CNN (Stage 2) 87.91% (4/—-0.57) 0.7381
CNN with Segmentation (Stage 1) 81.32% (+/—0.98) 0.5952
CNN with Segmentation (Stage 2) 91.21% (+/-0.41) 0.8139
In stage 1, weights for convolution layers were fixed and model was
trained over 20 epochs. In stage 2, weights of fully-connected layers were
fixed and convolution layers were fine-tuned.

Normal

True Class

With LVH

With LVH
Predicted Class

Normal

Fig. 7 Normalized confusion matrix on LVH test set for CNN with
segmentation stage 2. CNN model with segmentation was able to
classify test images with 91.21% (+/—0.41) accuracy (specificity
95.70%, sensitivity 76.70%)

prior to view classification, and segmentation of the left ventricle in apical
4 chamber (a4c) images prior to left ventricular hypertrophy classification.

Our field of view segmentation dataset contains 433 images- inclusive of
image frames from various 2D views, doppler, and m-mode echocardio-
grams. Images were converted to grayscale and downsampled to 120 x
160 pixels using Scipy's imresize function with the nearest interpolation
mode. The data were divided by class into a training set consisting of 411
images and a test set consisting of 32 images for evaluation of the model’s
performance.

Masks were drawn on the outline of the field of view containing the
medical image with an in-house labeling tool that the user selects vertex
points to form a polygon shape. For doppler and m-mode echocardio-
grams, masks were drawn around the general shape of the waveforms and
field of view. The labeling tool is an interactive polygon editor built with
matplotlib that sets pixels inside the mask to 1 and pixels outside to 0.

Our left ventricle segmentation dataset contains 720 images sampled
randomly from the apical 4 chamber (a4c) view dataset. Some apical 4
chamber views might be cropped and the left ventricle may not be visible.
Therefore, for Relevant Structure Segmentation for LVH only, we did not
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Fig. 8 View classification performance of the semi-supervised
generative adversarial network for varying amounts of labels as
input. The model is able to learn from very small amounts of labeled
data (approximately 4% of labels kept with the remaining data as
unlabeled) to achieve greater than 80% accuracy for view
classification. There exists an exponentially asymptotic behavior
over number of labeled samples where accuracy gain becomes less
prominent

Table 4. View classification performance of the semi-supervised
generative adversarial network for varying amounts of labels as input
Labels per class Test Accuracy
1 16%

5 28%

15 43%

30 51%

90 65%

270 78%

810 82%

21732 88%

include images that failed to show the left ventricle. Important to
emphasize, no filtering was performed for the final LVH test set images or
calculation of performance metrics on the final goal of LVH classification.
Images were downsampled to 120 x 160 pixels using Scipy's imresize
function with the nearest interpolation mode. Images were divided into a
training set consisting of 670 images and a test set consisting of 50 images.
Using the aforementioned labeling tool, masks were drawn to create an
approximate polygon around the left ventricle epicardium. Masks were
drawn around the left ventricle using the labeling tool. For images in dual
mode, a single mask was drawn around the left ventricle in the left-most
view.

Our image segmentation model is based on the U-Net architecture®*
and is shown in the Fig. 12.
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Fig. 9 Performance of semi-supervised GAN for LVH classification in apical 4 chamber echocardiogram images. a For three separate models
trained, the accuracy (top row) and F1-score (bottom row) is plotted vs number of epochs. The model training reliably reaches convergence
and continues to fluctuate within a reasonable limit. b Normalized confusion matrix for an ensemble of the three models. This achieves an F1-

score of 0.83 and accuracy of 92.3% (+/—0.57)

Epoch 1

Epoch 2

Epoch 3

Epoch 13

Ensemble
Model

Fig. 10 Generated images sampled from the generator network of
the semi-supervised GAN during training for LVH classification. For
one model, batches of size four are shown containing generated
images (top to bottom) after epoch 1, 2, 3, 4, 13. The last row
displays generated images from an ensemble of three GAN models.
Quialitatively, the model clearly learns and understands the under-
lying physiological structures in input distribution

Modifications were made to the original architecture for adaptation to
the 120 x 160 pixels resolution of our dataset. These include changes to
filter sizes, removal of convolution layers with 1024 filters and the addition
of Dropout before the first up-sampling convolution layer.

The model was trained over 50 epochs with a learning rate of 0.0001
and per epoch decay of 0.93 using the Adam optimizer.

