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A B S T R A C T   

The novel coronavirus disease 2019 (COVID-19), is currently the leading threat to public health and a huge 
challenge to the healthcare systems across the globe and caused by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2). Obesity, a state of chronic inflammation, and diabetes mellitus are risk factors for severe 
SARS-CoV-2. Metformin is one of the most commonly used antidiabetic medications that displayed immuno-
modulatory activity through AMP-activated protein kinase. Metformin has sex-specific immunomodulatory and 
cytokine-reducing activities. Therefore, this review aimed to summarize the protective roles of Metformin and its 
possible molecular mechanisms for use in COVID-19 patients. To include studies, publications related to Met-
formin and its possible molecular mechanisms for COVID-19 were searched from the databases such as Web of 
Science, PubMed, Medline, Elsevier, Google Scholar, and SCOPUS, via English key terms. Maintaining proper 
blood glucose levels using oral antidiabetic drugs like Metformin reduced the detrimental effects of COVID-19 by 
different possible mechanisms such as Metformin-mediated anti-inflammatory and immunomodulatory activ-
ities; effect on viral entry and ACE2 stability; inhibition of virus infection; alters virus survival and endosomal 
pH; mTOR inhibition; and influence on gut microbiota. Fascinatingly, in diabetic patients with COVID-19, 
treatment with Metformin was associated with a noticeable reduction in mortality rates and disease severity 
among infected patients. Metformin was comprehensively investigated for its anti-inflammatory, antiviral ca-
pabilities, immunomodulatory, and antioxidant, which would elucidate its capability to confer vascular and 
cardiopulmonary protection in COVID-19.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has 
caused a worldwide respiratory illness pandemic known as COVID-19 
that was reported in December 2019 [1,2]. Death rates have 
wide-ranging among patient cohorts and nations [3,4]. There are 
numerous risk factors of COVID-19 such as cardiovascular disease [3], 
old age [1], chronic kidney disease [3], malignancies [5], diabetes 
mellitus and obesity [6], chronic pulmonary disease and smoking [3], 
and chronic HIV infection [7]. 

As of September 2021, more than 218,730,353 patients are infected 
and about 4,537,792 deaths were reported due to COVID-19 [8]. 
Different therapeutic agents like tocilizumab, lopinavir/ritonavir, favi-
piravir, and chloroquine have been used therapeutically without any 
confirmed effect [9], although some medications like remdesivir have 

revealed some effects on decreasing time to recovery [10]. Patients 
presented with coronary heart disease, diabetes, chronic obstructive 
pulmonary disease, and hypertension are more likely to be affected by 
COVID-19 [10]. According to a previous study, levels of 
inflammation-related biomarkers and inflammatory responses are 
higher among diabetic patients when compared to controls, which in-
dicates being diabetic is a major risk factor in the prognosis and pro-
gression of COVID-19 [11]. 

Diabetes mellitus is one of the most public comorbidities among 
patients with COVID-19, which predisposes to intensive care unit 
admission in 14–32% of the cases [12]. Several mechanisms were 
identified for increased risk and severity of COVID-19 among diabetic 
patients such as decreasing CD4-positive T-cells in diabetic patients with 
MERS-CoV [13], increased interleukin-6 (IL-6) expression [14], and 
upregulation of angiotensin-converting-enzyme-2 (ACE2) expression 
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[15], which could have comparable mechanism with COVID-19. 
Metformin is one of the most commonly used antidiabetic medica-

tions, that displayed immunomodulatory activity through AMP- 
activated protein kinase in in-vivo models [16]. An observational study 
revealed that mortality of chronic lower respiratory diseases was 
significantly reduced by metformin as compared to the overall popula-
tion [17]. In addition to its antidiabetic activity, metformin has, for 
instance, anti-inflammatory activity and can decrease the creation of 
reactive oxygen species [18]. Further epidemiological investigations on 
the activities of metformin in patients with COVID-19 may help to 
ascertain whether there is a correlation between clinical outcomes and 
metformin use. Therefore, the present study aimed to summarize the 
association between metformin use and its possible molecular mecha-
nisms in diabetic patients with COVID-19. 

