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Abstract

Over the past decades, it is recognized that loss of DNA damage repair (DDR) pathways is an early and frequent
event in tumorigenesis, occurring in 40-50% of many cancer types. The basis of synthetic lethality in cancer therapy
is DDR deficient cancers dependent on backup DNA repair pathways. In cancer, the concept of synthetic lethality
has been extended to pairs of genes, in which inactivation of one by deletion or mutation and pharmacological
inhibition of the other leads to death of cancer cells whereas normal cells are spared the effect of the drug. The
paradigm study is to induce cell death by inhibiting PARP in BRCA1/2 defective cells. Since the successful
application of PARP inhibitor, a growing number of developed DDR inhibitors are ongoing in preclinical and clinical
testing, including ATM, ATR, CHK1/2 and WEE1 inhibitors. Combination of PARP inhibitors and other DDR inhibitors,
or combination of multiple components of the same pathway may have great potential synthetic lethality
efficiency. As epigenetics joins Knudson’s two hit theory, silencing of DDR genes by aberrant epigenetic changes
provide new opportunities for synthetic lethal therapy in cancer. Understanding the causative epigenetic changes
of loss-of-function has led to the development of novel therapeutic agents in cancer. DDR and related genes were
found frequently methylated in human cancers, including BRCA1/2, MGMT, WRN, MLH1, CHFR, P16 and APC. Both
genetic and epigenetic alterations may serve as synthetic lethal therapeutic markers.
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Introduction
The integrity of DNA is continually challenged by a var-
iety of agents and processes that either alter the DNA
sequence directly or cause mutation when DNA is sub-
optimally repaired. The ultraviolet component of sun-
light can cause up to 1X105 DNA lesions per cell per
day [1]. For example, ionizing radiation can cause single-
strand breaks (SSBs) and double-strand breaks (DSBs). If
misrepaired, these breaks can induce mutations and lead
to widespread structural rearrangement of the genome.
DNA damage and mutation may be induced by environ-
mental factors, including cigarette smoking, industrial

chemicals, mustard gases and chemical therapeutic
agents (such as cisplatin, mitomycin C). Reactive oxygen
species (ROS) and other metabolites produced by en-
dogenous processes can also induce DNA damaging [2].
According to the type of DNA lesion they process, DNA
damage repair/response (DDR) may be divided into dif-
ferent pathways, which are functionally interwoven.
Most of the subtle changes to DNA, such as oxidative le-
sions, alkylation products and SSBs, are repaired by base
excision repair (BER) [3]. Whereas some of the bulkier
single strand lesions that distort the DNA helical struc-
ture, such as those caused by ultraviolet light, are proc-
essed by nucleotide excision repair (NER) [4]. The major
DDR mechanisms that cope with DSBs are homologous
recombination repair (HR) and non-homologous end
joining repair (NHEJ) [5]. HR is an error-free repair and
mainly acts in the S and G2 phase of cell cycle. The
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major components involved in HR include BRCA1,
BRCA2, RAD51 and PALB2 genes. NHEJ occurs
throughout the cell cycle. NHEJ mediates repair by dir-
ectly ligating the end of a DSB together and may cause
DNA deletion or mutation at the DSB site. Mismatch re-
pair (MMR) deals primarily with dNTP misincorpora-
tion and formation of ‘insertion and deletion’ loops that
form during DNA replication. Key proteins involved in
this process including MLH1 and MSH2 [6, 7].
Defects in DDR can lead to an increase in genomic in-

stability, which is one of carcinogenesis mechanisms in
various cancers. However, DDR defects can be exploited
in cancer therapy because excessive genomic instability
itself can have lethal consequences by inducing deadly
mutations, mitotic catastrophe, or chromothripsis [8].
Among the variety of types of DNA damage, the most
deleterious is the DNA DSB. Cancer chemotherapeutic
agents and radiotherapy exert their cytotoxic effects by
inducing DNA DSBs [7]. DDR components are often de-
fective in cancer, but the DDR comprises interacting/
crosstalking pathways, and defects in one can be com-
pensated by alternative pathways. Such compensatory
pathways obstruct effective cancer treatment [9]. For ex-
ample, DSBs are predominantly repaired by the NHEJ
pathway in G1 phase of cell cycle and by HR in S-G2
phases. Microhomology mediated end joining (MMEJ) is
a “backup” DSB repair pathway in the event that NHEJ
or HR are compromised. HR and MMEJ share the same
substrate, a resected DSB that contains a 3′ single-
stranded DNA (ssDNA) overhang bound by replication
protein A (RPA). Thus, if HR is defect, MMEJ is the fa-
vored option to repair resected DSBs [10]. The concept
of synthetic lethality was first described in fruit flies,
when two single genetic defects, loss-of-function events,
either alone had no effect on viability, but when com-
bined resulted in lethality [11]. Over the past decades, it
is recognized that loss of DNA repair pathways is an
early and frequent event in tumorigenesis, occurring in
40-50% of many cancer types [10]. However, DDR defi-
cient cancers become critically dependent on backup
DNA repair pathways, which present an “Achilles heel”
that can be targeted to eliminate cancer cells. This is the
basis of synthetic lethality. In 2005, two groups discov-
ered a synthetic lethal interaction between PARP inhib-
ition and mutations in BRCA1 or BRCA2 [12, 13]. The
concept of “BRCAness” was originally meant that the
phenotypes of some sporadic tumors share with “familial
BRCA cancers”. It was broadened by finding more func-
tional “BRCAness” biomarkers [14]. In cancer, the con-
cept of synthetic lethality has been extended to pairs of
genes, in which inactivation of one by deletion or muta-
tion and pharmacological inhibition of the other leads to
death of cancer cells whereas normal cells are spared the
effect of the drug [15]. With great understanding of the

