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Simple Summary: Tumors use immunosuppressive signals to evade detection by the immune system.
While recurrent and metastatic head and neck squamous cell carcinoma has historically carried a
poor prognosis, therapies targeting the immunosuppressive PD1:PDL1 axis have improved survival
in certain patients. Defining mechanisms regulating PDL1 in various contexts may inform refinement
of immunotherapy protocols. We identified a role for Toll-like Receptor 2 (TLR2) signaling in driving
PDL1 expression. In antigen-presenting cells, TLR2 functions to initiate response to pathogens, and
it is overexpressed or genetically altered in some tumors. We found that the synthetic TLR2 ligand
Pam3CSK4, as well as whole bacteria, induced PDL1 expression in specific HNSCC cell line models,
suggesting that TLR2 may contribute to immune evasion in chronically inflamed tissues.

Abstract: As immunotherapies targeting the PDL1 checkpoint have become a mainstay of treatment
for a subset of head and neck squamous cell carcinoma (HNSCC) patients, a detailed understanding
of the mechanisms underlying PDL1-mediated immune evasion is needed. To elucidate factors
regulating expression of PDL1 in HNSCC cells, a genome-wide CRISPR profiling approach was
implemented to identify genes and pathways conferring altered PDL1 expression in an HNSCC
cell line model. Our screen nominated several candidate PDL1 drivers, including Toll-like Receptor
2 (TLR2). Depletion of TLR2 blocks interferon-γ-induced PDL1 expression, and stimulation of
TLR2 with either Staphylococcus aureus or a bacterial lipopeptide mimetic, Pam3CSK4, enhanced
PDL1 expression in multiple models. The data herein demonstrate a role for TLR2 in modulating
the expression of PDL1 in HNSCC models and suggest that microbiota may directly modulate
immunosuppression in cancer cells. Our study represents a step toward disentangling the diverse
pathways and stimuli regulating PDL1 expression in HNSCC and underscores a need for future
work to characterize the complex microbiome in HNSCC patients treated with immunotherapy.

Keywords: CRISPR; TLR2; microbiome; HNSCC; PDL1

1. Introduction

Head and Neck Squamous Cell Carcinoma (HNSCC) is newly diagnosed in 600,000 patients
worldwide each year [1]. HNSCCs are often associated with either a history of alcohol
and tobacco use or human papillomavirus infection and have overall 5-year survival
rates ranging from 40 to 75%, depending on sub-site [2]. While survival in this popula-
tion remained relatively unchanged over the past several decades, immune checkpoint
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blockade has revolutionized therapy for HNSCC patients, with up to 20% of recurrent or
metastatic patients responding to immunotherapies targeting the PD1:PDL1 interaction [3].
Pembrolizumab and nivolumab, both anti-PD1 antibodies, were shown to improve upon
investigator’s choice of chemotherapy in patients with platinum-refractory HNSCC and
were approved for first-line use in this population in 2019 [4,5]. Further, the KEYNOTE-048
trial demonstrated that first-line pembrolizumab monotherapy was superior to cetux-
imab with chemotherapy in recurrent/metastatic HNSCC patients whose tumors express
PDL1 [6]. Given the success of these strategies in subsets of patients, and the evidence for
PDL1 expression predictive biomarker, we sought to understand the mechanisms regulat-
ing this checkpoint and to discover factors that may contribute to response or failure of
PD1 blockade.

Cell-surface PDL1 expression in tumors is induced by interferon gamma (IFNγ), a
cytokine released by T-lymphocytes, and relies on JAK2/STAT1 mediated transcription
in HNSCC cells [7]. In HNSCC cell lines, activation of epidermal growth factor receptor
(EGFR), an established oncogenic driver and therapeutic target in HNSCC, was shown to
positively regulate PDL1 expression on the cell surface [8]. These observations led us to
question whether additional pathways, including oncogenic signals and external stimuli in
the microenvironment, may contribute to immune escape via PDL1 upregulation.

In recent years, new applications for genome-scale functional screening have rapidly
arisen alongside advances in CRISPR technology [9,10]. Here, we sought to leverage
this technology to define genes and pathways involved in the regulation of cell-surface
expression of PDL1 in HNSCC.

2. Materials and Methods
2.1. Cell Culture

Cell lines were maintained in logarithmic growth phase in Dulbecco’s Modified
Eagle’s Medium (Gibco, Amarillo, TX, USA) containing 10% fetal bovine serum (FBS;
Sigma, St. Louis, MO, USA), 1% NEAA (Gibco), and 100 U/mL penicillin-streptomycin
(Gibco) in a humidified atmosphere of 5% CO2 at 37 ◦C. Cells were tested for mycoplasma
contamination using the MycoAlert detection kit (Lonza, Basel, Switzerland). All models
were genotyped as previously described [11].

