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Abstract: Breast cancer prescreening is carried out prior to the gold standard screening using 

X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical 

breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high 

false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable 

imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review 

focuses on the various hand-held optical imaging devices that have been developed and applied 

toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and 

breast cancer imaging studies. Apart from the various optical devices developed by different 

research groups, a wide-field fiber-free near-infrared optical scanner has been developed for 

transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo 

studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary 

fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast 

cancer subjects and comparison with the gold standard X-ray mammography approach.

Keywords: diffuse optical imaging, near-infrared, hand-held devices, breast cancer, prescreen-

ing, early detection

Introduction: breast cancer statistics
One in eight women in the USA is at the risk of developing breast cancer.1 In 2013, 

approximately 232,340 new cases of invasive breast cancer developed.1 Annually, 

1.3 million new cases of breast cancer are diagnosed worldwide,2 and 1.38 million 

new cases developed in 2011 worldwide.3 Half of the breast cancer cases occur in 

economically developing countries.3 Since 1990, death rates related to breast cancer 

have dropped by 34%.1 About 60% of breast cancer deaths occur in economically 

developing countries.3 Mortality has seen a decrease in developed countries due to 

earlier diagnosis and greater treatment options.2

American Cancer Society has set guidelines for detecting breast cancer in women 

aged 40 and older, which include an annual mammogram, an annual clinical breast exami-

nation (CBE), and an optional self-breast examination (SBE).1 Details of these various 

examinations are described in the “Different modalities used to image breast cancer” section. 

Prior to the description of the different examination or imaging tools used in breast cancer, 

the physiology and stages of breast cancer are described in the following section.

Breast cancer stages and imaging
The disease of breast cancer occurs when there are malignant cancer cells in the breast 

tissue.4 The causes of breast cancer are either external or internal. External causes 
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include tobacco, chemicals, radiation, and infectious 

organisms. Internal factors are mutations that are inherited 

as well as those that occur from metabolism, hormones, and 

immune conditions. Combinations of external and internal 

factors may lead to the initiation or promotion of breast can-

cer. It may take as long as 10 years of experiencing external 

factors before the cancer is detected.5

Stages of breast cancer
The different stages of detecting breast cancer are screening, 

diagnosis, and prognosis. Screening is performing exams 

on individuals who do not show symptoms of breast cancer 

in order to determine whether there is cancer. Screening 

helps to detect the cancer early before symptoms manifest 

and prior to spreading to other tissues. Common modali-

ties used in breast cancer screening are SBEs, CBE, and 

mammograms.

Having screened for breast cancer, further diagnostic 

tests are performed to confirm the disease and also to deter-

mine if the tumor(s) observed is benign or malignant. Being 

diagnosed with breast cancer, the patient then requires other 

tests to determine the prognosis and decide on treatment 

options. Some of these tests include estrogen and proges-

terone receptor test, human epidermal growth factor type 2 

receptor test, and multigene tests. Some of the imaging 

techniques used in the diagnostic stage are ultrasonography 

and magnetic resonance imaging (MRI).6 These tests give 

specific information to help identify the stage of the tumor 

and whether it is growing rapidly or slowly. Staging is then 

performed in order to classify the cancer into a stage rang-

ing from zero to four, with four being the most advanced. 

Some imaging modalities used throughout this stage are 

chest X-rays, computerized tomography (CT) scans, and 

bone scans.4

After being diagnosed, the patient may undergo neoad-

juvant therapy or primary therapy. Neoadjuvant therapy is 

a means to decrease tumor size if the tumor is too large to 

successfully remove. Primary therapy follows neoadjuvant 

therapy or may be the first step taken after diagnosis. It 

typically consists of surgery, more specifically mastectomies 

or lumpectomies, to remove the tumor. Following primary 

therapy, there is an adjuvant therapy which aims to prevent 

the recurrence of the cancer and promote longevity of the 

patient.7 Post-adjuvant therapy patients require periodic 

monitoring to ascertain that they are tumor free. The prog-

nostic stage is monitoring using imaging modalities that 

include mammograms, breast MRI, ultrasound (US), positron 

emission tomography (PET), and/or CT scans.8

Different modalities used  
to image breast cancer
The conventional prescreening/screening imaging modali-

ties, along with the emerging imaging modalities for breast 

cancer, are given in Table 1.9–48,50

SBe and CBe
Breast cancer prescreening is carried out prior to the gold 

standard screening using X-ray mammography and/or US. 

Prescreening is typically carried out using CBE or SBEs. 