biology of DDR, more small molecules are being devel-
oped as new anticancer therapies by targeting DDR.
There are approximately 450 genes coding for proteins
involved in the DDR [16]. Many cancer type specific and
pan-cancer targets were discovered through Proof-of-
concept classical synthetic lethal screening by small
interfering RNA (siRNA) and CRISPR technology [15].
In addition, epigenetics plays an important role in silen-
cing tumor suppressor gene expression, including DDR
genes. Thus, numerous potential targets need to be iden-
tified in various cancers. This review mainly focused on
applying “synthetic lethal” to human cancers with
“BRCAness” and beyond caused by loss-of-function with
defect of genetics or epigenetics.

DNA damage checkpoints and DDR inhibitors
DDR is composed of sensor proteins that detect and sig-
nal DNA damage to downstream effectors that, in turn,
arrest cell cycle progression and promote repair. In re-
sponse to DNA damage, cell cycle checkpoints can be
activated in G1 phase, in S phase and at the G2/M tran-
sition [17–19]. Ataxia Telangiectasia Mutated (ATM)
kinase is activated by DNA DSB and triggers the G1
checkpoint by phosphorylating and activating the check-
point kinase 2 (Chk2) [20]. Chk2 inhibits Cdc25A pre-
venting cells from proceeding into S phase [21]. Of note,
the G1 checkpoint is critically dependent on p53. The
loss of G1 checkpoint control is almost ubiquitous in
cancer, making cancer cells more reliant on the S and
G2/M checkpoints. When DNA damage occurs in S
phase, the intra S phase checkpoint is activated to pre-
vent further replication [22]. Ataxia Telangiectasia and
Rad3 related (ATR) kinase is activated by DNA damage,
through activating checkpoint kinase 1 (Chk1), and then
induces Cdc25A proteosomal degradation to block fur-
ther progression through S phase [23]. ATR and Chk1
also trigger the G2/M checkpoint, which prevents cells
with damaged DNA from entering mitosis [24]. ATR in-
hibits cyclin B/Cdk1 activation by stimulating the Wee1
(a Cdk1 inhibitory kinase) and inhibiting Cdc25c via
Chk1 [17]. When cells with irreparable DNA damage are
forced to enter into mitosis, they undergo permanent
growth arrest or cell death through a so–called mitotic
castrophe mechanism [25]. Forced entry of DNA-
damaged cells into mitosis may provide a substantial in-
crease in therapeutic efficacy.
A well-recognized sensor of DNA damage is the pro-

tein PARP, which is best known for its role in BER and
repair of DNA SSBs. All PARP inhibitors (PARPi) inter-
act with the binding site of the PARP enzyme cofactor,
β-nicotinamide adenine dinucleotide (β-NAD+), in the
catalytic domain of PARP1 and PARP2, including ola-
parib and niraparib [26]. Both BRCA1 and BRCA2 pro-
teins are critical to the repair of DSBs by HR. Based on
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the synthetic lethal interaction between PARP inhibition
and BRCA1 or BRCA2 mutation, Farmer and Bryant de-
veloped a novel treatment strategy for BRCA-mutant tu-
mors [12, 13]. Applying the concept of synthetic
lethality, preclinical PARPi studies demonstrated that
PARPi were able to selectively target HR deficient cells
[27]. Data from phase II trials of women with BRCAmut
ovarian cancer using olaparib at a dose of 400mg orally
twice daily demonstrated RECIST (Response Evaluation
Criteria in Solid Tumors) response rates of 30-41% [27,
28]. The phase II trial by Kaufman et al. demonstrated a
31% response rate and an additional 49% stable disease
rate in their study subset of 193 women with platinum-
resistant ovarian cancer [29]. A phase II study of ola-
parib in patients with metastatic, hormone resistant
prostate cancer showed promising results. Patients
whose tumors harboring homologous deletions, muta-
tions or both in DDR genes had a response rate of 33%
[30]. More specific and active PARPi are in developing
and ongoing studies performing in breast, pancreatic
and other cancers.
NER is a multistep DNA repair mechanism involving