2.2. PDL1 Induction

Where indicated, cells were treated with 10 ng/mL IFNγ (R&D Systems, Minneapo-
lis, MN, USA, #285-IF), 500 ng/mLPam3CSK4 (Invivogen, San Diego, CA, USA, #tlrl-
pms), 0.075% heat-killed Staphylococcus aureus (Millipore, Burlington, MA, USA, #507858),
108 CFU/mL heat-killed Streptococcus pneumoniae (Invivogen #tlrl-hksp), 108 CFU/mL
heat-killed Listeria monocytogenes (Invivogen #tlrl-hklm), 10 ug/mL heat-killed Mycobac-
terium tuberculosis (Invivogen #tlrl-hkmt-1) or 108 CFU/mL heat-killed Staphylococcus aureus
(Invivogen #tlrl-hksa). Invivogen products were rehydrated in endotoxin-free water per
manufacturer instructions.

2.3. Transduction

UM-SCC-49 was transduced with the Human GeCKO CRISPR knockout pooled library
version 2A in the lentiCRISPRv2 backbone (Addgene, Watertown, MA, USA, #52961).
Conditions for transduction of the genome-wide gRNA library were established for a
multiplicity of infection (MOI) of 0.3. Cells were subjected to 7 days of puromycin selection,
then expanded and seeded for treatment and flow cytometry.

2.4. Fluorescence-Activated Cell Sorting

To preserve at least 300× library coverage, 30 million cells were seeded per treat-
ment. Cells were treated with 10 ng/mL IFNγ (R&D Systems) for 72 h incubation, after
which 30 million cells were incubated with a PDL1 monoclonal antibody (ThermoFisher
#14-5983-82, 1 ug/mL in HBSS) for 15 min in a suspension of 1 million cells/mL followed
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by washing in PBS. Control (no primary antibody) and PDL1 stained cells were incu-
bated with PE-conjugated rat anti-mouse secondary antibody (ThermoFisher #12-4015-82,
0.2 ug/mL in HBSS) for 15 min. Cell suspensions in HBSS supplemented with 0.5% FBS
were gated on live cells and sorted on an iCyt Synergy (Sony Biotechnology, San Jose,
CA, USA) at the University of Michigan Flow Cytometry Core.

2.5. GeCKO Library Preparation

Genomic DNA was extracted from the UM-SCC-49 GeCKO pool cells using the Gentra
Puregene Cell Kit (Qiagen, Hilden, Germany). For each sample, 13 reactions with 10 µg
genomic DNA input each were used to PCR amplify gRNA sequences using Herculase II
Fusion DNA Polymerase (Agilent, Santa Clara, CA, USA, #600675). Sequencing adapters
and barcodes were added to the PCR products using primers listed in Table S1. Amplicons
were purified using PCR Purification Kit (Qiagen) before submission to the University of
Michigan DNA Sequencing Core for sequencing with Illumina MiSeq V3 Kit.

2.6. Analysis of CRISPR Libraries

Reads were demultiplexed by barcode and then mapped to the corresponding refer-
ence library using an in-house python script. gRNAs represented by fewer than ten reads
were excluded from further analyses. Read counts were normalized to the total number of
reads for a given sample and the read count for each gRNA was then computed relative to
the read count in the control to determine relative abundance in the sorted populations
versus control (unsorted).

2.7. SiRNA Transfection

ON-TARGETplus siRNA SMARTpools were purchased from Horizon Discovery
(Cambridge, UK; TLR2, L-005120-01-0005; RELA, L-003533-00-0005; GAPD, L-004253-00-0005).
Non-targeting siRNA was purchased from Horizon Discovery (D-001810-02-05). Transfec-
tions were performed 18 h post seeding using oligofectamine (Invitrogen, Carlsbad, CA,
USA, #12252011) per manufacturer’s protocol. For qPCR analysis, RNA was isolated 24 h
after initial transfection. For analysis of PDL1 protein, cells were treated as indicated for an
additional 48 h, then total protein lysate was collected.