CBE is carried out by the physician for early detection of 

skin irregularities9 or abnormalities in the breast tissue. Breast 

self-examination is carried out by women to increase public 

awareness and to become familiar with appearance and feel 

of their breasts.9,10 Approximately two thirds of women older 

than 40 years undergo periodic CBE. However, there exists 

minimal evidence to measure the effectiveness of CBE in 

detecting breast cancer. The advantage of SBE is that the 

patients can become familiar with their anatomy and perform 

the screening modality in a private setting at home. While 

CBE demonstrated a maximum sensitivity of 40%–69%, SBE 

had a low sensitivity of 12%–14%.32 Furthermore, it has been 

shown in randomized control trial that SBE has no positive 

effect compared to not performing it and that it actually leads 

to false positives. In general, both CBE and SBE have high 

false-positive rates and overdiagnose, that there is a need for 

an objective imaging modality at the prescreening stage.

X-ray mammography
Breast cancer screening involves screen-film and digital 

mammography, computer-aided detection, US, and MRI. 

Screen-film mammography involves using X-rays to obtain 

images that are captured on a film, while digital mammog-

raphy captures the X-rays through digital means which can 

then be read on a printed film or electronically on a computer. 

Digital mammograms are convenient to the radiologist inter-

preting the X-ray by allowing him/her to change the values 

of brightness, contrast, and magnification; however, they are 

at a greater price to the patients. Studies have demonstrated 

screen-film mammography to have a higher sensitivity than 

that of digital film mammography. Although computer-aided 

detection is supported by a small amount of data, it can locate 

lesions, such as calcifications, on mammograms, thereby 

increasing the amount of cancer detected as well as increas-

ing the accuracy of radiologists.11 In general, mammography 

reduces the risk of dying from breast cancer by 15%–20%, 

which can lead to a greater number of treatment options.9 

The advanced applications of digital mammography include 
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tomosynthesis and contrast-enhanced digital mammography. 

In tomosynthesis, multiple digital X-ray images are obtained 

at multiple angles of the X-ray tube in order to yield 3D 

images or individual slices in dynamic cine.12–14 In contrast-

enhanced digital mammography, a contrast agent (generally 

iodine based) is injected intravenously, and multiple X-ray 

images are obtained with a high contrast-to-noise ratio, which 

in turn reduce the visibility of microcalcifications.15,16

Magnetic resonance imaging
Not commonly used for screening but more so for diagnosing, 

MRI uses a combination of a magnetic field, radio waves, and 

computer processing in order to create images. Occasionally, 

it is used for screening young women with known increased 

risk of breast cancer due to gene mutations when mammo-

grams are not ideal. A study has also shown that using MRI in 

the screening stage leads to unnecessary biopsies and further 

examinations when compared to mammography screening.11 

The disadvantages of using MRI is its high cost of about ten 

times the cost of a mammogram, its low specificity relative to 

mammograms, the need for contrast agents (in some cases), 

and the long amount of time required to image a patient, 

especially exacerbated by a patient with low tolerance to 

enclosed spaces.11 The advanced applications of MRI for 

breast cancer imaging include diffusion and perfusion imag-

ing, proton magnetic resonance spectroscopy (MRS), and MR 

elastography. While the diffusion perfusion imaging offers 

information related to tissue microstructure from focusing on 

water protons, perfusion imaging follows the flow of blood 

to show the microvasculature.17 Proton MRS measures the 

resonance of protons to provide a spectrum in order to identify 

choline, a biomarker for cancer. In MR elastography, elec-

tromechanical drivers vibrate the breast to generate acoustic 

shear waves that are further imaged by MRI.12

Ultrasounds
USs have recently been approved by the Food and Drug 

Administration to aid in screening of breast cancer in patients 

with dense breast tissue, apart from its application as a 

diagnostic imaging tool. US employs sound waves to create 

images of the tissue features.18 The advantages of US are that 

it can differentiate benign and malignant masses as well as 

cysts and solid masses. The main drawback is that its effec-

tiveness varies depending on the skill of the US technician. 

US also has a greater amount of false positives compared to 

mammography, up to 12.9% compared to 6%, respectively.11 

In the clinic, the most common mode of US imaging is to 

obtain 2D images from B-mode scanning. In certain cases, 

compound imaging is carried out by combining multiple 

US images into one. Although compound imaging is better 

in quality than B-mode imaging, it suppresses the shadows 

that can be used to determine malignancy.12 On the other 

hand, Doppler US uses the Doppler effect to track blood 

flow in order to find malignant tumors through their neoan-

giogenesis.19,20 The advanced applications of US imaging 

at preclinical stage include sonoelastography (SE), tissue 

harmonic imaging, and US spiral computed tomography. 