more than 30 different proteins to excise approximately
30 bases on a damaged DNA strand and to synthesize
new DNA. One of the approaches aims at blocking the
interaction between the different elements of the NER
pathway, thus preventing the repair from being com-
pleted. The interaction of XPA with ERCC1 proved to
be viable as druggable targets for cancer treatments. F06
inhibits NER by targeting XPF to reduce the interaction
between ERCC1 and XPF [31]. ET-743, another NER in-
hibitor, was recently approved for the treatment of soft
tissue sarcomas, ovarian cancer and is currently in clin-
ical trials for the treatment of breast, prostate, and
pediatric sarcomas [32]. Although NHEJ is considered to
be the main pathway for repair of IR-induced DSBs, rela-
tively little success has been observed with inhibitors tar-
geting the main proteins in this pathway. Three
DNA-PK related inhibitors MSC2490484A, CC-122, and
CC-115 (DNA-PK and MTOR dual inhibitor) are cur-
rently being investigated in phase I clinical trial either
for solid tumors, non-Hodgkin lymphoma, multiple
myeloma or hematologic malignancies [33]. And a phase
II clinical trial of CC-115 is onging in glioblastoma
(NCT02977780). ATM is activated following DSBs and
plays a major role in the DDR to DSBs caused by IR.
ATM inhibitors were developed by different groups, in-
cluding KU-55933, KU-60019 and KU-59403 [34–36].
ATR is primarily activated by SSBs and responds to
DNA replication stress and is therefore active in the S
and G2 phases of the cell cycle. Previous studies have
demonstrated that alterations in canonical DDR/cell
cycle checkpoint genes (ERCC1, XRCC1, CDC25A and
ATM) have the potential to act as predictive biomarkers

of single-agent ATRi sensitivity [37–39]. In preclinical
studies, ATRi (VE-821) enhances the cytotoxic effects of
a number of DNA damaging agents in tumor cells that
have defects in the ATM/p53 pathway, including cis-
platin, topotecan, and veliparib [40]. Although > 1000
compounds have been evaluated as potential ATR inhib-
itors, only a few have exhibited “drug-like” properties.
VX-970, VX-803, BAY1895344 and AZD6738 are cur-
rently in clinical studies [41]. Chk1 and Chk2 activation
occurs through distinct mechanisms. Chk1 activation is
primarily downstream of ATR in response to genotoxic
insults. Chk2 is activated primarily by ATM in response
to DSBs [42]. Chk1 is the primary effector of the intra-S
and G2/M phase checkpoints, whereas Chk2 plays an
accessory role, exerting a partial influence on the intra-S
and G1/S checkpoints [43]. Chk1 exerts its function
often through interacting with other proteins. Numerous
proteins have been reported to interact with Chk1 [44].
In addition, crosstalk takes place between the ATR-
Chk1 and ATM-Chk2 signaling cascades. Chk1 was ini-
tially thought to function as a tumor suppressor, and nu-
merous efforts were made to look for Chk1 mutations in
human tumors. However, so far no homozygous loss-of-
function mutation of Chk1 has been detected in a wide
range of human tumors [45, 46]. Chk1 inhibitors have
been in development for two decades [47]. Chk1 inhibi-
tor monotherapy often demonstrates limited efficacy and
in general, must be combined with other agents. Evi-
dence from the published clinical trials suggests that
some Chk1 inhibitors can be administered safely, but
when they are combined with traditional cytotoxic DNA
damaging agents, the normal tissue toxicities outweigh
the very modest gains in therapeutic efficacy. A variety
of Chk1 and/or chk2 inhibitors are under active preclin-
ical development, including EXEL-9844, CEP-3891, PD-
321852, Chir-124, CCT241533, LY2606368 [48]. The
combination of Chk1 inhibitors with other signaling reg-
ulators may be a better therapeutic strategy [49, 50]. In
humans, the WEE kinase family consists of three ki-
nases, including PKMYT1 (membrane-associated tyro-
sine- and threonine-specific cdc2-inhibitory kinase),
WEE1 and WEE1B (WEE2) [51]. WEE1B expresses dur-
ing early embryogenesis, and the expression is signifi-
cantly reduced after fertilization [52]. PKMYT1 and
WEE1 negatively regulate the cell cycle via the phos-
phorylation of CDK1. Both kinases are considered as
main gatekeepers of the G2 cell-cycle checkpoint. Due
to mutations in the p53 network, many cancer cells have
defective G1 checkpoint mechanisms, which can result
in increased DNA damage at the G2 checkpoint com-
pared to normal cells. Cells with intact G1 checkpoint
arrest, such as normal cells or cancer cells with intact
p53 signaling, are less dependent on the G2 checkpoint
arrest. Inhibition of PKMYT1 and WEE1 is particularly
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effective in cells with deficient p53 signaling [53, 54].
MK-1775 is the most potent and highly selective inhibi-
tor of WEE1 and has recently reached phase I clinical
trials [51]. Overexpression of POLθwas found in mul-
tiple HR-proficient tumor types such as lung, gastric and
colorectal cancer, and was associated with adverse clin-
ical outcomes [55]. The reason why POLθis upregulated
and associated with poor outcomes in many tumors is
not well understood. The possibility is that POLθrepairs
spontaneous DNA damage present in cancer cells and
therefore affords them a growth advantage [56].
POLθinhibitors could synergize with PARPi for the
treatment of HR-deficient cancers [10].