2.8. Western Blotting

Cells were rinsed twice with ice cold PBS and lysed in a modified RIPA lysis buffer
(150 mM NaCl, 50 mM Tris pH 8.0, 1 mM PIPES, 1 mM MgCl, 10% Glycerol, 1% NP40,
0.1% Triton X-100) with HALT protease and phosphatase inhibitor cocktails (Thermo
Scientific #186129, 1861277). Separation by SDS-PAGE was performed and the following
antibodies purchased from Cell Signaling Technology (Danvers, MA, USA) were used
for visualization of target proteins: PDL1 (#13684), β-actin (#4970), NFκB p65 (#8242),
phospho(Ser-536)-NFκB p65 (#3033).

2.9. qPCR

RNA extraction and cDNA synthesis using SuperScript III Reverse Transcriptase VILO
kit (Invitrogen) was performed according to manufacturer protocols using primers in Table
S2. Amplification by qPCR was performed with QuantiTect SYBR Green (Qiagen) on
QuantStudio5 (Applied Biosystems, Waltham, MA, USA) under the cycling conditions
recommended by the manufacturer.

3. Results

We developed a genome-wide CRISPR screen to identify genes that modulate cell
surface PDL1 expression using a positive selection strategy to enrich for cells with high
or low PDL1 expression following IFNγ stimulation (Figure 1). UM-SCC-49, which was
derived from an aggressive tongue HNSCC, was selected as a model based on its ability
to upregulate PDL1 in response to IFNγ compared to other HNSCC cell lines (data not
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shown), previously published exome sequencing demonstrating that genes from the estab-
lished IFNγ signaling pathway are not mutated in this cell line, and growth characteristics
amenable to scaling cell culture for high throughput screening [12]. UM-SCC-49 cells were
transduced with the GeCKO v2A CRISPR library, treated with IFNγ, and serially sorted to
collect populations exhibiting the highest (PDL1high) and lowest (PDL1low) IFNγ-induced
PDL1 expression (Figure 2A). After expanding the final population, we showed diver-
gence between PDL1high and PDL1low phenotypes as indicated by the median fluorescence
intensity (MFI) of each population and/or the percentage of cells positive for PDL1 ex-
pression (Figure 2A,B). Clonal cell lines from single cells isolated from the PDL1low pool
exhibited diminished ability to upregulate total PDL1 protein expression in response to
IFNγ, indicating that we had selected individual cells with dysregulated PDL1 (Figure S1).

Barcodes from the initial UM-SCC-49 GeCKO library pool (control) and the sorted
PDL1high and PDL1low pools were sequenced and quantified to identify enrichment of
specific knockouts. In the control pool, 44,892 gRNAs were identified (70% library cover-
age), while 9822 gRNAs were identified in PDL1high (16% library coverage) and 7162 in
PDL1low (11% library coverage; Figure 2C,D). These changes in library coverage and gRNA
distribution support the selection of specific gRNA subsets.
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Figure 1. Workflow for generation of UM-SCC-49-GeCKO pool, cell sorting, and sequencing of final
populations. 1. UM-SCC-49 was transduced with a lentiviral pooled sgRNA library (GeCKO v2).
2. Live cells were selected based on PDL1 expression using a PE-conjugated antibody directed against
PDL1. PE fluorescence distribution was plotted on a histogram. The fractions of cells with the highest
and lowest PE fluorescence (10% each) were expanded separately in culture and re-sorted to enhance
respective phenotypes. 3. DNA was harvested from final populations for next-generation sequencing
of sgRNA barcodes.
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Figure 2. Sorting of UM-SCC-49-GeCKO pool for PDL1 enhanced or deficient cells. (A) UM-SCC-49 cells infected with
the GeCKO library were treated with 10 ng/mL IFNγ for 72 h and stained using a PE-conjugated antibody directed
against PDL1. Cells were then subjected to fluorescence-activated cell sorting. Gates were drawn to select the 10% of cells
with lowest fluorescence (PDL1low; upper plots) and 10% with the highest (PDL1high; upper plots). Green and red gates
indicate populations of cells collected for PDL1low and PDL1high, respectively. The selected populations were expanded
separately in culture to 30 million cells each, then subjected to cell sorting again, selecting the lowest 10% of cells from
PDL1low and the highest 10% of cells from PDL1high (middle plots). Again, these cells were expanded and analyzed by
flow cytometry a third time to ensure divergent phenotypes. “positive” and “negative” gates were drawn based on 0.1%
and 99% (respectively) of a control stained with secondary antibody only (lower plots). At this point, all PDL1-negative
(PDL1low) and all PDL1-positive (PDL1high) cells were selected, and genomic DNA was harvested. (B) Median fluorescence
intensities (MFIs) and percent of cells positive for PDL1 are reported for the final sort for each population. (C) Mapping
statistics from UM-SCC-49-GeCKO sequencing results. (D) Distribution of read counts across gRNAs (normalized to total
reads for each sample and log transformed).

