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STIE: Single-cell level deconvolution,
convolution, and clustering in in situ
capturing-based spatial transcriptomics

Shijia Zhu 1,2 , Naoto Kubota2, Shidan Wang 3, Tao Wang 3,
Guanghua Xiao 3 & Yujin Hoshida 2

In in situ capturing-based spatial transcriptomics, spots of the same size and
printed at fixed locations cannot precisely capture the randomly-located sin-
gle cells, therefore inherently failing to profile transcriptome at the single-cell
level. To this end, we present STIE, an Expectation Maximization algorithm
that aligns the spatial transcriptome to its matched histology image-based
nuclear morphology and recovers missing cells from ~70% gap area, thereby
achieving the real single-cell level and whole-slide scale deconvolution, con-
volution, and clustering for both low- and high-resolution spots. STIE char-
acterizes cell-type-specific gene expression and demonstrates outperforming
concordance with true cell-type-specific transcriptomic signatures than the
other spot- and subspot-level methods. Furthermore, STIE reveals the single-
cell level insights, for instance, lower actual spot resolution than its reported
spot size, unbiased evaluation of cell type colocalization, superior power of
high-resolution spot in distinguishing nuanced cell types, and spatial cell-cell
interactions at the single-cell level other than spot level.

Recent rapid development in spatially resolved transcriptomics has
enabled systematic characterization of cellular heterogeneity while
retaining spatial context1–6, which is crucial for mapping the structural
organization of tissues and facilitates mechanistic studies of cell-
environment interactions. The available spatially resolved tran-
scriptomic techniques have two major categories7: (i) in situ hybridi-
zation or in situ sequencing technologies, such as seqFISH8, MERFISH9,
STARmap3, and FISSEQ10; and (ii) in situ capturing technologies, such
as spatial transcriptomics (ST)4, SLIDE-seq2, ZipSeq11, and HDST12. The
first category achieved cellular or subcellular resolution by in situ
visualization of predefined RNA targets, but the limited multiplex
capacity hurdles them with only hundreds to thousands of genes
profiled. In contrast, the second category captures transcripts in situ,
followed by sequencing readout ex situ, thereby avoiding the limita-
tions of direct visualization and allowing for anunbiased analysis of the
complete transcriptome. The in situ capturing/barcoded area is

referred to as “spot”. To date, the most predominant commercially
available sequencing-based technique is 10X Visium, which is a spot-
based spatial transcriptomics further developed from the ST tech-
nology in 2018. It is a higher throughput, more sensitive, and less
custom protocol than the other alternative approaches, and very
importantly, it supports both fresh frozen and formalin-fixed paraffin-
embedded (FFPE) tissues.

One of the primary technological limitations of the spot-based
spatial transcriptomics resides in the low resolution of the spot, which
often coversmultiple cells. The current 10XVisiumspot size is 55μmin
diameter, with the number of spot-covering cells ranging from 1 to 30,
depending on the biological tissue13. To enhance the resolution,
BayesSpace14 proposed using Bayesian statistics to draw the neigh-
borhood structure in spatial transcriptomic data and increase the
resolution to the subspot level. Specifically, each ST spot was seg-
mented into nine subspots, and each Visium spot was segmented into
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six subspots. Another method, called xfuse15, used a deep generative
model to combine spatial transcriptome with histological image data,
which can characterize the transcriptome of anatomical features in the
micrometer resolution. Meanwhile, some other methods, such as
stLearn16 and SpaGCN17, have integrated the histology image to spa-
tially smooth gene expression and improve clustering with contiguous
spatial patterns. In addition to the computational enhancement, the
resolution of spatial transcriptomics technique is improving itself, e.g.,
the new version of 10X Visium, under the name of “Visium HD”
(claimed to be released in 2022 during this paper’s review), has been
claimed to be released very recently with a much higher resolution.

