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Abstract
Purpose of Review Artificial intelligence (AI), machine learning, and technology-enabled remote patient care have evolved
rapidly and have now been incorporated into many aspects of medical care. Transplantation is fortunate to have large data sets
upon which machine learning algorithms can be constructed. AI are now available to improve pretransplant management, donor
selection, and post-operative management of transplant patients.
Recent Findings Changes in patient and donor characteristics warrant new approaches to listing and organ acceptance practices.
Machine learning has been employed to optimize donor selection to identify patients likely to benefit from transplantation of
higher risk organs, increasing organ discard and reducing waitlist mortality. These models have greater precisions and predictive
ability than currently employed metrics including the Kidney Donor Profile Index and the expected posttransplant survival
models. After transplant, AI tools have been developed to optimize immunosuppression management, track patients adherence,
and assess graft survival.
Summary AI and technology-enabled management tools are now available throughout the transplant journey. Unfortunately,
those are frequently not available at the point of decision (patient listing, organ acceptance, posttransplant clinic), limiting
utilization. Incorporation of these tools into the EMR, the Donor Net® organ offer system, and mobile devices is vital to ensure
widespread adoption.
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Background

Artificial intelligence (AI), broadly defined, is replication of
human logic, thought, and processing using machines.
Continual advancements in computer processors, logic algo-
rithms, and software increase computing power exponentially.
The ability for artificial intelligence and machine learning sys-
tems to integrate data from multiple sources and apply continu-
ously learning algorithms in real time make AI systems

appealing in multiple fields, including medicine. Regulatory
changes and medical advances in the past two decades have
driven massive increases in the amounts of data generated dur-
ing patient care. The advent of electronic medical records has
made this data increasingly accessible. Specifically, in the field
of organ transplantation, access to field-defined data for organ
offers, candidate characteristics, and long-term clinical out-
comes has allowed the development of both retrospective risk
adjustment models and prospective predictive analytics (Table 1
and 2). Incorporation of data from electronic medical records,
outpatient immunosuppression monitoring, and novel monitor-
ing programs utilizing the patient’s personal technology have
increased data available for analysis exponentially. Although
in its infancy, machine learning can integrate and process data
from multiple inputs and apply evidence-based computational
tools to guide clinical decision-making. The goal of this review
is to highlight the areas relevant to solid organ transplantation
where artificial intelligence and machine learning have potential
to improve outcomes and access to transplant.
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Pretransplant Evaluation of Donors
and Recipients

Patients in the pretransplant period undergo extensive clinical,
social, and financial evaluations for organ transplantation.
Within this framework, current evaluation and listing criteria
are based on “clinical judgment” and generalized heuristics.
Based on the landmark paper byMerion et al. in 2005, the use
of “extended criteria donors (ECD),” defined as donors over
the age of 60 or over the age of 50 with a history of hyperten-
sion, creatinine > 1.5 mg/dL, or death from stroke, was found
to be beneficial for older patients and those patients living in
areas with longer waiting times [1]. However, in the interven-
ing 15 years, the field has grown more complex, as donors
have more adverse characteristics and recipients now have
greater burdens of comorbidities. Consequently, not all pa-
tients benefit from all kidneys, specifically marginal and
higher risk organs [2]. Developing more sophisticated risk
calculators by using both recipient, donor, and center-
specific characteristics to provide a personalized risk assess-
ment to each patient can maximize utilization of recovered
organs, decrease discard, and lower waitlist mortality [3•].

In 2009, the Kidney Donor Risk Index was introduced to
quantify the risk graft failure based upon clinical characteris-
tics, adding precision to the prior ECD/standard donor dichot-
omy [4]. Utilizing ten donor-specific, and four transplant-
specific factors, Rao et al provided a robust estimate of the
relative risk of posttransplant graft failure compared to a ref-
erence donor. Currently, a variant of KDRI called the Kidney
Donor Profile Index (KDPI) is used to assess the “quality” of a
kidney. By removing the transplant specific factors from the
KDRI, and normalizing the data to a percentile score ratio,
KDPI provides a metric to judge “quality” of the offered kid-
ney against the entire population of offered kidneys [5].
Organs with a KDPI ≥85%, also known as “High KDPI”
organs, are associated with reduced 5-year survival and great-
er risk of graft failure compared to kidneys with KDPI <85.
While these data provide some increased clarity, there is a risk
of adverse selection and labeling of organs which may con-
tribute to excess organ discard [6, 7].