For our analysis, we chose a normalized read count cutoff of greater than or equal to
10 gRNAs and defined a rank list of hits for which representation was uniquely enriched
over the control pool. gRNAs enriched >1.5× over the control in either sorted population
are reported in Table 1 (PDL1low) and Table 2 (PDL1high). Importantly, we observed an
interesting relationship between some of the most enriched gRNAs in the PDL1high and
PDL1low pools. We identified a gRNA targeting Toll Like Receptor 2 (TLR2) among the
most abundant in the PDL1low pool, while gRNAs targeting mir-105-1 and mir-105-2, which
may negatively regulate toll like receptors [13], were enriched in PDL1high population.
TLRs are a widely studied class containing 9 different type I transmembrane proteins that
share similar domain structures, with a leucine-rich extracellular domain, transmembrane
domain and cytosolic toll/interleukin-1 receptor domain [14]. When activated by microbial
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ligands, TLRs transmit signals through overlapping signaling cascades, often via Myd88
and NFκB to promote innate and adaptive immune responses [15]. Although TLRs, in-
cluding TLR2, are expressed in mucosal epithelia and are overexpressed or genetically
altered in numerous tumor types, a mechanistic link between TLR activation and evasion
of anti-tumor immunity has not been thoroughly explored. Therefore, TLR2 represented a
promising novel target for further evaluation in HNSCC cells.

Table 1. gRNAs ranked by enrichment in PDL1low over control.

Rank gRNA Target PDL1low/Control PDL1high/Control

1 RNF130 130.4702 0.61437
2 UIMC1 97.62247 0.533461
3 KLHL30 97.47681 0
4 C1orf116 93.29673 0.604938
5 SLC2A6 93.00492 0.467358
6 TLR2 80.91354 0.363622
7 KIDINS220 74.24762 0.376101
8 COMP 73.34039 0.374752
9 STAB1 48.71035 0.181629
10 NFYB 45.65152 0.163268
11 DISP2 38.79179 0.872197
12 SLC25A25 36.74726 0.14868
13 C7orf55 36.6708 0.194452
14 SSMEM1 34.35596 0.153269
15 TSPAN31 30.65758 0.121086
16 UNKL 27.33073 0.127668
17 ITSN1 14.07346 0.076536
18 HIRA 13.86975 0.066925
19 ZDHHC24 11.48397 5.910346
20 NODAL 11.19729 0.06114
21 TTL 7.297645 0.027327
22 C1orf35 7.269804 0.038215
23 ULBP2 6.721698 0.028772
24 AXDND1 6.5365 0.040082
25 ZFP64 6.110201 0.042713
26 MAGEA6 5.625484 0.045438
27 PCDHGB6 5.256831 0.039738
28 FAM168B 4.806231 0.031167
29 FABP6 4.648937 0.03478
30 USP16 4.350071 0.028961
31 VPS25 4.180224 0.033329
32 SPATA31A2 4.175848 0.035267
33 NPR1 3.975242 0.033517
34 CKMT1A 3.801816 0.020674
35 CCDC117 3.520316 0.02719
36 KIF13B 3.131082 0.022894
37 FZR1 2.847764 0.022893
38 ZNRF3 2.696549 0.02445
39 STRN3 2.642702 0.026301
40 BLCAP 2.598926 0.020274
41 GMNC 2.586674 0.020701
42 KDM6A 2.56034 0.026508
43 OR5T2 2.554679 0.028434
44 CLNS1A 2.489466 0.021168
45 RAD50 2.088789 0.0218049
46 NARR 2.070283 0.020284
47 HINT1 2.068037 0.018824
48 IRG1 2.043546 0.0089151
49 SLC9A6 2.043088 0
50 TTC34 1.554888 0.022822
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Table 2. gRNAs ranked by enrichment in PDL1low over control.