2. Diabetes mellitus increased disease severity and mortality in 
patients with COVID-19 

Patients with diabetes mellitus are prone to severe viral and bacterial 
infections, have a compromised immune response, present longer- 
lasting adverse effects, and require more recovery time than nondia-
betic people [19]. Appropriate follow-up and control of blood glucose 
are closely linked to the body’s ability to fight infections in chronic 
diabetic patients and regulate inflammatory and immune responses 
[20]. Serious immune and inflammatory responses are related to higher 
mortality and severe course of the disease, which was observed in dia-
betic patients infected with COVID-19, and could be noticeably inverted 
by controlling blood glucose levels [21]. 

Plotting glycated hemoglobin against the risk of COVID-19-related 
hospitalization displays a distinguishing J-curve, which shows that 
DM is related to a higher risk of respiratory infections [22]. Even though 
pre-existing DM did not rise the risk of incidence of SARS-CoV-2 infec-
tion, there was a substantial increase in the severity of COVID-19 among 
patients with diabetic mellitus, thus increasing their risk of a require-
ment for emergency care and hospitalization [22]. Aged diabetic pa-
tients infected with COVID-19 showed an inflated inflammatory 
response and were more likely to need ICU support and mechanical 
ventilation, with a higher risk of mortality when compared to nod dia-
betic patients infected with COVID-19 [23]. A previous study conducted 
globally revealed that severe pneumonia cases, increased mortality 
rates, and risk of ICU admissions in diabetic patients with COVID-19. 

Viral infections which are caused by mumps virus, rotavirus, and 
enterovirus, may lead to acute type I diabetes [24]. SARS-CoV-1 infected 
patients with no previous history of DM showed elevated blood glucose 
levels, an independent indicator for higher mortality among diabetic 
patients with COVID-19 [25]. This was related to the capability of the 
SARS-CoV-1 virus to damage the pancreatic islet through binding to the 
pancreatic islet ACE2 receptors [25]. Pancreatic ACE2 receptor sim-
plifies SARS-CoV-2 entry and binding, and the subsequent cellular 
damage could elucidate the new-onset of DM in patients infected with 
COVID-19 [22,26]. The binding of SARS-CoV-2 to ACE2 receptor on the 
pancreas creates an imbalance in RAAS and downregulates ACE2 ac-
tivity [27]. The consequent over-activation of the AngII/angiotensin II 
type I receptor (AT1R)-axis and accumulation of Ang II, triggers NF-κB 
signaling and macrophage activation. This, increase the secretion and 
synthesis of several inflammatory cytokines, resulting in pancreatic 
damage, and partly clarifies new-onset DM in COVID-19 patients 
[27–29]. A noticeable rise in the levels of several proinflammatory 
cytokines/markers like tumor necrosis factor-alpha, IL-1β, IL-6, and 
IL-10 were reported in severely ill patients with COVID-19 [28,30]. An 
in vitro study revealed that the pancreatic cells were highly permissive 
to COVID-19 entry and mimicked the chemokine induction that is 
characteristic of patients infected with SARS-CoV-2 [24]. 

3. Repurposing metformin: their possible mechanism of action 
for COVID-19 

Numerous biological possibilities can clarify the potential mecha-
nism of metformin in patients with COVID-19 (Table 1). Previous find-
ings have revealed that tumor necrosis factor-α has a key role in COVID- 
19 pathology; it worsens the patient’s condition, increases cytokine 
release, and activates macrophage. However, Metformin has a signifi-
cant role in decreasing thrombosis, increasing the neutrophil to 
lymphocyte ratio, reducing glycaemia, and decreasing cytokine release. 
There was a decreased level of IL-6, TNFα, and inflammatory mediators 
in both non-diabetes and diabetes patients while using Metformin. 
Furthermore, Metformin displays a noticeable positive activity in 
decreasing neutrophil extracellular traps and reducing the neutrophil 
[36,37]. 