While in SE, US images of the breast are obtained during its 

displacement, frequencies are filtered appropriately in tissue 

harmonic imaging in order to improve the contrast. US spiral 

CT is a combination of US and CT imaging used to obtain 

volumetric 3D images of the breast, although it can miss 

tumors located proximal to the chest wall.21

Nuclear imaging
Nuclear imaging yields functional images based on molecu-

lar properties, unlike the anatomical images as in X-ray, 

US, and MRI. Also, this technique involves radiation and 

is expensive, requires little or no breast compression, and 

shows promise in detecting cancer, especially in high-risk 

patients.12 In radio-immunoscintigraphy, tumor-associated 

antigens are targeted by an injected radiopharmaceutical 

agent, with antigen expression differing between normal 

and cancer cells. Scintimammography (SMM) is an imaging 

technique used in the diagnostic phase. It uses nonspecific 

radionuclides to identify malignant lesions. Usually, it follows 

a mammogram and identifies the lesions found in the mam-

mogram. It is also a useful postprimary and post-adjuvant 

therapy because it identifies tumor changes and recurrence 

as well as necrosis in the specific area.22 SMM has higher 

specificity than MRI, which makes it clinically applicable to 

detect lesions larger than 1 cm in diameter. PET, generally 

using 18F-fluorodeoxyglucose, uses glucose metabolism to 

detect cancer, especially in detection of malignancies and 

metastatic disease in solid organ tumors.12 The advanced 

applications of nuclear breast imaging include positron emis-

sion mammography (PEM) and PET/CT. PEM focuses on 

imaging only the breast tissues unlike the entire body as in 

PET imaging, and serves as the best screening tool in high-

risk patients.23 PET/CT is a multimodal imaging approach 

that combines PET (for functional information) and CT (for 

anatomical information).24

emerging modalities (experimental stage)
Some of the emerging technologies for breast cancer imag-

ing include thermography, microwave imaging, electrical 
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impedance imaging spectroscopy (EIS), Raman spectroscopy, 

and diffuse optical imaging (DOI).

Thermography is another imaging technique used in 

the diagnostic phase. It identifies vascular and temperature 

changes noninvasively and without radiation.25 A study per-

formed by Sterns et al has proven this modality to result in a 

large amount of false positives and false negatives. The study 

also reported inconsistent interpretation of the thermograph.26 

Another study states thermograph findings to be more evi-

dent of the metabolic rate and expansion state as opposed 

to its actual size and depth. The advantage of demonstrating 

metabolic and growth rate is that a prediction can be made 

that determines risk of the patient. For instance, one study 

reports that 38% of false-positive patients develop breast 

cancer within 4 years.10

EIS is also used in the diagnostic phase of breast cancer. 

This modality measures local dielectric properties of cancer 

cells, including electrical conductance and capacitance. This 

is performed by applying current to the patient with varying 

frequency, current, flow, and voltage. The values gained from 

cancer cells are different than those of normal cells. A study 

performed by Malich et al shows a sensitivity of 80.5% and 

a specificity of 64.7%. The features in the patient’s anatomy, 

such as scars, hairs, and bone, can result in false positives. 

A high amount of false positives along with an effectiveness 

that varies with the conductor of the EIS results in limited 

clinical use.27 In a review article by Vreugdenburg et al, it was 

found that only one study used EIS for screening, whereas 

the other studies focused on women with already diagnosed 

breast cancer. The study focusing on screening did not use a 

valid reference test to ascertain if the patients were healthy 

or had cancer. The study did not recommend the use of EIS 

for screening due to lack of data regarding the ability of EIS 

to detect cancer in asymptomatic women.28

Microwave imaging employs microwave or millimeter 

waves to image dielectric bodies.29 This modality offers low 

contrast between healthy fibroglandular tissues, where the 

majority of breast tumors occur, and malignant tumors pose 

as a challenge for microwave imaging of the breast tissue. 

The challenges of high tissue attenuation resulting in limited 

depth of wave penetration, and loss of resolution with higher 

penetration depth limit its immediate clinical translation for 

breast cancer.

The various other emerging modalities (not described 

here) include DOI, Raman spectroscopy, diffraction 

techniques (eg, diffraction-enhanced imaging and small 

angle X-ray scattering), compression and palpation method 

(via piezoelectric sensing), X-ray diffraction of hair, breath 

detection using gas chromatography and mass spectroscopy, 

and canine scent detection.12

DOI: physics and breast  
cancer application
In the past three decades, DOI is emerging as a breast cancer 

imaging device with applicability at both diagnostic and 

prognostic stages of breast cancer imaging. DOI uses near-

infrared (NIR) light between 650 nm and 900 nm to image 

the differences in the blood oxygenations between the tumor 

and normal breast tissues. Based on the nature of the optical 

imaging instrument, its applicability for early-stage breast 

cancer detection is also attempted by various research groups, 

as described in the following sections.