Rank gRNA Target PDL1high/Control PDL1low/Control

1 IZUMO3 223.6348 1.0669
2 hsa-mir-105-1 167.3409 1.178067
3 GLS 111.713 0.854239
4 FAT2 104.4253 0.590414
5 SCGB3A1 50.81308 0.337907
6 RAPGEF3 37.84282 0.242991
7 AP2A1 31.35016 0.214096
8 TRIM49 29.33133 0.181142
9 hsa-mir-105-2 9.937754 0.060283
10 FIGLA 6.562241 0.021861
11 POGLUT1 6.558918 0.06121
12 ZDHHC24 5.910346 11.48397
13 KCNIP2 5.604062 0.0485690
14 ZNF37A 4.446165 0.038013
15 TTC5 3.348804 0
16 SLC35F3 2.39854 0
17 FAM71C 2.325857 0
18 CXorf21 2.179963 0.014468
19 RBBP8 2.111634 0.04188
20 CCDC129 1.992549 0
21 SLC5A8 1.902974 0
22 CHST2 1.864696 0.068597
23 P2RY2 1.836203 0
24 SEMA6C 1.834026 0.015726
25 SPHK1 1.797793 0
26 KLHL30 1.794423 0.007607
27 hsa-mir-212 1.77299 0
28 CARNS1 1.744393 0
29 BRF2 1.744393 0
30 LMNB2 1.744393 0
31 MCL1 1.744393 0
32 GNA13 1.744393 0
33 NF2 1.722029 0.714116

Given the enrichment of gRNAs targeting TLR2 and potential TLR2-modulating
miRNAs, we hypothesized that TLR2 may positively regulate PDL1 expression in the
UM-SCC-49 model. We therefore examined whether genes nominated by our screen were
co-expressed with CD274 (encoding the PDL1 protein) in HNSCC tumors using publicly
available RNAseq data from the Cancer Genome Atlas HNSCC project (n = 566, UCSC
cancer genomics browser (xenabrowser.net), accessed on 4 October 2019; Table 3). As proof
of concept, we showed that expression of JAK2, an established driver of CD274 transcrip-
tion [7,8], correlates significantly with CD274 expression in HNSCC (Pearson r = 0.69,
p < 0.0001; Figure S2A). We discovered a significant positive correlation between TLR2
and CD274 expression (Pearson r = 0.32, p < 0.0001; Figure S2B). We then examined ex-
pression of other Toll-like receptors (TLRs) and found that these too correlated positively
with CD274 (Figure S2C–J). Because several TLRs signal through MyD88 following for-
mation of the supramolecular organizing center [16,17], we also assessed whether CD274
expression correlated with MYD88 expression and again discovered a positive correlation
(Pearson r = 0.42, p < 0.0001; Figure S2K). We next evaluated RNAseq data from our panel
of HNSCC cell lines to determine if these models recapitulated the trends seen in human
tumors. Importantly, although we did not observe a correlation between TLRs and CD274
expression in this small dataset, we did identify a correlation between MYD88 and CD274
expression (n = 43; Pearson r = 0.50, p < 0.001; Figure S2L).
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Table 3. Log2(RSEM+1) values from TCGA Head and Neck Cancer cohort (n = 566) were retrieved from the UCSC cancer
genomics browser (xenabrowser.net).

Gene Set Gene Pearson’s R Adjusted p-Value

gRNAs enriched in PDL1low

RNF130 0.082815 NS
UIMC1 0.136287 0.03342197

KLHL30 0.046933 NS
C1orf116 0.033465 NS
SLC2A6 0.143694 0.01757946

TLR2 0.324183 0.01798496
KIDINS220 0.143437 NS

COMP −0.004867 1.13 × 10−11

STAB1 0.29879 0.00021754
NFYB −0.187014 NS

gRNAs enriched in PDL1high

GLS 0.137618 0.02984585
FAT2 0.242119 1.56 × 10−7

SCGB3A1 −0.22681 1.42 × 10−6

RAPGEF3 −0.023542 NS
AP2A1 −0.159187 0.00414437
TRIM49 −0.093222 NS

TLR and IFNγ pathway genes

STAT1 0.60212877 1.15 × 10−55

JAK2 0.69457561 3.05 × 10−81

TLR2 0.32418282 7.46 × 10−14

TLR1 0.30202603 6.12 × 10−12

TLR3 0.44556113 1.71 × 10−27

TLR4 0.39553731 3.55 × 10−21

TLR5 0.08243978 NS
TLR6 0.28567334 1.25 × 10−10

TLR7 0.41385687 2.29 × 10−23

TLR8 0.53208367 3.15 × 10−41

TLR9 0.17934421 0.00051316
TLR10 0.27146896 1.48 × 10−9

MYD88 0.42093739 2.99 × 10−24

RELA −0.0036575 NS

Correlations between CD274 (PDL1) and individual genes targeted by the top ten most enriched gRNAs in PDL1low and PDL1high were
calculated using Pearson r test. Gene expression data for IZUMO3, hsa-mir-105-1, and hsa-mir-105-2 were not available. Data for the gene
FIGLA were excluded as only 15/566 samples had expression values ≥1.