We evaluated the model by computing the pixel-wise loss on the test
set. We also visually inspected the U-Net's segmentation on the test set to
further verify the segmentation performance.
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Echocardiographic View Classification

Our dataset consists of 347726 echocardiogram images, of which 325980
images were in the training set. The original test set used in the previous
study'® containing 21746 images were retained for this experiment.

Images were downsampled to 120 x 160 pixels using Scipy’'s imresize
function with the nearest interpolation mode for the convolutional neural
network (CNN) experiments. Images used for Resnet50 and VGG16 were
resized and copied over all three channels to fit the pre-trained models
input dimensions of 224 x 224 x 3.

In this experiment, we trained the following models to compare the
effectiveness of relevant structure segmentation for preprocessing, transfer
learning and ensembling: CNN model trained using the original images,
CNN model trained using images with FoV Masking, Transfer Learning from
Resnet50 and VGG16 models using images with FoV Masking and an
Ensemble of 3 CNN models trained using images with FoV Masking.

We retained the same architecture for 120 X 160 resolution as used in
the varying resolution study, with the exception of replacing Max Pooling
layers with Average Pooling layers for the CNN trained with FoV Masking.

Resnet50 and VGG16 models from the Keras Library which were pre-
trained on the ImageNet dataset were used. The fully-connected layers
from the Resnet50 model were removed and replaced with a batch
normalization layer followed by a fully connected layer with softmax
activation. For VGG16, we replaced the fully-connected layers with the
same fully-connected layers layers with batch normalization and L2
regularization, followed by a fully connected layer with softmax activation.

Our ensemble consists of 3 CNN models trained individually using
images with FoV Masking, with the predictions output averaged.

Adam optimization with default parameters and early stopping were
used for the following experiments. During training of the CNN models,
learning rate was set to 0.02 with decay per epoch of 0.85. Training data
was augmented with up to 10 degrees rotation and 10% height and
weight shifts.

For the pre-trained models, training data was augmented with up to 5
degrees rotation, 10% height and 15% weight shifts. Fine-tuning for
Resnet50 was performed end-to-end with a learning rate of 0.01 and decay
per epoch of 0.96.

For VGG16, training was divided into two stages. In the first stage,
weights from the convolution layers were frozen and the fully connected
layers with Xavier initialization were trained till convergence with a
learning rate of 0.02 and decay per epoch of 0.9. In the second stage,
weights from the convolution layers were fine-tuned along with the fully
connected layers at a lower learning rate of 0.001 and decay of 0.9 per
epoch.

We evaluated the various models by computing the overall test accuracy
across 15 classes, training and test time per epoch, test accuracy by class,
confusion matrix, and F1 score, which is the harmonic average of precision
and recall. Confidence intervals were computed by the bootstrapping
technique with replacement for 95% intervals.
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Sample data from echocardiographic studies. a Sample echocardiogram images at varying resolutions (rows) for three example views

(columns). Selection of the optimal resolution is influenced by the tradeoff between classifier performance and computational time. b Sample
apical four chamber echocardiography images with and without Left Ventricular Hypertrophy (LVH). LVH is characterized by the thickening of
the left ventricle—a perilous condition increasing the risk of myocardial infarction, stroke, and death
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Fig. 12 Modified U-net architecture used for segmenting relevant
visual structures. The architecture consists of a contracting path and
a symmetric expanding path—combining high resolution features
from the contracting path and upsampled output for precise
localization. Pixel-wise softmax is applied on the final output to
produce a segmentation map

Left Ventricular Hypertrophy Classification

The dataset consists of 2269 images from the apical 4 chamber (a4c) view.
The first two frames of an echocardiographic study were selected to ensure
only diastolic phase. To formulate this as a binary classification problem as
in Fig. 11b, we chose images with different labels for Left Ventricular
Hypertrophy (LVH) to form a single class with 462 images. 1807 images of
normal a4c views formed the other class. The ratio of images without LVH
to images with LVH is approximately 4:1.

Image were divided into a training set consisting of 1890 images,
validation set of 172 images and a test set of 207 images. Images from the
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same patient were placed in the same split. For preprocessing, images
were downsampled to 120 x 160 pixels and masked with the predicted
output from the left ventricle segmentation model in our previous
experiment.

We retained the same architecture for 120 x 160 resolution as used in
the varying resolution study, with the exception of replacing Max Pooling
layers with Average Pooling layers. L2 regularization of 0.03 and Dropout of
0.4 was applied to the fully connected layers.

We applied a two-stage transfer learning method for the training of this
model. Weights for convolution layers were initialized with weights from
the CNN model trained using images with FoV Masking. Fully connected
layers were initialized with Xavier uniform initialization.