However, the spot resolution in cellular size does not equal single-
cell level. Differing from single-cell sequencing technologies, the spots
of the same size and fixed position cannot precisely capture the actual
different-sized and randomly located single cells, which can still partially
cover multiple cells in close proximity simultaneously, making spot-
based spatial gene expression essentially fail to achieve the single-cell
level regardless of spot size. This lack of single-cell level cannot be
resolved by the current methods via only enhancing spot resolution
computationally or technically, hindering the characterization of indi-
vidual cellular spatial organization and cell-type-specific gene expres-
sion variation in spatial transcriptomics. In addition, on the Visium
platform, 4992 spots of 55μm in diameter are printed on the glass slide
of 6500×6500μm2 in area, leaving 100 μmdistance between two spot
centers and gene expression unmeasured from up to ~70% area

ð1� 4992×π 55
2ð Þ2

65002 Þ. However, most current methods cannot fill this gap,

resulting in a considerable loss of information. BayesSpace segmented
the spot into subspot but cannot fill the gap area by only using the
information from the spot, while xfuse combines spatial transcriptome
with histological image to impute super-resolved expression within and
between spots, although it is not the single-cell level. Third, compared
with the fresh frozen tissue, the staining image from the FFPE tissue
better preserves the cellular morphology, therefore facilitating more
accurate cell/nucleus segmentation. However, the existing methods do
not well utilize the matched image generated along with the expression
profile by failing to take into account thecell segmentation,morphology
features, and spatial location of every single cell captured by the image.

To this end, we present STIE, which integrates spatial tran-
scriptome data with matched histology image-based nucleus mor-
phological information, to bridge the gapbetween spot resolution and
single-cell level. By assuming that the cell type proportion of one spot
inferred from spatial transcriptome and nucleus morphological fea-
tures is similar, STIE uses the Expectation-Maximization (EM) algo-
rithm to jointly model spatial transcriptome and nucleus morphology
to find their consensus. Given cell-type transcriptomic signatures, STIE
performed the single-cell level deconvolution and convolution for the
low- and high-resolution spots, respectively; when provided no cell-
type transcriptomic signatures, STIE performs single-cell level clus-
tering. Moreover, STIE fills the gap between spots by recovering
missing cells via neighborhood information. As such, STIE enables the
real single-cell level and whole-slide scale analysis for spot-based spa-
tial transcriptomics.

Results
Single-cell resolution does not equal single-cell level
On the 10X Visium platform, the tissue sections are placed onto glass
slides, where the spots of the same size are printed at fixed coordinates
with barcoded Reverse Transcript (RT) primers. During tissue permea-
bilization, mRNA molecules diffuse vertically down to the solid surface
andhybridize locally to theRTprimerswithin the spot in situ. The cDNA-
mRNA complexes are further extracted for library preparation and the
sequencing readout. Different from single-cell RNA sequencing (scRNA-
seq), which precisely captures each cell individually and profiles the
gene expression of the whole cell, the spot at the predefined position is

highly likely to partially cover multiple cells in close proximity simulta-
neously. However, these single cells cannot be resolved via only redu-
cing spot size into cellular size computationally or technically, i.e., the
single-cell resolution is not the single-cell level.

We first took two recently proposed computational enhancement
methods of single-cell resolution, BayesSpace14 and xfuse15, as illus-
trative examples. We run BayesSpace on a 10X Visium mouse brain
hippocampus data (Fig. 1a). BayesSpace enhanced the ST resolution by
segmenting one Visium spot into six subspots, and computationally
impute the gene expression for each subspot. Because of smaller size,
the subspot covers the cell in a small fraction, but due to the fixed size
and location, it covers multiple cells simultaneously, therefore failing
to achieve the single-cell level. Likewise, we investigated xfuse on a
human breast cancer spatial transcriptomics data4 (Supplementary
Fig. 1), which enhanced the spot into even higher resolution, but it is
still not the single-cell level due to the fixed size and location of the
single enhancement unit.