Recipient longevity after transplant has been modeled as
the estimated posttransplant survival (EPTS) score. Utilizing a
recipient’s length of time on dialysis, current diabetes diagno-
sis status, history of prior organ transplants, and age, the EPTS
score provides a percentile score, with lower scores expected
to experience more years of live from kidney transplant [8]. A
recipient’s EPTS score has significant implications for organ
offers, as the current allocation system assigns priority for the
top 20% of kidneys (as denoted by KDPI <20) to patients with
an EPTS of ≤20 [5]. While patients with shorter expected
EPTS may derive more limited duration of benefit from kid-
ney transplant, many will experience improved quality of life
and reduced burden of disease. One major limitation to

effective evaluation of donor-recipient interactions is the cur-
rent metrics utilized to evaluate recipient and organ quality.
For example, the EPTS model has a C-statistic of 0.697 and
only uses 4 characteristics to evaluate potential recipients.
Other statistical models derived using machine learning show
a higher 5-year concordance statistic than the published EPTS
model (0.724 vs 0.697) and have the advantage of integrating
donor and recipient criteria in the model [9]. Although numer-
ically small, an increase in concordance statistic can have
significant impact on the allocation of organs nationally.
Additionally, this analysis demonstrated that machine learn-
ing approaches can effectively identify the differential impacts
of clinical factors in various subpopulations of a clinical
model.

Machine learning algorithms have been utilized to better
define the benefit, defined as the difference between survival
on dialysis and survival with transplant, of specific offers for
individual candidates incorporating EPTS, KDPI, and waitlist
characteristics. Bae et al analyzed 120,000 patient records in
the Scientific Registry of Transplant Recipients (SRTR) data-
base, and applied machine learning algorithms identify pa-
tients likely to benefit from a specific donated kidney [3•].
The authors suggest that some patients have a higher proba-
bility of 5-year survival by waiting for a lower KDPI kidney
rather than taking a higher risk donor offer early given their
low risk of death on dialysis (Figure 1). Conversely, even high
KDPI organs result in improved survival and measurable ben-
efit for patients with a high risk of death on dialysis in regions
with prolonged waiting time. Easy access to a more precise
estimate of the benefit of transplant providers provides an
opportunity to make a more nuanced assessment of patient
and organ-specific benefit and assist patients in making in-
formed choices within the current severe shortage of trans-
plantable organs. The practical utility of this tool is shown in
Figure 1, whereby a patient with an EPTS of 35 is offered two
different organs, one of KDPI 50 and one of KDPI 90. The
Hopkins transplant calculator takes both EPTS and KDPI and
incorporates them into a conferred survival advantage repre-
sented by a numerical increase in percentage points. The mod-
el is available at http://www.transplantmodels.com/kdpi-epts.

Procurement frozen section biopsies are frequently
performed to evaluate pathologic changes in high
KDPI kidneys, despite evidence that the current system
of interpretation by local on-call pathologists provides
inconsistent data and increases the rate of inappropriate
organ discard [10]. Given the complexity of interpreta-
tion of these biopsies and the inherent time limitations,
use of AI to interpret whole-slide multilevel images
shows promise in early trials [11, 12]. Rapid evaluation
and turnaround of kidney and liver biopsies using ma-
chine learning can improve the reliability data available
at the time of organ offers [13, 14]. Machine learning
has been shown to have similar sensitivity and
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specificity in identifying T-cell-mediated rejection
(TCMR) and antibody-mediated rejection (AMR) when
compared to expert opinion [11]. Whole-slide imaging
has also been shown to have promise in standardizing
renal fibrosis quantification [15]. Having fast access to
reliably interpreted kidney biopsy data not only has im-
plications for organ acceptance but may eventually re-
duce diagnostic uncertainty after transplant, by more
accurate identification of rejection and recurrent disease.

Technology-enabled algorithms also have recently
been introduced by UNOS to more precisely target of-
fers to centers most likely to use them. In an effort to
increase surgeon satisfaction and decrease unwanted or-
gan offers, UNOS has piloted the Organ Offer Explorer
tool, whereby new organ offers are compared to prior
accepted organs of the surgeon and only organs consis-
tent with prior behaviors are convey to the transplant
program [16]. This technology-assisted decision tool re-
quires data on previous acceptance behavior for trans-
plant centers and surgeons to prioritize organ offers and
reduce burden, both of which are needed in light of re-
cent kidney allocation reforms which substantially in-
crease the complexity of organ placement [17]. Thus,
given the enhanced computational power, AI-enhanced
scoring systems can extend KDPI and EPTS by incorpo-
rating additional factors such as anticipated cold ische-
mic time and pulsatile perfusion parameters into the as-
sessments of donor quality and cardiac disease, frailty,
and socioeconomic status into recipient scoring. These
novel measures would enhance the precision of survival
prediction tools.