Expression of ACE-2 via adenosine monophosphate-activated protein 
kinase is increased by Metformin, which leads to decreased cytokine 
response [38]. Additionally, Metformin is also important to decrease the 
release of inflammatory markers through affecting the NF-kappa B and 
MTOR pathways [39]. Other molecular mechanisms common to 
SARS-CoV-2 infection and diabetes can be used to elucidate the possible 
role of Metformin in diabetic patients with COVID-19. Viral-induced 
interferon-gamma secretion has been confirmed to increase circulating 
insulin levels and muscular insulin resistance, which, consecutively, 
rises the CD8 + T-cell responses. 

3.1. Metformin-mediated anti-inflammatory and immunomodulatory 
activities 

In patients with COVID-19, decrease in ACE2 availability and SARS- 
CoV-2 binding to its ACE2 receptor creates an imbalance in the RAAS, 
resulting in the secretion and synthesis of pro-inflammatory cytokines 
(IL-1β, IL-1, IL-6, and TNFα), triggering the NF-κB activation mediated 
inflammatory process and hyper-activation of AngII/AT1R axis, which 
explains the multi-organ failure, severe disease manifestations, and 
higher mortality in diabetic patients with COVID-19 [28,29]. 

The ability of the SARS-CoV-2 virus to damage and infect the 
endothelial cells triggering endothelial dysfunction, owing to the pres-
ence of endothelial ACE2 receptors [31–33]. A higher occurrence of 
hypercoagulation, microvascular complications, higher incidence of 
thrombotic events, and endothelial dysfunction were observed in pa-
tients with COVID-19 [31,32,34–39]. 

Fascinatingly, the existence of a prothrombotic state and endothelial 
dysfunction (mediated by reduced nitric oxide levels and diabetes- 
induced oxidative stress) may exacerbate COVID-19 related vascular 

Table 1 
The beneficial mechanism of Metformin against COVID-19.  

Drug Mechanism References  

Decrease oxidative stress [89] 
Improve glucose control [90,91] 
Decrease fibrosis [92] 
Increase insulin sensitivity [62,93] 
Decrease renal hypoxia [94,95] 
Improves low-grade inflammation in obesity [96,97] 
Reduction in neutrophils [98] 
Reduction in body weight [99,100] 
Increased urinary sodium excretion and decrease NCC 
activity 

[101] 

Metformin Decrease inflammatory cytokines [102,103] 
Increase autophagy and Sirt1/FoxO1 and decrease 
GBM thickness 

[104] 

Decrease reactive oxygen species production [105–107] 
Reduce inflammatory marker release [51] 
Protective arm of the renin-angiotensin-aldosterone 
system (RAAS) 

[62,63, 
108] 

GBM: Glioblastoma; FoxO1: Forkhead Box O1; NCC: Sodium-Chloride 
Cotransporter. 
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complications and are hallmarks of overt diabetes [23,40]. Moreover, 
the activation of receptors of advanced glycation end products (RAGE) 
by AGE and other ligands that trigger RAGE mediate the cell adhesion 
molecule coding genes and transcription of NF-κB–dependent 
pro-inflammatory that contribute to chronic vascular complications and 
coagulation and endothelial dysfunction supported by increased 
extravasation in diabetes, leukocyte adhesion, and vascular 
hyper-permeability [41–44]. Although Metformin has multiple targets, 
the inhibition of complex 1 of the mitochondrial electron transport chain 
is the most established mechanism related to, subsequent mTOR inhi-
bition, tipping the balance toward AMPK activation, and increasing the 
AMP/ATP ratio. The mitochondrial electron chain inhibition also at-
tenuates endothelial dysfunction and suppresses reactive oxygen spe-
cies. Reactive oxygen species mediate the release of IL-6 that increased 
disease severity and mortality in diabetic patients with COVID-19 
through the accumulation of intracellular Ca2+ [45,46]. 