In the first stage, weights of convolution layers were fixed and the model
was trained over 20 epochs to minimize binary cross-entropy loss, with a
learning rate of 0.025 and decay per epoch of 0.85. In the second stage,
weights of fully-connected layers were fixed and convolution layers were
fine-tuned with a learning rate of 0.001 and decay per epoch of 0.9. Early
stopping was applied once validation loss stops decreasing for two
consecutive epochs.

We evaluated the model by computing the test accuracy and F1 score,
which is the harmonic average of the precision and recall. Confidence
intervals were computed by the bootstrapping technique with replace-
ment for 95% intervals.

Semi-supervised Generative Adversarial Networks

As shown in Fig. 13, the GAN makes use of two neural networks: a
generator which attempts to generate realistic images and a discriminator
which discriminates between real (optionally including specified classes)
and fake.’The same semi-supervised GAN architecture is used for both the
view classification task and the left ventricular hypertrophy classification
task.

The discriminator model is structured in blocks of three convolutions
comprising two convolutional layers of stride 1 and one convolutional
layer of downstride 2. All except the last convolution layer make use of 3x3
convolutional filters, batch normalization layer after each convolution layer
and dropout layer after every downstride convolution layer. Leaky RELUs
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Fig. 13 Semi-supervised GAN for echocardiogram view and LVH classification. Generator (top) consists of a Gaussian noise layer which gets
passed through conv-transpose layers to output images of size 110 x 110. Discriminator (bottom) downsamples original images with regular
strides of two every three layers, resulting in a softmax output for labeled (or supervised) loss and a sigmoid output for unsupervised loss

are used as activation functions for all the layers and the last classification
layers which use Softmax and Sigmoid.

The generator model consists of seven deconvolutional layers each of
stride two and it works by progressively upsampling from the gaussian
noise layer where the model begins. Each of these layers use either a 3x3
or 4x4 convolutional filter and a batch normalization layer. All intermediate
activations consist of RELUs while the very last layer makes use of Tanh
activation to output the final image.

Training GANs for semi-supervised learning involves performing three
passes through the discriminator and one pass through the generator at
each iteration. To compute the discriminator loss a labeled image is passed
through the discriminator to assess a cross-entropy loss. Then an unlabeled
image and a fake image are passed through the discriminator for both of
which we compute binary cross entropy losses. All three of these losses are
summed together and are used to perform a single step of back-
propagation through the discriminator. The losses were inspired by
previous literature®* and detailed below:

m

L= Lsupervised + Lunsupervised + Lgenerated

Lsupervised = _Ex,y~pd,,m(x.y)|°g pmodel(y|xay<K + 1) )
Lunsupervised = 7E)(~pd,,m()()|09[‘I - pmodel(y =K+1 |X)] (©)
Lgenerated = _Ex~G|09 [pmodel (y =K+ 1|X) (4)

To compute the generator loss, we generate a fake image from the
generator which we pass through the discriminator and compute the loss
by using a mean square error loss between the second last layer of the
discriminator for our fake image and for an unlabeled image.

The data used for view classification was the same as the models outlined
above, including the size of the splits. The only differences were that the
image was downsized to 110x 110 pixels and that the split between
unlabeled data and labeled data was changed for different models so as to
determine the relationship between labels and accuracy. One epoch was
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defined as the number of unlabeled images since this was always going to
be the larger value. This however meant that in each epoch the discriminator
ends up going through multiple epochs of the labeled images.

For LVH classification problem we used the same labeled data consisting
of 2269 images which were divided into a training set consisting of 1915
images, validation set of 172 images and a test set of 182 images. Images
from the same patient were placed in the same split. The only difference
was that we also used 76404 unlabeled images (from the apical 4 chamber
data in the view classification dataset) on top of the labeled ones to bolster
the semi-supervised GAN. For preprocessing, these images were down-
sampled to 110 x 110 pixels.

Training was performed using the Adam optimizer set at default values
for both of these tasks. A learning rate of 0.0003 with no decay mechanism.
Training a GAN using 2 GTX 1080Ti GPUs training was on the order of five
hours.

To evaluate the performance of semi-supervised GAN for view classifica-
tion we only made use of the accuracy rate of the discriminator model at
different epochs. To evaluate the performance of the LVH model we use
accuracy rate of three models trained on all of the data as described above.
We also use the F1 scores of these models and plot them on a separate
curve. For the highest performing model, we used confusion matrices to
better illustrate how the model performs on different categories.
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