While these observations suggest a relationship between TLR2 and PDL1 expression,
it is also possible that TLR2 upregulation and PDL1 expression are simply co-occurring
features reflecting elevated immune activity in the tumor microenvironment, as PDL1
expression is commonly increased in inflamed tissues [18]. Thus, we sought to establish a
causal link between TLR2 and PDL1 in cell line models to directly validate results of the
CRISPR screen. To test if modulation of TLR2 expression can influence PDL1 protein expres-
sion, TLR2 transcript was knocked down via siRNA (Figure 3A), and changes to total PDL1
protein expression in the presence or absence of IFNγ were assessed. Consistent with our
CRISPR screen, we observed a decrease in the ability of IFNγ to induce PDL1 total protein
expression when TLR2 RNA was depleted, demonstrating that our approach successfully
identified a gene capable of regulating PDL1 expression in UM-SCC-49 (Figure 3B).
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Figure 3. TLR2 depletion attenuates IFNγ-mediated upregulation of PDL1 in UM-SCC-49 cells.
(A) UM-SCC-49 cells were treated with siRNA as indicated, and knockdown of TLR2 and GAPDH
RNA expression was tested by qPCR. (B) Cells were transfected with non-targeting (NT), GAPDH,
or TLR2 siRNA for 24 h were then treated −/+ 10 ng/mL IFNγ for 48 h, and protein expression was
assessed by immunoblot as indicated. The uncropped Western blots have been shown in Figure S3.

We then sought to test whether activation of TLR2 in our cell line models could induce
significant changes in either baseline or IFNγ-induced PDL1 expression. Pam3CSK4 is a
synthetic lipopeptide that acts as a specific TLR1/2 agonist [19]. Wild-type UM-SCC-49
and UM-SCC-92 cells were treated with Pam3CSK4 for 72 h and a moderate increase
in total PDL1 protein expression was observed. However, when Pam3CSK4 was given
concurrently with IFNγ, the ability of IFNγ to induce PDL1 expression was enhanced
(Figure 4A and Figure S4). Because activation of TLR2 is known to induce phosphorylation
and activation of the p65 subunit of NFκB (also referred to as RelA) [20], we also assessed
serine 536 phosphorylation of p65. We observed increased phosphorylated p65 in response
to Pam3CSK4 or IFNγ alone, with a further increase when both factors were present
(Figure 4A).

Next, we considered the role of TLR2 in initiating an immune response. TLRs rec-
ognize pathogen associated molecular patterns (PAMPs) and initiate signaling cascades
to drive various aspects of immune response, including production of pro-inflammatory
cytokines [15]. Given that HNSCC often arises in tissues with high exposure to pathogens,
we postulated that TLR2 may modulate PDL1 expression following activation by PAMPs
through enhanced NFκB signaling. Previous studies have shown that bacteria such as
Staphylococcus aureus (S. aureus) both activates TLR2 and induces PDL1 expression in mono-
cytes [21]. S. aureus is also prevalent in the oral microbiomes of oral cancer patients [22].
UM-SCC-49 cells were therefore treated with heat-inactivated S. aureus, and induction of
both p65 phosphorylation and total protein expression of PDL1 was observed (Figure 4B).
We next analyzed IFNγ-regulated (SOCS1) [23] and p65-regulated (IL6) [24] effectors and
showed that both Pam3CSK4 and S. aureus induced p65 target IL6 as expected, but in-
terestingly, there was minimal induction of PDL1 transcript expression in the absence of
IFNγ. This suggested that IFNγ appears to induce a distinct transcriptional profile at these
timepoints, including the unique regulation of known IFNγ target genes such as SOCS1
(Figure 4C and Figure S5).
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Figure 4. TLR2 agonists drive PDL1 protein accumulation in UM-SCC-49 cells. (A) UMSCC49 cells
were treated with or without 300 ng/mL Pam3CSK4 (Invivogen) with or without 10 ng/mL IFNγ

for 72 h. (B) UM-SCC-49 cells were treated for indicated duration with 0.075% S. aureus (Millipore)
and lysates were analyzed by immunoblot. (C) qPCR analysis of IFNγ and TLR effectors and PDL1
expression in UM-SCC-49 treated with S. aureus or Pam3CSK4 for either 4 h or 24 h as indicated.