Treatment with Metformin revealed the reduction of reactive oxygen 
species, consecutively, inhibited Ca2+ entry via CRAC and prevented 
the release and depletion of Ca2+ from the endoplasmic reticulum, thus 
inhibiting Ca2+-mediated IL-6 release [46]. The immunomodulatory 
activities of Metformin (as shown through the suppression of the 
pro-inflammatory capacity of activated macrophages, the differentiation 
of T cells into memory and regulatory T cells, and inhibition of 
monocyte-macrophage differentiation) is related to the Metformin 
treatment-related mTOR inhibition, reduction of oxidative stress, and 
activation of AMPK [47]. Moreover, Metformin constrains the 
RAGE-mediated NF-κB stimulation and subsequent up-regulation of cell 
adhesion molecules and genes that code for several proinflammatory 
cytokines in vascular endothelial cells, macrophages, and smooth mus-
cle cells, thus dampening the immune and inflammatory response and 
consequently conferring vascular protection [48–51]. 

3.2. Metformin’s effect on viral entry and ACE2 stability 

A previous study suggested that different virus-specific mechanisms 
by which virus gains entry into/infects the host cell [52]. Both 
receptor-dependent endocytosis and membrane fusion was reported in 
SARS-CoV-1 entry [53,54]. Although some viruses bind with the plasma 
membrane and then release the viral genome, others enter by 
endocytosis. 

The cell surface ACE2 receptor of the respiratory tract’s target cells 
assisted the SARS-CoV-2 viral fusion and infection of the host cell, the 
transmembrane TMPRSS2 cleaved the viral spike protein and supported 
virion entry into the cell [3,55]. Even though the viral replication is 
mainly confined to the respiratory tract, previous findings revealed that 
replication of SARS-CoV-2 in extrapulmonary tissues like the pancreas, 
colon, tonsils, and ilium [56,57]. Though, it is notable that the ACE2 
receptor is expressed in numerous tissues and organs such as the heart, 
intestine, brain, adipose tissue, pancreas, kidney, vasculature, and liver, 
making them potential targets for COVID-19, which may clarify the 
destruction reported in multi-organ systems in patients with COVID-19 
[56,58,59]. Remarkably, the risk factors like obesity and DM are asso-
ciated with an increased expression of ACE2 in different tissues, leading 
to a possible rise in the viral load [60,61]. Moreover, the flaking of ACE2 
from the cell surface and its redistribution, usually detected in obese and 
diabetic people, supports the viral spread to various body parts [60]. 

Metformin which is a direct activator of AMPK, is identified to pro-
mote ACE2 phosphorylation (Ser 680), leading a conformational 
change, and, may prevent viral binding to the host ACE2 receptor [62]. 
Furthermore, Metformin-mediated AMPK-dependent phosphorylation 
of ACE2 extends ACE2 half-life and hence potentially offers lung pro-
tection [63]. In contrast, it is theorized that Metformin could stabilize 
ACE2 expression in the respiratory tract and probably rise SARS-CoV-2 
infection [64]. Though, it is notable that viral binding to the ACE2 de-
clines ACE2 availability and stability, leading to the manifestation of 
harmful biological effects (fibrotic, vasoconstrictive, proliferative, and 

pro-hypertrophic, induction of oxidative stress, and inflammatory ef-
fects) and an imbalance in the RAAS in various body parts [29,58]. Due 
to the role in the activation of AMPK and further downstream ACE2, 
Metformin can prevent ACE2 down-regulation mediated by SARS-CoV-2 
[65]. 

The Metformin-mediated rise in the levels of ACE2 consequently 
controls RAAS offering mitigates pulmonary hypertension, stability to 
the pulmonary endothelium, and cardiopulmonary protection [62,66]. 
Especially, Metformin treatment–associated ACE2 stability and expres-
sion can prevent pancreatic damage and new-onset DM in patients with 
COVID-19 and positively modulate the beneficial arm (ACE2/Ang 1–7) 
of the RAAS and by maintaining and protecting the usual function of the 
pancreas [67]. 