Other machine learning assist tools exist to help inform
surgeons regarding novel situations and their impact on
transplant. In light of the recent COVID-19 pandemic, a
machine learning model to identify scenarios of the benefit
or harm from kidney transplant during the pandemic was
reported [18•]. This study highlights how machine learning
technologies have potential to address rapidly evolving
clinical and social situations to provide “evidence-based”
care without the benefit of extensive clinical trials [4]. In
conclusion, in the pretransplant space, AI offers the

potential to improve candidate evaluation donor accep-
tance and patient education.

Posttransplant Management

Following transplantation, recipients require an initial period
intensive monitoring followed by routine testing for the du-
ration of their transplant. Attempting to identify post-
operative complications early, manage immunosuppression,
and maintain close follow-up are challenges that every trans-
plant center faces. In the immediate post-operative period,
complications such as infection, acute graft rejection, and
delayed graft function are of significant concern. Luo et al
utilized machine learning algorithms to develop a predictive
model to identify patients at higher risk of severe pneumonia
during the posttransplant hospitalization [19]. Delayed graft
function (DGF), defined as the need for dialysis within 1
week of kidney transplantation, is associated with greater
rates of rejection, higher costs, and impaired patient quality
of life [12, 13]. The first predictive model utilizing patient
characteristics to calculate risk of delayed graft function was
developed in 2010 which was found to have a c-statistic of
0.704 and generalizable to external populations [20, 21].
New analyses by Kawakita et al compared several of the
accepted methods of developing clinically oriented machine
learning models (algorithms-logistic regression (LR), elastic
net, random forest, artificial neural network (ANN), and ex-
treme gradient boosting (XGB)) to assess the efficacy head
to head in predicting delayed graft function in kidney trans-
plant recipients [22]. The resulting models used 30 variables:
13 were donor-related, eight were recipient-related, and five
were transplant-related. When compared with standard re-
gression analyses, machine learning models had improved
discrimination compared with published regression model
measured by greater area under the receiver operating curve
results (0.742 vs. 0.703). Accurate identification of grafts at
high risk of DGF may assist with future interventional stud-
ies to decrease ischemia-reperfusion injury, targeted use of
pulsatile perfusion, and patient counseling at the time of
organ offer.

Table 1 Multivariate statistical models in organ transplant

Issue Model Reference

Kidney allograft survival (KDPI) Cox Regression Rao et al., 2009

Posttransplant patient survival (EPTS) Cox Regression Clayton et al., 2014

Hopkins Transplant Benefit Calculator Weibull Model Bae et al., 2019

Kidney Biopsies Machine Learning , Targeted Artificial Intelligence Reeve et al., 2019; Farris et al., 2020

Organ Explorer Tool Technology-Assisted Decision Algorithm UNOS, 2020

Kidney Survival in COVID-19 Era Machine Learning Massie et al., 2020
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Choice of immunosuppression regimens after kidney and
liver transplant varies widely [23, 24]. Prior to national regis-
try, analyses have confirmed that this variation is primarily
driven by protocols and are center specific. However, immu-
nosuppression regimens and patient characteristics have been
shown to impact 3-year graft survival and complications from
immunosuppression when comparing similar individuals on
different immunosuppression regiments [25]. Thus, develop-
ing a personalized approach to immunosuppression may lead
to reduced posttransplant morbidity. For example, regimens
with early steroid withdrawal after kidney transplant are asso-
ciated with fewer complications in elderly populations. An
interactive tool which allows prediction of complications
based on immunosuppression using both donor and recipient
data is accessible through the CISTEM Immunosuppression
Complication Risk Rejection Tool (www.CISTEM.wustl.
edu). This site provides a visual graphic with 3-year projection
risk of complications from immunosuppression as well as 3-
year graft failure rates.