To examine the ability of Pam3CSK4 and S. aureus to regulate PDL1 in other HNSCC
models, we chose to advance models from our panel of 43 cell lines based on relative
expression of the Toll-like receptors as determined by RNAseq, as TLR2 is thought to
heterodimerize with TLR1 or TLR6, and because these TLRs are thought to be largely
responsible for recognition of bacterial cell wall components [25]. Thus, we selected cell
lines for further evaluation based on a summed expression of TLR1, TLR2, and TLR6 RNA,
and chose to advance UM-SCC-58 (low expression) and UM-SCC-97 and UM-SCC-59 (high
expression) for further evaluation (Figure 5A). UM-SCC-58 showed no increase in PDL1
expression in response to S. aureus or Pam3CSK4 (Figure 5B–D). UM-SCC-59 appeared to
upregulate PDL1 in response to S. aureus, but not the TLR2 specific agonist Pam3CSK4,
suggesting that a different receptor may mediate this response. In contrast, UM-SCC-97
upregulated PDL1 in response to both S. aureus and Pam3CSK4. Collectively, this suggested
that different cell line models exhibit a range of sensitivity to S. aureus and Pam3CSK4
stimulation of PDL1 expression.
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Figure 5. PAM4CSK4-mediated PDL1 stimulation is TLR2-dependent in HNSCC cell lines. (A) RNA expression
(log2(FPKM+1)) of indicated genes in HNSCC cell lines. RNA sequencing was performed for 43 HNSCC cell lines
using Illumina stranded transcriptome library kits, as described in (Mann et al.) Heatmaps were generated using MeV
software version 4.9 based on log2(FPKM+1) values. Cell lines are arranged from left to right in order of increasing
expression of PDL1 (CD274). (B–D) HNSCC cells were treated with vehicle control, 10 ng/mL IFNγ, 0.075% S. aureus
(Millipore), or 300 ng/mL Pam3CSK4 for 72 h. PDL1 expression was analyzed by immunoblot. (E) UM-SCC-97 cells were
transfected with indicated siRNAs. 24 h post transfection, cells were treated with Pam3CSK4 for an additional 48 h. PDL1
was analyzed by immunoblot. (F) UM-SCC-97 was incubated with heat-killed commercially available bacterial strains as
indicated for 72 h. Abbreviations: NT, Non-Targeting siRNA; SA, S. aureus; MT, Mycobacterium tuberculosis; LM, Listeria
monoytogenes; SP, Streptococcus pneumoniae.

Finally, given the ability of UM-SCC-97 to strongly upregulate PDL1 in response to
TLR2 agonists, we tested whether Pam3CSK4-mediated PDL1 induction was dependent
upon TLR2 or p65 expression. UM-SCC-97 cells were transfected with siRNA target-
ing TLR2, RELA (p65), or controls, and stimulated with either vehicle or Pam3CSK4.
Pam3CSK4 did not induce PDL1 expression in either the TLR2 and RELA knockdowns,
indicating expression of these genes is required for Pam3CSK4-mediated PDL1 induc-



Cancers 2021, 13, 4782 12 of 16

tion (Figure 5E). To further interrogate the role of microbes in PDL1 induction, we tested
whether other common commercially available infectious bacteria were sufficient to pheno-
copy S. aureus in the model. Importantly, we found that the M. tuberculosis, L. monocytogenes
and S. pneumoniae bacterial strains were all able to induce PDL1 expression, and although
dependency upon TLR2 has not been established in this system, all reportedly activate
TLR2 in other settings (Figure 5F) [26–29]. It is therefore possible that a wide variety of
bacterial strains can contribute to an immunosuppressive phenotype in cancer cells.

4. Discussion

The present study describes a screening protocol for the discovery of genes and
pathways regulating cell surface PDL1. Multiple gRNAs targeting TLR2 pathway genes
were enriched in cell populations selected for altered PDL1 expression, suggesting a role for
cancer cell-intrinsic TLR2 in PDL1 regulation. We were surprised to note that sequencing
of the PDL1low population did not nominate CD274, the gene encoding PDL1, despite the
presence of CD274 targeted gRNAs in the unsorted control library. Further investigation
would be necessary to understand the cause of this observation, but it is possible that
the CD274 targeting gRNAs did not efficiently knockout CD274 in the model, and these
data are consistent with recent shifts in the field toward using high density gRNAs to
enhance the accuracy of the approach. Despite this limitation, we chose to continue with
our analysis pipeline and focus on genes that were highly enriched in the data set.