3.3. Reduced insulin resistance and metformin: a potential role in the 
inhibition of virus infection 

The increment in insulin sensitivity and reduction of blood glucose 
noticeably reduces the disease severity and susceptibility to viral in-
fections among affected patients [68,69]. Metformin possesses benefi-
cial activities on pancreatic β-cells through increasing viability of β-cells, 
stimulating glucose metabolism, and decreasing insulin resistance [68, 
70]. Metformin effects on cellular mechanism include translocation of 
GLUT1/4 glucose transporters and AMPK activation to the plasma 
membrane, smoothing higher glucose uptake by cells [68]. 

Insulin signaling has a noticeable effect in fighting against infections 
and boosting the immune system. The central immune cells like T cells, B 
cells, or macrophages express insulin receptors [71]. Reduced T-cell 
function associates with inadequate vaccine response and low viral 
clearance, frequently related to reduced insulin signaling [71]. 

ACE2 has a key role in sustaining glucose homeostasis through the 
activation of Ang (1–7)/MAS receptor axis, which, sequentially, main-
tains insulin secretion and rises the survival of β-cells of the pancreas 
[72]. On the contrary, finding support that an altered local RAAS system 
or an altered function of ACE2 favors the onset of type 2 DM [72]. 
Furthermore, the protecting role of ACE2 against insulin resistance is 
improved via Ang (1–7) levels through the transcription factor myocyte 
enhancer factor 2A and the expression of GLUT4 [73]. Thus, ACE2 is a 
possible therapeutic target for where Metformin can block the associ-
ated immune response and the activated AngII/AT1R/insulin signaling 
pathway. 

3.4. Metformin alters virus survival and endosomal pH 

Viruses use numerous escape modes to gain entry into the host cell 
and evade host surveillance. The mechanism of viral entry is determined 
by the host cell type and the endocytic route of SARS-CoV-2 in lung 
epithelial cells. Wang et al. described caveolae- and clathrin- 
independent endocytic mechanisms for SARS-CoV-1 [74]. This endo-
cytosis process was receptor- and pH-dependent and involved the 
binding of viral spike protein with the ACE2 receptor, then internali-
zation of the ACE2 receptor and the virus into the endosome and 
reprocessing of the ACE2 receptors back to the surface of the cell surface 
membrane [74]. 

It is well known that endosomal pH is a vital aspect for virus survival 
inside the host cell. A reduced intracellular pH may favor endosomal 
virion maturation, its multiplication, and SARS-CoV-2 binding to the 
host cell [75]. Therefore, targeting endosomes as a potential therapeutic 
target via medications capable of changing the endosomal pH may 
inhibit survival, assembly, and viral maturation within the host cell. 

Because of the various mechanisms of viral entry of SARS-CoV-2, 
targeting endosomal pH is not necessarily in the membrane fusion 
mode of viral entry but substantial in the endocytic mode of viral 
replication. The endosomal Na+/H+ exchangers and vacuolar ATPase 
as the key regulators for endosomal pH are known targets for Metformin. 
Thus, it is promising that Metformin treatment suppresses the virion 
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maturation and endocytic cycle and increases the endosomal and 
cellular pH [76,77]. 

3.5. Metformin-mediated mTOR inhibition 

The latest finding showed that a reduction in mortality among dia-
betic patients with COVID-19 who were on Metformin to treat their 
hyperglycemia, and this was associated with mTOR inhibitory activity of 
Metformin [78]. Metformin may interrupt the communication between 
the viral and host proteins essential for pathogenesis, virion assembly, 
and viral replication [62,79,80]. 

Treatment with Metformin can inhibits the mTOR signaling pathway 
via the inhibition of AKT activation of AMPK, and/or directly, hence 
hesitant the cellular translational process, which is essential for the 
synthesis of viral and host proteins. On the other hand, treatment with 
Metformin can inhibit phosphorylation of Raptor and mTOR via REDD1 
has also been testified [79,81]. Gordon et al. identified 332 
high-confidence viral (COVID-19) protein-human protein interactions, 
of which 66 protein interactions may act as a potential target like for 
Metformin [82]. Remarkably, two human proteins, FKBP7 and LARP1, 
which are controlled by the mTOR signaling pathway, interrelate with 
the COVID-19 Orf8 and N proteins, respectively [62]. Host proteins of 
the electron transport chain such as M viral proteins, NDUF, and NSP7 
are Metformin targets [82]. Therefore, the host–viral interaction opens 
up the avenue of identification of new drug targets, repurposing of 
drugs, and co-therapies. 