Genetic based synthetic lethal therapy in cancer
Currently, most of targeting therapies in cancer are dir-
ectly targeted at activated oncogenes or “gain of func-
tion” genetic aberrations, including gene mutation,
amplification and fusion. Even though some of these
strategies are very successful, such as EGFR and ALK in-
hibitors in lung cancer therapy, acquired resistance re-
mains a major barrier to treatment [57]. Unfortunately,
not all identified mutations or aberrant expressions can
be directly targeted. Such as ‘loss-of-function’ or loss of
expression by inactivating gene mutations are hard to re-
store activities pharmacologically, and less success has
yet been achieved [58]. Notably, synthetic lethality strat-
egy allows the therapeutic exploitation of non-druggable
mutated tumor suppressor genes and directly difficult-
to-target (hard-druggable) oncogenes, via targeting their
synthetic lethality partners [59]. Synthetic lethality ap-
proaches can achieve the effect of “target damage” by
taking advantage of inherent differences between cancer
cells and normal cells, which is not feasible with trad-
itional chemotherapy [60]. Given that differences of gen-
omic features between cancer cells and healthy cells,
Hartwell was the first to use traditional genetic ap-
proaches, genomic information and model organisms for
identifying and validating new targets for drugs that
would selectively kill tumor cells with a particular mo-
lecular [26]. Subsequently, siRNA and CRISPR screen-
ings have been developed to detect synthetic lethal gene
pairs in human cells [15]. In recent years, Jerby-Arnon
et al. proposed a computational and bioinformatics ap-
proach, named data mining synthetic lethality identifica-
tion pipeline (DAISY), to identify genome-wide synthetic
lethal interactions, by analyzing large volumes of cancer
genomic data. They applied DAISY to identify all gene
pairs that are likely to be synthetic lethal in cancer,
resulting in a synthetic lethal network of 2077 genes and
2816 synthetic lethal interactions, and an synthetic dos-
age lethal (SDL) network of 3158 genes and 3635 SDL
interactions [61]. With the help of these advanced
screening tools, more novel candidate targets are

expected to be discovered. The best-characterized syn-
thetic lethality relationship is between BRCA1 or BRCA2
mutation and PARP inhibition. Several synthetic lethal
combinations have been discovered, including Wee1 in-
hibitor (WEE1i) in p53-defecient cells, ATM inhibitor
AZD0156 in conjunction with olaparib or irinotecan (a
topoisomerase inhibitor) [62, 63]. It is well established
that the genomes of all cancers carry somatic mutations,
and advances in DNA sequencing technologies have
made it possible to identify thousands of individual som-
atic mutations in a single cancer genome [64]. The mu-
tation rate is not constant throughout the genome but
differs~ 5-fold, and a higher mutation rate is typically
seen in late replicating and low transcribing genes [65].
Notably, 20% of tumors from a pan-cancer analysis iden-
tified subclonal mutations in the BRCA1/2 pathway [66].
A mutational signature associated with defective HR was
first identified in BRCA1/2 germline mutant breast can-
cers [67], and later in ovarian, pancreatic, and gastric
cancers [68–71]. As shown in Table 1, mutant DDR, cell
cycle control and tumor suppressor genes are including
RAD51, PALB2, P53, ATM, MGMT and Others [26].
Genes that result in a synergistic effect are commonly
interpreted as working in compensatory pathways. The
identification of such functional networks is particularly
important for understanding cancer-related signaling
pathways because the heterogeneity in the genetic back-
ground of cancers is often associated with the connected
pathways that might provide multiple potential rewiring
mechanisms.