Wavelengths of light from 650 nm to 900 nm are mini-

mally absorbed and preferentially scattered upon interaction 

with tissue allowing for deeper light penetration than possible 

at other optical wavelengths (Figure 1).51 The technology that 

uses light in this NIR wavelength region to noninvasively 

image deep tissues is called as NIR optical imaging (or DOI). 

The low absorption occurs due to the main absorbers in physi-

ological tissue, that is, water and oxy- and deoxy-hemoglobin, 

which absorb less light than at other optical wavelengths.52 

The difference in optical properties (ie, absorption and scat-

tering of the light) between normal and diseased tissues is 

used to characterize tissues and detect abnormalities.

Deeper tissue penetration allows optical imaging to be 

implemented as an imaging technology for breast cancer 

detection, diagnosis, and/or prognosis. Optical imaging 

provides a functional imaging approach with decent spatial 

resolution and contrast. Optical imaging also requires less 

imaging time compared to MRI, and is also less expensive. 

The combination of benefits offered by optical imaging in 

terms of less imaging time (,1 minute), good spatial and 

excellent temporal resolution, good contrast (from functional 

imaging), and relatively inexpensive instrumentation suggests 

that optical imaging is potentially an emerging technology for 

future clinical applications in the areas of breast cancer imag-

ing, brain mapping, and any noninvasive body tissue imaging. 

Additionally, the source powers employed during optical 

imaging are within the safe limits (typically ,50 mW), and 

NIR light is non-radiative in nature.

Optical imaging and breast cancer
Optical imaging has been utilized toward various aspects of 

clinical breast imaging: i) measurement of optical and physi-

ological properties of healthy breast tissue; ii) detecting the 

presence of abnormal tissue (ie, tumors); iii) distinguishing 
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between benign and malignant tumors; iv) monitoring 

response to neoadjuvant chemotherapy; v) sentinel lymph 

node mapping; and vi) tomographic imaging of the entire 

breast.54 These breast imaging applications in some cases 

involved the use of external fluorescent contrast agents to 

improve the optical contrast of the diseased regions from the 

normal breast tissue.55,56

Optical imaging uses NIR light as a continuous-wave 

(CW), frequency (frequency domain, FD), or pulse (time 

domain) signals. In CW imaging, the source light intensity 

remains constant in time and attenuates as it propagates through 

the tissue due to absorption and (indirectly) to scattering. FD 

imaging uses time-dependent intensity-modulated light that 

becomes attenuated and phase shifted as it propagates through 

the tissue. Time-domain imaging uses time-dependent (pico- 

or nanosecond) pulses of light that broaden and attenuate as 

it propagates through the tissue. Different types of optical 

devices developed for breast cancer detection employing 

one or more of these measurement techniques have been 

developed toward DOI of breast tissue. The most commonly 

employed sources in these devices include laser diodes and 

light-emitting diodes (LEDs), and the detectors being sili-

con photodiodes, photon multiplier tubes, avalanche photo 

diodes, or CCD cameras. The optical devices using one of 

these sources/detectors can be grouped into three major kinds 

of devices: bed-based imagers, parallel plate imagers, and 

hand-held imagers. The hand-held imagers54,57–94 are capable 

of only reflectance imaging, while parallel and bed-based 

imagers are capable of transillumination and reflectance imag-

ing. Hand-held imagers are generally smaller, less expensive, 

and portable devices which have the benefit of being placed 

easily by a technician. The small device ensures that all 

breast shapes and sizes can be imaged with minimal patient 

discomfort and lack of tissue compression. Bed-based imag-

ers95–105 are a category of imagers which require a subject to 

lie down and suspend the breast tissue to be imaged in special 

imaging bins or enclosures, which facilitate data collection 

and 3D tomographic imaging. Parallel plate imagers106–112 

are similar to bed-based imagers, but instead of relying on 

circular bins, they implement compressive plates similar to 

X-ray mammography systems. This reduces the exclusion of 

subjects by reducing their tissue thickness via compression. 

While the focus of the bed-based and parallel plate imagers 

has been predominantly for 3D tomographic imaging of 

breast cancer, the hand-held optical devices have focused on 

spectroscopic information of the breast at both the diagnostic 

and prognostic stages.