In addition to the computational imputation-based resolution
enhancement, the resolution of spatial transcriptomics technique is
also increasing itself. For example, the current spot size of 10X Visium
is 55μm in diameter, while the new version with enhanced resolution,
called “VisiumHD”, is claimed to be released very recently. However, it
still holds a high chance to partially cover multiple cells. Next, we
performed the cell segmentation on the spatial transcriptomics-
matched H&E image and systematically investigated the spatial rela-
tionship between single cells and spots of different resolutions. We
first explored a real high-resolution breast cancer HDST dataset12,
which captures RNA from histological tissue sections on a dense,
spatially barcoded bead array. However, like most of the current spa-
tial transcriptomic techniques, HDST only supports the frozen tissue
section, which is still more challenging to segment nuclei compared to
FFPE (Supplementary Note 2, Supplementary Fig. 2). Accurate nuclear
segmentation is crucial here to understand the spatial relationship
between spots and single cells. Therefore, we simulated the high-
resolution spots from the real 10X Visium spatial transcriptome FFPE
data. Three tissues, mouse brain, mouse kidney, and human breast
cancer, were investigated to account for different cell sizes of cell
types (Fig. 1b). In addition to 55μm,we simulated spots with diameters
of 30μm, 20μm, 10μm, and 5μm to cover the whole tissue (Fig. 1c),
where the 5μmdiameter is even smaller than the average cell diameter
of real tissues. With no loss of generality, we still left the gap area
between spots. At 55μm, each spot covered a median of 5–19 cells
(Fig. 1d; mouse kidney: 19, mouse brain cortex: 6, mouse brain hip-
pocampus: 5, humanbreast cancer: 6), whilewith the spot size reduced
to 5μm, the cell count largely decreased to 1–2 cells (Fig. 1d); mouse
kidney: 2, mouse brain cortex: 1, mouse brain hippocampus: 1, human
breast cancer: (1) Likewise, the cell area fraction covered by spots also
largely decreases with the reduced spot size. At 55μm, the cell area
demonstrates a bimodal distribution, with the majority of cells fully
covered by the spot, while at 5μm, only ~5% of the cell area is covered
by the spot by the median (Fig. 1e). Of note, the high-resolution spot
covered 1–2 cells by the median, but there were still a large number of
spots coveringmultiple cells. Even at 5μm,many spots covered at least
two cells, whichwas consistent across the three tissues (Fig. 1d, mouse
kidney: 62%,mouse brain hippocampus: 38%,mousebrain cortex: 29%,
and human breast cancer: 37%). As such, one spot, even at a very small
size, is still highly likely to cover multiple cells simultaneously with
each cell covered at a very small fraction, making the spot still capture
the mixed gene expression of cell types.

Thus, the above gap between spot resolution and single-cell level
raises the new computational challenges: “single-cell deconvolution”
and “single-cell convolution” for low- and high-resolution spots,
respectively. Differing from the traditional cell type deconvolution18–20

that estimates cell-type proportion for spots, both single-cell decon-
volution and convolution aim to resolve single cells from spatial
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transcriptomics spots, find their spatial location and identify their cell
types, where the difference resides in that single-cell deconvolution
refers to splitting the large low-resolution spot into single cells, while
single-cell convolution refers to assembling the small pieces covered
by adjacent high-resolution spots into one complete single cell.

Overview of the STIE workflow
To address the above challenges, weproposed an EM algorithm, called
STIE, which used two pieces of information (Fig. 2), spot-level gene
expression and matched histology image-based nucleus segmenta-
tion. STIE took as input (but is not limited to) thenucleus segmentation
implemented in DeepImageJ21, called the “Multi-Organ Nucleus Seg-
mentation model”. It was proposed by the “Multi-Organ Nucleus Seg-
mentation Challenge22” to train the generalized nucleus segmentation

model in H&E stained tissue images. Next, the nuclear location along
with the nuclear morphological features were extracted for every
single nucleus.

The rationale of the STIE is that, given the cell type transcriptomic
signature, the cell type proportion can be estimated from the
gene expression of each spot, while a similar proportion can also be
calculated from the histology image by segmenting cells/nuclei,
extracting cell/nucleus morphological features, clustering single
cells into groups, locating every single cell and calculating the
cell cluster proportion covered by each spot. The gene expression-
based and nuclear morphology-based cell type/cluster proportions
(Supplementary Note 1) are theoretically the same, motivating us to
model gene expression and nucleus morphology jointly, i.e., borrow
information from nuclearmorphology-based cell typing to refine gene

Fig. 1 | Single-cell resolution is not single-cell level. a Computational resolution
enhancement cannot achieve single-cell level. Illustration of the spot layout on the
mouse brain hippocampus 10X Visium FFPE spatial transcriptome (left), the origi-
nal gene expression summary at the spot level (middle), the BayesSpace-imputed
gene expression summary at the subspot level alongwith the enlarged subspots on
the H&E image (right). In the enlarged area, the white circle represents the original
spot, and the red circle represents the enhanced subspot. b–e Systematic evalua-
tion of spatial relationship between single cells and spots via simulation of high-
resolution spots from real 10X Visium spatial transcriptomics FFPE data. b Nuclear
morphological feature distribution of mouse kidney, mouse brain and human
breast cancer. c Examples of simulated high-resolution spots on the real nuclear