Epigenetic silencing of DDR and related genes in
human cancers
Accumulation of genetic and epigenetic alterations is
regarded as a major factor for cancer initiation and pro-
gression, and aberrant epigenetic changes occur more
frequently than gene mutations in human cancers [110,
111]. Epigenetic regulation of gene expression depends
mainly on DNA methylation, histone modification and
noncoding RNA. The regulators of “epigenetic machin-
ery” are divided into “writers” (enzymes that establish
DNA methylation or histone modification), “erasers”
(proteins that remove these marks) and “readers” (pro-
teins that bind to modifications and facilitate epigenetic
effects) [112]. A lot of inhibitors, targeting “epigenetic
machinery”, are ongoing clinical trials [111]. Despite
their promise, there are many challenges to be resolved
for efficient use of epidrugs in the treatment of human
cancer, including the lack of specificity of epidrugs, dis-
appointing success in solid tumors and the acquisition
of drug chemo-resistance leading to higher risk of tumor
relapse. As lack of tumor specific histone modification
detection markers, the efficiency of targeting histone
modifier therapy remains very limited, even though a
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number of clinical trials are ongoing [111]. The best
studied epigenetic modification is DNA methylation, as
the nature of DNA is stable and the reliable detection
technologies. Tumor suppressor gene promoter region
methylation is frequently found in various human can-
cers. DNA methylation may serve as early detection,
prognostic, chemo-radio-sensitive markers, and thera-
peutic targets [113]. Noncoding RNAs are functional
RNA molecules that do not code for proteins. They are

divided into different classes based on size, including
siRNAs, miRNA, piRNAs and lncRNA [111]. Each class
of RNA performs different endogenous functions, pro-
viding a variety of opportunities and challenges for drug
discovery. New methods of design for the creation of
artificial microRNAs as well as new systems of delivery
by nanoparticles have been developed. However, the dif-
ficulties of a real tumor-specific delivery still represent
an obstacle for the application of these methodologies in

Table 1 Genetic defects of DDR in cancer and DDR inhibitors

pathway gene genetic alterations drugs Refs

BER APE1 SNP [72]

OGG1 missense, frameshift, deletion, SNP [73]

Pol β frameshift, Splicing, missense [74]

XRCC1 nonsense, missense, SNP PARP, ATM, DNA-PKcs inhibitors [75, 76]

Neil1 deletion, point mutation, SNP [77]

NER XPC SNP [78]

DDB1 missense, splicing, deletion [79]

ERCC1 SNP ATR, CHEK1 inhibitors [37, 78]

ERCC2(XPD) missense, SNP, homozygous deletion [80, 81]

ERCC4(XPF) missense [79]

ERCC5(XPG) missense [79]

ERCC6 missense, nonsense, splicing [79]

XPA homozygous deletion, SNP [79, 82]

MMR MLH1 deletion, missense, nonsense, splicing POLG, ATR inhibitor [83, 84]

MSH2 deletion, nonsense, rearrangements POLB inhibitor [83–85]

MSH6 point mutation DHFR, POLB, POLG inhibitor [85, 86]

EPCAM deletion [85]

PMS2 point mutation [85]

HRR BRCA truncating, missense, large rearrangements PARP, APE1, ATM, DNA-PKcs
inhibitors

[87–89]

RAD51(RAD51B, RAD51C,
RAD51D)

frameshift indels, splicing, nonsense,
missense.

PARP inhibitor [90]

PALB2(FANCN) frameshift, nonsense, splicing, deletion PARP inhibitor [91, 92]

XRCC2 SNP [93]

XRCC3 SNP [93]

MSH3 In-frame deletion, frameshift, missense DNA-PKcs inhibitors [94]

FA pathway FANC genes missense, deletion, frameshift, SNP PARP inhibitor [95, 96]

NHEJ XRCC4 SNP [97]

LIG4 SNP PARP inhibitor [98, 99]

Cycle
checkpoints

ATR/Chk1 SNP, insertion, deletion APE1, Wee1, ATM, Chk1 inhibitor [43, 88, 100–
103]

ATM/Chk2 SNP, nonsense, splicing, frameshift DNA-PKcs, PARP, polθ, MEK
inhibitors

[43, 103, 104]

Others CDK12 deletion, missense, frameshift PARP inhibitor [105]

BAP1 truncating, missense PARP inhibitor [106]

P53 nonsense, missense ATR, Chk inhibitor [107, 108]

PTEN Mutation, deletion PARP inhibitor [109]
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cancer therapy [114]. The field of lncRNAs is at its infancy.
LncRNAs are poorly conserved across different species,
therefore, the structural and functional information as well
as the promising therapeutic strategies developed using
in vitro and animal models may not be easily extended to
human application [115]. The application of noncoding
RNA in cancer synthetic lethality is very limited. Srinivasan
et al. found that miR223-3p induced synthetic lethality in
BRCA1- and BAP1-deficient malignancies by inhibiting al-
ternative NHEJ signaling [116].
Understanding the causative epigenetic changes of