In general, optical breast imaging in the clinic has not 

been systematic, and various research groups have focused 

on technological developments of their devices.56 When 

focusing only on clinically oriented optical mammography 

studies with approximately 2,000 women, it was observed 
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that ∼85% of breast lesions are detectable.56 Additional 

dimensionality to the optical mammography is provided by 

integrating and co-registering the functional information 

of diffuse optical spectroscopy and imaging with X-ray 

mammography and MRI, which provide structural informa-

tion or vascular flow information, respectively. One of the 

goals of the optical breast imaging research community is 

to develop DOI platforms that can be used as stand-alone 

devices or in conjunction with MRI, mammography, or US. 

These platforms would potentially assist in detecting the 

breast cancer disease in mammographically dense tissues, 

distinguishing between malignant and benign lesions, and 

understanding the impact of neoadjuvant chemotherapies. 

More recently, hand-held optical devices are developed 

with a focus on early-stage detection of breast cancer as a 

first-response device.

Optical imaging for breast 
prescreening
Role of optical imaging  
in breast prescreening
Prescreening of the breast typically involves: i) breast self-

examination – a recommendation for all women to become 

familiar with both appearance and feel of their breasts and 

report any changes to their physician; and ii) CBE – an exami-

nation performed by a clinician in which he/she utilizes the 

pads of the fingers to feel the breasts, assessing the shape, 

texture, and the presence of any bumps. Conventionally and 

clinically used screening approaches include mammography, 

US, and MRI,11 as described in the Introduction section. 

Optical imaging is an emerging prescreening or screening 

tool in the area of breast cancer.113

Various research groups have developed hand-held opti-

cal devices (or scanners) for breast cancer imaging,54,57 for 

detection, diagnosis, and/or prognosis. The optical devices 

that focus on early detection (for potential prescreening) of 

breast cancer are tabulated in Table 2 and shown in Figure 2. 

The concept of developing portable, low-cost, hand-held opti-

cal devices for early-stage detection of breast cancer began 

in the late 1990s64 by Tromberg’s research group. Tromberg’s 

device (Device #1) employed laser diodes (of multiple 

wavelengths) and avalanche photodiodes (as detectors) to 

obtain FD-based optical spectroscopic information from 

breast tissues and compare the optical properties of a normal 

breast with that of the benign lesions. Device #1 (Table 1) 

was also used in several studies (for a total of ∼100 subjects) 

to compare healthy and tumor-containing breast tissue.71,72,75 

The results showed differences in the optical properties of the 

tissue based on subject age, tumor size, and tumor pathology. 

The second device (Device #2) developed by researchers 

at University of California Irvine was also based on FD 

diffuse optical spectroscopic imaging using laser diodes 

(at multiple wavelengths) and avalanche photodiodes. Based 

on the measured differences in the absorption coefficients 

between the diseased (ie, tumor) and normal breast tissue, 

the device detected the presence of a lesion in in vivo human 

breast tissue.77–79 The only other FD-based optical device 

(Device #6) was that developed by Zhu and her group at 

University of Connecticut.61,87,114 Unlike other hand-held 

optical devices, Zhu’s device performed multimodal optical 

and US imaging to obtain 3D diffuse optical tomographic 

imaging of the breast. This device imaged the benign and 

malignant breast lesions in human subjects.

Many hand-held optical devices (Devices #3–5, #7–10) 

were based on CW imaging mode. Chance and his group 

developed two portable devices (Devices #3 and #4) of dif-

ferent source–detector configurations and each using LEDs 

as sources and silicon photodiodes as detectors.59,80 Device #3 

was used in an extensive study to show the differences in the 

biochemical and physiological properties of breast tissue con-

taining growing cancers, compared to corresponding normal 

tissue in the contralateral breast.80 In a 6-year study on 116 

patients with 44 confirmed malignancies, they reported the 

ability to distinguish cancerous from noncancerous breast 

tissue with a sensitivity of 96% and specificity of 93%. The 

second device from Chance’s group (Device #4) employed 

two LEDs that were out of phase in order to generate destruc-

tive interference signals.59 The detected signal at the detector 

placed mid-way between the two sources provided a null 

signal, which shifts in the presence of any abnormality. 