In addition to impact in graft failure, genetic differences in
individuals such as single nucleotide polymorphisms in the

CYP3A and the presence of the APOL-1 risk allele have clin-
ically significant impacts in posttransplant outcomes and ta-
crolimus dosing [ 26, 27]. A recent review analyzed publica-
tions which utilized protein biomarkers and pharmacogenetic
factors in machine learning models trying to model tacrolimus
bioavailability. These studies showed that artificial neural net-
works have shown superior AUC, sensitivity, and specificity
than empiric weight or race-based drug dosing strategies [28].
Machine learning systems have potential to improve the pre-
cision of immunosuppression dosing. Variations in tacrolimus
trough concentrations have been associated with increased
risks of acute graft loss.

Technology-enabled care with handheld technologies
such as cell phones provides a significant opportunity to
improve adherence and transplant outcome. McGillicuddy
et al demonstrated that 1-year tacrolimus trough variability
was significantly reduced using a mobile medication mon-
itoring application [29]. There are several other ongoing
clinical trials also evaluating the efficaciousness of
technology-enabled care in monitoring immunosuppres-
sion in kidney transplant [30, 31]. The ubiquitous access

Table 2 Machine learning models in organ transplant

Issue Model Reference

Kidney Biopsy Evaluation Machine Learning Reeve et al., 2019

Severe Post-op Pneumonia Random Forest Modeling (AI) Luo et al., 2020

Delayed Graft Function Multiple Machine Learning Algorithms Kawakita et al., 2020

Immunosuppression Selection Multivariate Cox Regression Dharnidharka et al., 2016

Tacrolimus Bioavailability Artificial Neural Network Naushad et al., 2020

Tacrolimus Trough Dosing Mobile Application McGillicuddy et., 2020

Fig. 1 Estimated survival benefit for transplant for patients with expected posttransplant survival (EPTS) score of 35% who accepts a kidney with a
kidney donor profile score (KDPI) of 50 (top panel) or 90 (bottom panel). Available at http://www.transplantmodels.com/kdpi-epts/.
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to technology in the current era provides opportunity for
development of patient-oriented interventions to improve
clinical outcomes through patient empowerment and AI-
driven feedback.

In light of the COVID-19 epidemic, technology has also
provided an accessible means to provide transplant care re-
motely. Transplants patients have been shown to have an
overall positive disposition toward using technology in their
care [32]. Easily obtainable metrics of frailty when paired with
patient reported functional questionnaires have been shown to
be a potential screening tool for poor functional candidates
awaiting kidney transplantation [33]. For example, assessment
of patient mobility easily measured frailty assessments such as
sit to stand, get up and go, and steps per day, which can be
incorporated into telehealth visits and can accurately predict
poor transplant candidacy [34]. Telehealth systems and re-
mote monitoring of biomarkers including deceased donor cell
free DNA and genetic expression profile is a potentially fea-
sible model for allografts for graft injury when incorporated
into multidimensional assessments of graft function and sur-
vival [35].

Conclusions

Artificial intelligence and technology are becoming increas-
ingly important adjuncts for clinical decision-making.
Ubiquitous access to technology and the increasing amount
patient data readily available argue for rapid adoption of big
data analytics into transplant care. Clinical decision-making at
multiple phases in transplant care have been heavily influ-
enced by center-specific algorithms to guide donor organ se-
lection and recipient approval without reliable assessment of
the predicted outcomes given specific donor and characteris-
tics. Multiple AI models now exist to help guide clinicians in
providing data-driven personalized care. As outlined above, in
almost every aspect of transplant care, there exist tools, calcu-
lators, and clinical models that provide important insight, yet
many are not yet readily available at the point of care.

Many factors have been shown to influence long-term graft
function beyond KDPI and EPTS, including biopsy results,
perfusion pump parameters, and estimated cold ischemic time,
and should be integrated into the organ offers. The technology
exists to utilize this data within transplant network to optimize
allocation and guide clinical decision-making. We suggest
that UNOS should incorporate these data into the
DonorNet® to provide objective patient-specific data at
the time of organ offer. Similarly, patients and referring
providers should have access to patient-specific graft
and patient survival estimates to inform their decisions
about specific offers. Without these data, we are simply
providing our best guess.

Availability of Data and Material All data obtained from pub-
lished works are available on pubmed.gov.

Abbreviations AI, Artificial intelligence; DGF, Delayed graft function;
ECD, Extended criteria donor; EMR, Electronic medical record; EPTS,
Expected posttransplant survival; KDPI, Kidney Donor Profile Index;
SRTR, Scientific Registry of Transplant Recipients; UNOS, United
Network for Organ Sharing
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