loss-of-function has led to the development of novel
therapeutic agents in cancer. The expression of DNA
damage repair genes was found frequently silenced by
promoter region methylation in various cancers. Silen-
cing of DDR and cell cycle related genes provide oppor-
tunities for synthetic lethal therapeutic strategies in
human cancers [6, 112]. Defects of DDR may cause gene
mutation and further induce carcinogenesis. Accumula-
tion of DDR gene hypermethylation was found in the
multistep of esophageal carcinogenesis and progression
from normal tissue to different types of dysplasia and in-
vasive cancer, including MGMT, MLH1, APC and
BRCA1 [110]. Increased methylation of DDR and cell
cycle related genes was also found progressively in the
different types of pancreatic cancer from noninvasive
intraductal papillary mucinous neoplasms (IPMN),
IPMN with carcinoma in situ, IPMN with microinvasion
and infiltrative IPMN with associated adenocarcinoma,
including APC, hMLH1, MGMT, BRCA1, p14 and P16
[117]. These results suggest that synthetic lethality based
on DDR methylation may apply to cancer prevention.
DDR genes are more commonly found methylated in in-
vasive cancers. Methylation of WRN was found in 37.9%
of colorectal cancer (CRC), 37.5% of non-small cell lung
cancer (NSCLC), 25% of gastric, 20% of prostate, 17.2%
of breast, 12.5% of thyroid cancer, 23.7% of non-
Hodgkin lymphoma, 9.5% of acute lymphoblastic
leukemia, 4.8% of acute myeloblastic leukemia, 33.3% of
chondrosarcomas and 11.1% of osteosarcomas. WRN
methylation is a sensitive marker for prediction of irino-
tecan in colorectal cancer [118]. Methylation of SLFN11
was found in 55.47% of CRC, 39% of papillary serous
ovarian cancer, 29.9% of gastric cancer and 13.6% of
NSCLCs. Methylation of SLFN11 reduced the sensitivity
to cisplatin [119–121]. MLH1 was found methylated in
21.6% of gastric cancer patients and methylation of
MLH1 was associated to oxaliplatin resistance [122].
XRCC1 was methylated in 76.4% of gastric cancer [123].
MED1, encoding a base excision repair enzyme, was
methylated in 24% of CRC [124]. ERCC1 was methylated
in 37.5% of gliomas, XPC was methylated in 34% of lung
cancer and 32.45% of bladder cancers, XPG was methyl-
ated in 19% of ovarian cancers [125–128]. In NSCLCs,

BRCA1, BRCA2, and XRCC5 (ku80 encoding gene) was
reported to be methylated in 30, 42 and 20% [129].
Methylation of MGMT is the most studied DDR gene
for chemo-sensitivity in various cancers [6, 130, 131].
GPX and GSTPi were also found frequently methylated
in various tumors [6, 132].
CHFR, RASSF1A, P14, P15 and P16 genes are directly

involved in cell cycle regulation and silenced by frequent
methylation in different cancers. Other genes, including
DACT2, SOX17, CDX2, NKD2, HIN1, IGFBPL1,
TMEM176A, HOXD10, SFRP1, GATA4, GATA5,
CDH1, APC, DACH1, were reported frequently methyl-
ated and indirectly involved in cell cycle regulation
through Wnt, PI3K-AKT, ERK, TGF-beta and other sig-
naling pathways in different cancers [113, 133–140]. Be-
yond ‘BRCAness’, aberrant epigenetic changes in all
these cell cycle regulators may provide new opportun-
ities for synthetic lethal therapy in different cancers.
CHFR is involved in G2/M checkpoint regulation, it is
frequently methylated in esophageal cancer, gastric can-
cer and NSCLCs. Methylation of CHFR may serve as a
docetaxel-sensitive marker [122, 141, 142]. RASSF1A in-
hibits G1-S transition and induces G2/M arrest in vari-
ous cancers. Methylation of RASSF1A was frequently
found in esophageal, gastric, lung and other cancers
[143]. DACT2 was found frequently methylated in lung,
esophageal, breast and other cancers. It may induce G1/
S or G2/M checkpoint arrest in different cancers
through Wnt signaling [144–147]. NKD2 was methyl-
ated in 53.2% of esophageal cancer and silencing of
NKD2 activated Wnt signaling to promote G1/S transi-
tion [148]. Methylated DDR and related genes in cancers
are listed in Table 2.

The interplay of epigenetics and genetics in DNA
damage repair genes
Disruption of a key epigenetic regulator by mutation
leads to an altered transcriptome, multiplying the ef-
fect of the single genetic alteration [165]. DNMT3A
is recurrently mutated in acute myeloid leukemia
(AML) and other myeloid malignancies [166, 167].
The majority of missense mutations impair the en-
zymatic activity of TET2, resulting in decreased
5hmC levels and aberrant DNA methylation [168].
Aberrant epigenetic changes may cause genetic abnor-
mality. Epigenetic silencing of DNA repair genes such
as MLH1, MGMT, BRCA1, FANCF, CHFR and
SLFN11 can lead to gene mutations and genomic in-
stability in cancer cells [112, 120, 169]. Lynch syn-
drome resulted from germline mutations in mismatch
repair genes, primarily MSH2 and MLH1. Approxi-
mately 15% of sporadic colorectal cancer patients with
microsatellite instability (MSI) were caused by epigen-
etic silencing of the MLH1 promoter region [151].
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Table 2 Methylation of DDR and related genes in cancers