This principle was used in detection and 2D localization of 

any breast lesions/abnormalities.59 Another spectroscopic-

based hand-held device (Device #5 in Table 2), which used 

laser diodes as sources, was used to detect breast cancer in 

50 females who have been indicated of suspected breast 

cancer from X-ray mammography.83 The device used in these 

studies (Device #5, P-Scan Imager) was developed by Vioptix 

Inc. as a CW-based NIR spectroscopic device that provides 

real-time 2D mapping of blood oxygen saturation and total 

hemoglobin. From their preliminary studies, the device 

provided 92% diagnostic sensitivity and 67% diagnostic 

specificity in detecting ductal carcinoma.83 Another research 

group from Ohio State University, Xu et al, also used the 

same P-Scan imager (Device #8 in Table 2) for phantom and 

in vivo human subject studies to dynamically characterize 
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the tissue in response to dynamic compression stimuli.60 

The device demonstrated that it can detect tissue optical, 

mechanical, and physiological changes under the dynamic 

loading condition, although requiring further evaluation for 

breast cancer studies. One of the latest devices employing 

laser diodes as sources was made wireless.115 However, to 

date, only liquid phantom studies using Device #7 were 

performed to demonstrate the measurements of HbO, HbR, 

and scattering properties of the tissue.

On the contrary to the NIR-based hand-held devices, a 

breast illuminator employed visible red light (617 nm wave-

length) to transmit the breast tissues and visualize the optical 

contrast using the naked eye.116 In a study at the National 

Cancer Institute at Cairo University, BreastLight (Device #9) 

was employed on 310 women, and the results were compared 

to X-ray mammography and histopathology (when suspicious 

cases were found in mammography). Breast illumination 

using BreastLight device and X-ray mammography were 

concordant in 277/310 cases (89.4%). The breast illumination 

device provided a sensitivity of 93%, specificity of 73.7%, a 

positive predictive value of 91.4%, and a negative predictive 

value of 77.8%, demonstrating the device as a potential breast 

cancer prescreening tool.

At our Optical Imaging Laboratory at Florida Interna-

tional University, a portable hand-held wide-field NIR optical 

scanner (NIROS) (Device #10) was developed for DOI of 

breast tissues via transillumination mode of imaging.117 The 

details of this device and the preliminary in vivo studies are 

described in the following section.

Our ongoing efforts in breast 
prescreening using optical imaging
Most of the hand-held optical imagers available to date, 

whether for prescreening/screening or diagnostic/prognostic 

applications, employ optical fibers to illuminate/detect NIR 

signals. The use of optical fibers allows precise launching 

and collection of NIR optical signals at point locations on 

the tissue surface. The intensity and location of these source 

and detector points using optical fibers when measured allow 

3D tomographic imaging. However, the use of optical fibers 

can also be disadvantageous. Many optical fibers or fiber 

bundles are required to enhance the spatial resolution of 

A E H

B

C

D

F

G

I

Device #1 Devices #5, #8

Device #2
Device #6

Device #10

CMOS
camera

Device #3

Device #4

Device #7

Sources

Detectors
Ultrasound

Transillumination source

Device #9

Figure 2 Different hand-held probes developed for early detection of breast cancer, showing their source–detector layouts and the actual device.
Note: The source-detector configuration and the actual device are shown for each of the devices (A-I) in Table 2. (A) Adapted from Tromberg BJ. Optical scanning and breast 
cancer. Acad Radiol. 2005;12(8):923–924, with permission from elsevier.62 (B) ©2005 ieee. Reprinted, with permission, from No KS, Chou PH. Mini-FDPM and heterodyne 
mini-FDPM: handheld non-invasive breast cancer detectors based on frequency-domain photon migration. IEEE Trans Circ Syst I Reg Papers. 2005;52(12):2672–2685.77  
(C) Adapted from Chance B, Nioka S, Zhang J, et al. Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, 
two-site study. Acad Radiol. 2005;12(8):925–933, with permission from elsevier.138 (D) Adapted with permission from Chance B, Zhao Z, wen S, Chen Y. Simple ac circuit for 
breast cancer detection and object detection. Rev Sci Instrum. 2006;77:064301. Copyright ©2006, AiP Publishing LLC.59 (E) Adapted with permission from Xu RX, Qiang B, 
Mao JJ, Povoski SP. Development of a handheld near-infrared imager for dynamic characterization of in vivo biological tissue systems. Appl Opt. 2007;46(30):7442–7451.59 
(F) Adapted from Zhu Q, Huang M, Chen N, et al. Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases. 
Neoplasia. 2003;5(5):379–388, with permission from elsevier.114 (G) Adapted from Flexman ML, Kim HK, Stoll R, Khalil MA, Fong CJ, Heilscher AH. A wireless handheld probe 
with spectrally constrained evolution strategies for diffuse optical imaging of tissue. Rev Sci Instrum. 2012;83:033108. Copyright ©2012, AiP Publishing LLC.115

Abbreviation: CMOS, complementary metal oxide semiconductor.
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the imaging system, but at the cost of increased bulkiness, 

reduced flexibility (especially in hand-held devices), and 

instrumentation expense. In recent years, a few research 

groups have developed fiber-free NIR imaging systems using 

wide-field detectors (eg, CCD or complementary metal oxide 

semiconductor [CMOS] camera) for noncontact imaging.118–137 

These imagers employ either reflectance or transmittance 

mode to image tissue phantoms, blood vessels, and/or veins of 

the skin surface. Unlike the fiber-based devices (with contact) 

that can image deep tissues as in breast imaging, the fiber-free 

noncontact optical devices developed to date have been used 

for sub-surface imaging (#1 cm deep).