Our data indicate an ability of HNSCC cells to upregulate PDL1 in response to TLR
stimuli, which may be present in the microenvironment. This observation is consistent
with previous studies in monocytes showing that S. aureus both activates TLR2 and induces
PDL1 expression, suggesting pathway conservation between cell types [21]. Further, our
data support the postulate that tumors arising in the context of chronic inflammation may
be likely to utilize TLR signaling to upregulate and/or sustain PDL1 expression. Numerous
studies associate PDL1-positive tumors with chronically inflamed tissue types, such as
tonsillar crypts, indicating that these tissues may represent a permissive niche hospitable
to tumorigenesis [18]. The present study suggests that engagement of TLRs on tumor cells
by bacterial ligands in the microenvironment could further contribute to immune evasion.
With numerous clinical trials currently investigating TLR agonists as cancer therapeutics,
the impact of TLR activity on immune checkpoint expression on tumor cells may be of
particular importance for clinical implementation [30].

Our finding that TLR2 ligands directly promote upregulation of PDL1 in HNSCC mod-
els supports future inquiry into the impact of oral microbiome composition on response
to immunotherapy and whether this could be influenced by tumor-intrinsic aberrant ex-
pression or activity of TLRs. A myriad of roles for specific bacterial taxa in modulating
anti-tumor immune responses have been described in melanoma, and the abundance of
certain bacteria has been associated with such metrics as survival, response to therapy,
and risk of treatment toxicities in human cancers and in murine models [31–33]. Generally,
it appears that components of the normal gut microbiome confer therapeutic response
and survival benefits, while imbalances may lead to detrimental immune inhibitory ef-
fects [31,34]. As these studies exclusively consider the gut microbiome, the local and
systemic impact of the oral microbiome in HNSCC remains unclear, and the notion that
oral bacteria may act directly on tumor cells to modulate immunogenicity has not been
thoroughly explored. Recently, periodontal bacteria Porphyromonas gingivalis and Fusobac-
terium nucleatum have been implicated in carcinogenesis [22,35]. Both are also known to
activate TLR2 [36,37], leading us to speculate that these bacteria might directly contribute
to immune evasion in tumor cells expressing TLR2 during oral carcinogenesis.

The possibility that TLR2 may facilitate immunosuppression in tumor cells is also of
particular interest due to the clinical advancement of TLR2-based treatments for cancer [38].
The role of TLR2 in cancer appears complex, confounded in part by redundancy of the
multiple TLRs and the diversity of cell types expressing them. Studies in other cancers have
demonstrated both pro- and anti-tumorigenic roles of TLR2 and other TLRs [20,39–41].
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TLR2 is upregulated on epithelial cells in many tumor types and may support tumor
growth in this context. This hypothesis led to the development of small molecule and
antibody antagonists currently in clinical trials [42–44]. Interestingly, TLR2 agonists are
also thought to suppress tumor growth by acting directly on T cells to stimulate an immune
response, and these have also been advanced to clinical trials [45,46]. Further, multiple
trials are investigating TLR8 and TLR9 agonists in combination with the biologic cetux-
imab, which targets EGFR [47,48]. Rationalizing this approach is the observation that
cetuximab can induce antibody-dependent cellular cytotoxicity in addition to inhibiting
EGFR activity and that this effect could be enhanced by activation of TLRs [48]. The results
of our study suggest that the potential for PDL1 upregulation under these conditions could
be an important consideration and may support either more scrupulous patient selection
for TLR agonist therapy or the addition of PD1 inhibition to this regimen. In any case,
understanding the therapeutic implications of TLR2 activity will require disentangling the
complex interactions between oral bacteria, cancerous cells, and the local and systemic im-
mune system, and these will likely be context-specific. In vivo modeling will be necessary
to fully appreciate the functional significance of our observations.

5. Conclusions

Collectively, our data demonstrate a mechanistic link between microbial stimuli and
PDL1 in HNSCC. Importantly, we validate a new profiling approach for the discovery of
PDL1 regulatory pathways in HNSCC and show that the NFκB pathway plays a role in
mediating signal transduction from TLR2 to PDL1. Given the recent clinical successes of
immune checkpoint inhibitors in recurrent/metastatic HNSCC, our data prompt many
new questions about the role of TLR signaling in response to therapy as well as immune
evasion early in carcinogenesis. We anticipate that future studies of the pathway will clarify
the potential to leverage the microbiome, TLR signaling, and/or NFκB pathway activity
as a biomarker of response to checkpoint inhibition or, possibly, as therapeutic targets to
improve overall survival.
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