Pathway gene tumor type methylation frequency refs

DDR BRCA1 pancreatic 46% [149]

NSCLC 30% [129]

ESCC 28% [110]

ovarian 16.3% [150]

BRCA2 NSCLC 42% [129]

MGMT gliomas 40% [130]

NSCLC 30% [142]

gastric 9.8% [122]

MLH1 CRC 38% [151]

ESCC 33% [110]

gastric 21.6% [122]

MSH2 HPNCC 24% [152]

HCC 24.6% [153]

WRN CRC 37.9% [118]

NSCLC 37.5% [118]

gastric 25% [118]

prostate 20% [118]

FANCF cervical 30% [154]

ovarian 21% [154]

breast 17% [154]

DDR related P16 ESCC 52% [110]

NSCLC 29% [142]

CHFR ESCC 45% [141]

gastric 34.3% [122]

NSCLC 10% [142]

RASSF1A gliomas 79.4% [155]

cholangiocarcinoma 65% [156]

gastric 12.7% [122]

SLFN11 CRC 55.47% [120]

papillary serous ovarian 39% [119]

gastric 29.9% [121]

NSCLCs. 13.6% [119]

DACT2 ESCC 69% [145]

gastric 55.7% [157]

breast 49.7% [146]

lung 41% [144]

NKD2 ESCC 53.2% [148]

gastric 53.1% [158]

breast 51.4% [159]

HIN-1 ESCC 50% [160]

NSCLC 48% [161]

DACH1 gastric 63.3% [162]

ESCC 61.5% [163]

HCC 42% [164]

NSCLC Non-small cell lung cancer, ESCC Esophageal squamous cell carcinoma, CRC Colorectal cancer, HPNCC Hereditary non-polyposis, HCC
Hepatocellular carcinoma
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Methylation of MGMT in colorectal cancer is associ-
ated with G-to-A mutations in the KRAS gene [170].
It is clear that the cancer genome and epigenome in-
fluence each other in a multitude of ways. They offer
complementary mechanisms to promote oncogenic
transformation.

Epigenetics joins Knudson’s two hit theory
Based upon observations on 48 cases of retinoblastoma
and published reports, Knudson found that biallelic in-
activation of the gatekeeper tumor suppressor gene is
necessary for initiation of tumorigenesis. This finding is
called ‘Knudson’s two hit theory’, and this theory has
served as an illuminating paradigm to guide the investi-
gations of the countless tumors. In the other word, initi-
ation of carcinogenesis needs ‘loss-of-function’ in both
alleles of tumor suppressor [171, 172]. It is similar to
gene mutations that epigenetic silencing of tumor sup-
pressor genes may cause inactivation or ‘loss-of-function’
in these genes. Thus, epigenetics joins Knudson’s two hit
theory (Fig. 1). DDR and cell cycle regulator genes were
found frequently methylated in human cancers. It is rea-
sonable to apply the aberrant epigenetic changes to syn-
thetic lethal therapy in human cancers (Fig. 2).

Combined epigenetic and genetic disruption of
gene expression in DDR for synthetic lethal
therapy
Mutational inactivation of gene expression or epigenetic
silencing of gene expression may happen to two alleles
by the same manner or by two different ways in each al-
lele. For synthetic lethal therapeutic study, both genetic
and epigenetic factors need to be included. Inactivation
of MMR results in MSI. In population-based studies, the
prevalence of MSI among CRCs is approximately 15%.
Germline MMR mutations that give rise to hereditary
non-polyposis colorectal cancer (HPNCC) account for ~
3% of CRCs. In contrast to HPNCC, sporadic cancers
are rarely found to have mutations in the MLH1 or
MSH2 genes. Promoter region methylation accounts for
80-90% of MLH1 biallelic inactivation in sporadic MSI-
H CRC [6, 173]. Heterozygous germline mutations in
BRCA1/2 are responsible for a large fraction of heredi-
tary breast cancers. While BRCA1/2 mutations affect a
minority of breast cancer patients (fewer than 5%).
BRCA1 and BRCA2 were silenced by promoter methyla-
tion in 9 and 2% of sporadic breast cancer respectively
[6, 174]. Loss of heterozygosity (LOH) also joins the
biallelic inactivation. For example, BRCA1 locus is lost
by LOH in one allele and methylation is happened to

Fig. 1 Epigenetics joins Knudson’s two hit theory. Epigenetic silencing of gene expression may happen to one allele or two alleles to join
Knudson’s two hit theory. LOH, Loss of heterozygosity; , mutation or LOH; , DNA methylation
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BRCA1 in another allele [175, 176]. MGMT is mutated
in 17.5% and methylated in 44% of human esophageal
squamous cell carcinoma [177, 178]. Mutation of
MGMT is very rare in CRC, while the methylation rate
is 40% [179, 180]. WRN is frequently methylated in vari-
ous cancers, while is rarely mutated [118, 181]. DNA
methylation may be served as ‘second hit’ for carcino-
genesis in hereditary cancer, or served as ‘first hit’ or
both ‘first and second hit’ in sporadic cancer. Combin-
ation of aberrant genetic and epigenetic changes of DDR
may be more efficient for synthetic lethal therapy.