In our Optical Imaging Laboratory, a fiber-free hand-

held NIROS has been developed toward deep tissue imaging 

(.1 cm target depth) in both reflectance and transmittance 

mode. Preliminary in vivo breast imaging studies using 

the scanner as a noncontact device were performed to deter-

mine its deep target detectability and its potential applicabil-

ity as a breast cancer prescreening tool.

instrumentation
The fiber-free noncontact hand-held NIROS comprises a 

hand-held probe (Figure 2, Device #10), a controller box, 

and a computer with custom-developed image acquisition/

processing toolbox. The hand-held probe (weighing ,1 lb) 

consists of a 710 nm LED source light for area illumination 

and an NIR-sensitive CMOS camera for area detection. The 

LED source encased in a heat sink is driven by an LED 

driver (placed in the controller box) that controls the radiat-

ing power of the source. The LED driver and the CMOS 

camera are synchronized in the data acquisition timing via 

a microcontroller unit, and both the source and detector are 

powered by the computer’s USB port. The diffuse reflected/

transilluminated NIR signals from the tissue surface are 

detected by the camera after the signals have been filtered 

using a 645-nm long-pass optical filter and focused using an 

8.5 mm focusing lens. A MATLAB-based imaging software 

was developed in order to automate the data acquisition, data 

storage, and data processing. For the breast imaging studies, 

two transparent parallel acrylic plates were used to hold the 

breast tissue during transillumination-based imaging using 

NIROS (Figure 3).

in vivo breast imaging  
studies using NiROS
The Florida International University IRB-approved studies 

imaged ten healthy female subjects over the age of 21 years 

with no known history of breast cancer. The breast imaging 

studies were performed with the breast tissue placed in 

between the two transparent plates to provide for transmission 

imaging mode. As seen in Figure 3, the top plate is adjustable 

in order to perform studies with or without applied pressure 

and to accommodate different breast tissue sizes. The detector 

is placed above the top plate, and the LED source is placed 

beneath the bottom fixed plate. A 0.46 cm3 target was filled 

with a solution of 0.8% India ink in Liposyn in order to cre-

ate a tumor-like agent with high-absorption properties. The 

target was positioned beneath the breast tissue and above 

the bottom plate and moved to different locations (noted by 

clock positions) throughout the study.

The goal of the studies was to qualitatively determine 

the ability of NIROS to detect the targets when both the 

applied pressure and target locations were varied. Images 

were acquired with and without pressure by adjusting the 

top moveable plate and also by moving the target to vari-

ous clock locations in order to assess NIROS’s capacity to 

determine where the targets were placed. The studies were 

performed in transmission mode with the source below the 

tissue and the detector above the breast tissue. The images 

were acquired without external light; only the laptop was on 

with the screen brightness at the minimum setting, in order to 

minimize noise. The power of the LED was measured several 

times throughout the study, and the CMOS exposure time was 

adjusted for each subject as well as the focus.

Image processing was carried out using a custom-

developed MATLAB-based software. The first step was to 

Moveable plate

Fixed plate

NIR
Detector

Breast tissue

Source

Target

Figure 3 Setup for breast imaging studies consisting of the breast tissue placed in 
between two transparent plates.
Notes: A detector is placed above the top plate, the source is placed beneath the 
bottom plate, and a target is placed beneath the breast tissue and above the bottom 
plate.
Abbreviation: NiR, near-infrared.
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co-register the raw NIR images, so that the two images are 

aligned on the same coordinate system. This was followed 

by subtraction of the NIR image of the breast tissue obtained 

without the target from the NIR image obtained with the 

target present. The regions outside the breast tissue were 

masked (or cropped) in order to improve the image contrast 

by removing the noise. Finally, minimum and maximum pixel 

values were set by the user in order to distinguish areas of 

increased or decreased absorption in the image, allowing 

for the recognition of the target with improved contrast. The 

targets were seen as areas with increased absorption.

Experimental results from two different subjects are shown 

below in Figures 4 and 5. Figure 4 shows a set of images from 

subject #1’s left breast at a constant pressure. Figure 4B has 

the target, and Figure 4A does not have a target. Figure 4C is 

the final image after data processing including co-registration, 

subtraction, and masking. The region of increased absorption 

in the final image reveals where the target was placed.