3.6. Metformin on gut microbiota 

Metabolic syndrome such as DM is frequently related to increased 
systemic infection and leaky gut [83]. In addition to the involvement of 
the respiratory system in COVID-19, the gastrointestinal tract pays to the 
appearance of symptoms such as vomiting, loss of appetite, stomach 
pain, and diarrhea during COVID-19. A study showed that the severity of 
disease, as point out by inflammatory and cytokines markers, is related 
to gut microbiome composition, hence accentuating the immunomod-
ulatory role of the gut microbiome [84]. 

Gut microbes like E. rectale, F. prausnitzii, and different bifidobacte-
rial species are known for their immunomodulatory roles were 
exhausted in COVID-19 infected patients [84,85]. In vivo studies 
revealed that variations in the gut microbiota impact glucose tolerance, 
permeability, and intestinal integrity, which may partly clarify the 
SARS-CoV-2 progression in type II DM [86]. Moreover, ACE2, expressed 
in the GI tissue, controls innate immune function and gut homeostasis. 
Pollak M. argues Metformin’s immunomodulatory and antidiabetic ac-
tivities by affecting gut microbiota [86]. Metformin’s modes of benefi-
cial effect in patients with COVID-19 is indicated by Metformin’s 
capability to shift in the functional aspect of the gut microbiome and 
alter the composition of gut microbes as shown by the reduction of 
fasting blood glucose level and % HbA1c [87]. 

Generally, Metformin, in addition to its antidiabetic activity, dis-
plays a substantial therapeutic effect for COVID-19 such as it acts as an 
immunomodulatory agent, antimicrobial agent, ACE2 stabilizer, and 
agent that maintains gut homeostasis and regulates gut microbiota 
composition [87]. 

4. Possible contraindications and adverse effects of metformin 
in COVID-19 patients 

Several findings have confirmed the valuable activities of metformin 
in patients infected with COVID-19, although some findings have 
revealed that Metformin-treatment can increase disease severity (but 
not mortality) and risk of acidosis in patients with COVID-19 [58,82]. 
This advocates that treatment with Metformin is not a suitable choice in 
patients with severe renal impairment, heart failure, and respiratory 
distress, and highlights the role of giving attention to pre-existing 

comorbidities and conditions in medication selection [88]. Moreover, 
contraindications and adverse effects of Metformin in COVID-19 pa-
tients should be addressed prior to administration. 

5. Conclusion 

The current review displays that Metformin use is linked to a reduced 
risk of mortality in COVID-19 patients. Several studies highlight the 
importance of further exploring Metformin’s role in improving host 
immune response through potentially targeting gut microbiota or en-
ergy metabolism or specific cell signaling pathways. Metformin pos-
sesses therapeutic benefits in conditions like cancer, polycystic ovary 
disease, fatty liver diseases, and cardiovascular complications. Main-
taining proper blood glucose levels using oral antidiabetic drugs like 
Metformin reduced the detrimental effects of COVID-19 by different 
possible mechanisms such as Metformin-mediated anti-inflammatory 
and immunomodulatory activities; effect on viral entry and ACE2 sta-
bility; inhibition of virus infection; alters virus survival and endosomal 
pH; mTOR inhibition; and influence on gut microbiota. In the context of 
COVID-19, Metformin provides protection not only metabolically but 
also through the mitigation of complications related to exaggerated 
thrombotic events and immune response. Physicians also need to wisely 
assess the actual benefits of Metformin for patients who are at risk of 
COVID-19 mortality and who are also currently taking it. 
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