Conclusion and future perspective
The successful development of PARPi for BRCA mutant
cancers provides proof-of-concept that synthetic lethality
interactions can be translated into cancer therapies. A
number of lessons can be learned from the discovery
and the development of the PARPi in BRCA defect syn-
thetic lethality. Such as, PARPi resistance has been
widely reported in clinic, and certain percentage of pa-
tients with wild-type BRCA can still benefit from PARPi
treatment. This may be explained by unknown of methy-
lation status of BRCAs and defects of other DDR and re-
lated genes. The major issue of synthetic lethality
therapy is to find good biomarkers and these markers
can be used to stratify patients. Ideally, the design and
interpretation of clinical trials based on synthetic lethal-
ity interactions should be based on the biological hy-
pothesis and robust preclinical data. Therapeutic
successes obtained with synthetic lethality demonstrate
that DNA repair can be considered as a therapeutic tar-
get. Moreover, the concept of synthetic lethality could

be extended to interactions between DNA repair defi-
ciencies and other cell signaling abnormalities, such as
aberrant genetic/epigenetic changes induced loss-of-
function in tumor suppressors. Cell culture based
screening approaches, patient-derived xenografts and
genetically engineered mouse models of cancer will
probably remain essential for uncovering synthetic lethal
interactions between genomic/epigenomic lesions and
selective inhibition of individual cell cycle regulators.
Novel treatment modalities that can target multiple
components of the same pathway may help to achieve a
more sustained therapeutic benefit.
DDR pathways are the fundamental basis for mainten-

ance of normal cells and, unfortunately, not unique to
cancer. Thus, the challenge facing the efficiency of DDR
inhibitors is the issue of predictive biomarkers. Some
genomic/epigenomic alterations of DDR molecules are
known in cancers, and some of them have been proven
to be effective and specific targets for certain cancer
types. Platinum-based agents could be used as mediators
leading the cell to a synthetic lethality favorable for
DDR-targeting agents. In addition to PARP inhibitors,
new inhibitors that interfere with the activities of im-
portant genes and enzymes of the DNA damage repair
pathways could also be used for the same purposes. As
evolving drug resistance is inevitable until complete
tumor ablation is achieved, combined targeting therapies
are required. Combination of PARP inhibitors and other
DDR inhibitors also have great potential synthetic lethal-
ity efficiency. Synthetic lethality only occurs when the
primary pathway is defective and the backup rescue
pathway is repressed. It is also important to identify

Fig. 2 Synthetic lethality based on epigenetic defects. A. Synthetic lethality induced by combined BER inhibitor and epigenetic inactivation of
MMR (inhibition of POLB selectively impair MSH2-deficient endometrial cancer cells). B. Synthetic lethality induced by combined DSB repair
inhibitor and epigenetic inactivation of SSB repair (inhibition of ATM or DNA-PKcs selectively impair XRCC1-deficient breast cancer cells). C.
Synthetic lethality induced by combined MMEJ repair inhibitor and epigenetic inactivation of HR repair (inhibition of POLQ selectively impair HR-
deficient ovarian cancer cells). BER, base excision repair; MMR, mismatch repair; POLB, polymerase theta; SSBs, single-strand breaks; DSBs, double-
strand breaks; HR, homologous recombination repair; MMEJ, microhomology mediated end joining; POLQ, polymerase theta
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synthetic rescue pathways and develop strategies to block
these before therapeutic resistance develops. It is clear that
while drugging DNA repair is still in its infancy, there is
enormous potential to this approach because it will be ap-
plicable to many other malignancies besides those with
BRCA1/2 mutations. One of the biggest problems of syn-
thetic lethality is how to identify biallele inactivated DDR
markers in human tissue samples.
As epigenetic abnormalities are apparent in the early

stage of carcinogenesis and premalignant status, we may
be able to develop strategies for cancer prevention.
While the major issue of cancer epigenomes is technique
limitation. Genetic/epigenetic heterogeneity is another
major issue of targeting therapy. Intratumor heterogen-
eity may explain the difficulties encountered in the valid-
ation of oncology biomarkers and prediction of
therapeutic resistance owing to sampling bias. Ideally,
we could always target druggable trunk mutations/aber-
rant epigenetic changes, and then add drugs to target
emerging subclones. The tumor environment may repre-
sent as much as 90% of some tumor samples. Epigenetic
modifications are dynamic and responsive to environ-
mental pressures, and they may reflect the potential of
the tumor to respond to an environmental or thera-
peutic pressure. With the development of new tech-
niques, combined detection of both genetic and
epigenetic markers will hopefully improve the efficien-
cies of targeting therapy in human cancer.
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