Figure 5 also shows a set of images from subject #2 with 

applied pressure and with the target in the 6 o’clock location. 

The target can be distinguished in the last picture (Figure 5C) 

as the region in green in the bottom portion of the breast. 

It was also noticed that when the target was placed furthest 

away from the source, as in Figure 5, the target was still 

detectable due to its higher absorption. The greatest distance 

between the target and the top plate at which a target was able 

to be detected was at 8.8 cm. Hence, while the raw images 

do not reveal information about the location of the target, the 

target’s location can indeed be seen in the final image once 

image processing has been performed.

The preliminary in vivo studies on the normal breast tis-

sues with a superficially placed target in the intramammary 

fold have shown that an increased absorption was clearly 

observed from the target site (up to 8.8 cm deep) when 

(maximum comfortable) pressure was applied. To date, 

an area illumination and area detection-based NIR device 

have demonstrated only sub-surface imaging (1 cm or less). 

NIROS has demonstrated detection of deep targets using area 

illumination/detection approach, along with post-processing 

techniques to improve the target detection greater than 8 cm 

deep. Although the images cannot precisely locate the target 

in 2D, their detected location was close to the true clock 

location as seen in Figures 4 and 5.

In an actual breast cancer case, NIROS may translate to 

imaging the contralateral breast and comparing the differences 

in the absorption across the two tissues, via symmetric clock-

wise imaging of the breast (as in an US approach). Currently, 

work is carried out to image both the left and right breast tis-

sues and compare the two, as there are structural differences 

between the two. These structural differences can lead to differ-

ences in NIR images (from physiological differences). Hence, 

understanding the hemodynamic differences between normal 

left and right breasts can help differentiate between the breast 

abnormalities with respect to the contralateral breast (acting as 

a reference) in the future. There are ongoing efforts to perform 

extensive in vivo studies under various experimental condi-

tions to determine the capabilities of the noncontact hand-held 

NIROS in detecting smaller and deeper targets.

Studies in the past have revealed that only half of the 

insured women over the age of 40 are claiming annual 

mammogram screenings, despite medical recommendations 

endorsed across the USA and the world. Reasons for noncom-

pliance suggested from various studies include discomfort 

during the exam, concern over radiation exposure, access 

to facilities, inconvenience/lack of time, embarrassment/

cultural barriers, and denial. Thus, to improve breast cancer 

screening compliance, a need exists for a safe, comfortable, 

accessible, and convenient breast cancer prescreening tool 

to better triage the subjects for early detections/treatment 

options. There is a potential for a functional imaging tool 

A B C
60

40

20

0

−20

−40

−60

Figure 4 Transmitted NiR optical images of the left breast from subject #1 that were captured at a constant pressure applied on the breast (in all images).
Notes: (A) NiR image was captured without pressure and without target. (B) NiR image was captured without pressure and with the target placed at the location indicated 
by the black hollow circle at 12 o’clock. (C) Post-processed NiR image after co-registering, subtracting, and masking. The black hollow circle in (B and C) depicts the 2D 
location of the target at 12 o’clock position in the intramammary fold of the left breast.
Abbreviation: NiR, near-infrared.
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to provide additional information to the CBE or SBEs at 

the prescreening stage that may provide more informa-

tion to the clinicians. Although the hand-held noncontact 

NIROS cannot determine the accurate location of a target, 

as other 3D tomography-based optical imagers, it may have 

the potential to detect the presence of any abnormalities 

(or target(s)) as an initial assessment to breast prescreening. 

The ability to perform deep tissue imaging using a portable 

hand-held NIROS allows for in vivo breast studies. Following 

the extensive in vivo studies on normal subjects, studies 

will be performed on breast cancer subjects to validate the 

above-stated hypothesis and determine the capabilities of the 

device for breast cancer prescreening. In this effort, NIROS 

is currently modified to allow hemodynamic imaging (using 

a dual-wavelength source system) such that the changes 

in oxy- and deoxy-hemoglobin from breast tissues can be 

determined apart from changes in absorption alone.

Conclusion
In this review, the existing and clinically applied breast can-

cer prescreening tools and screening imaging modalities are 

described. With a need for a systematic prescreening or early 

detection of breast cancer, the application of optical imaging 

modality is described. Although various research groups have 

developed many optical imaging devices for detection, diag-

nosis, and prognosis of breast cancer, a few of these devices 

have focused on early detection or prescreening. While a few 

of these hand-held optical devices have performed in vivo 

clinical studies on breast cancer subjects, there still remains 

extensive work to be performed to assess optical devices as 

potential future breast prescreening devices.
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