segmentation. The brown circle represents the high-resolution spot with 5 μm in
diameter, and the black circle represents the nucleus in the real tissue. d The fre-
quency of spots covering different numbers of cells, where the x-axis is the cell
count covered by one single spot, and the y-axis represents the spot frequency.
Only the spot that covers cells was considered. e The distribution of the cell area
fraction covered by the spots in different diameters. In the box plots (b, e), center
line represents median, lower and upper hinges represent first and third quartiles,
whiskers extend from hinge to ±1.5 × IQR. The above distributions are drawn from
172,835 nuclei in mouse kidney, 31,546 nuclei in mouse brain, and 44,218 nuclei in
human breast cancer, respectively. Source data are provided as a Source Data file.
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expression-based cell type proportion estimation, followed by the
other way around. Accordingly, we proposed STIE, an EM algorithm to
model their joint likelihood as main loss function along with their
difference in cell-type proportion estimation as penalty, thereby
mutually drawing information and gradually refining each other to
achieve their consensus. Information borrowing was implemented in
Eqs. (4), (8) of the M-step (see “Methods”), which utilized both gene
expression and nuclear morphology to refine the morphological
model and the gene expression model, respectively.

STIE has two modes: (1) Single-cell deconvolution/convolution:
Given the cell type transcriptomic signature, STIE deconvolutes/con-
volutes the low-/high-resolution spots into single cells. The tran-
scriptomic signature can be defined from the existing single-cell atlas
of different tissues23–25. (2) Single-cell clustering (Signature-free single
cell deconvolution/convolution): Given no cell type transcriptomic

signature, STIE can perform clustering at the single-cell level. The
clustering algorithm is built on deconvolution/convolution: given the
number of clusters and the initial value of the clustering tran-
scriptomic signature, STIE iteratively refines the clustering signature-
based single-cell deconvolution/convolution and re-estimates the sig-
nature until the iteration converges.

STIE has two hyperparameters, λ and γ, representing the shrink-
age penalty for nuclear morphology and the area surrounding the
center of the spot, respectively. λ penalizes the difference between
gene expression- and nuclear morphology-predicted cell type pro-
portion, and accordingly, we chose λ for STIE via a heuristic strategy
(Supplementary Information & Supplementary Fig. 3) to tweak the
weights of contribution between gene expression and nuclear mor-
phology to the final model fitting. Meanwhile, by modulating γ, STIE
aims tofind thegroupof cells that are coveredby the spot and canbest

Fig. 2 | Workflow of STIE by integrating spot-level spatial transcriptome with
nuclear morphology. a Overview of STIE workflow. b Two modes of STIE: (1)
single-cell deconvolution/convolution for low-/high-resolution spots and (2) single-

cell clustering, i.e., signature-free single-cell deconvolution/convolution. c The
flowchart of STIE single-cell deconvolution/convolution.
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fit the gene expression of the spot. Based on the observation on dif-
ferent real datasets, we set γ = 2.5x reported spot diameter for the 10X
Visium datasets used in this paper (Supplementary Information),
which gives the best concordance between the predicted and true
spatial gene expression. Given no nuclear morphological features
prespecified, STIE also selects the nuclear morphological features
along with λ based on a grid search over the combinations of mor-
phological features and λ (Supplementary Information & Supplemen-
tary Fig. 4).

At last, the cells covered by the spot are assigned cell types based
on both spot gene expression and cellular morphology, which also
include those cells located outside the reported spot size but inside
the enlarged spot area, γ. Moreover, the cells located outside γ are
assigned cell types using the cellularmorphology and gene expression
from their adjacent enlarged spot area. As such, STIE filled up the
missing cells from the gap area between spots. We performed the
simulation analysis by generating different combinatorial scenarios
between nuclear morphology and spatial gene expression with either
high or low noise. On the simulated dataset, we confirmed the con-
vergence of STIE deconvolution (Supplementary Fig. 5) and evaluated
the running time (Supplementary Fig. 6), which scales well with num-
ber of cell types and spots and is not significantly influenced by the
number of marker genes. Moreover, we compared STIE with the other
deconvolution methods, SPOTlight18, DWLS19,26, Stereoscope27,
RCTD20, Tangram28 and BayesPrism29, which only reply on gene
expression (Supplementary Fig. 3). STIE outperformed all the others
due to incorporationof nuclearmorphology as additional information.

Integration of gene expression andnuclearmorphology enables
single-cell level deconvolution/convolution in spatial
transcriptomics
We investigated the mouse brain 10X Visium FFPE spatial tran-
scriptome (Fig. 3a–h, see the “Methods” section), and deconvoluted
the hippocampal region based on scRNA-seq-derived mouse brain
hippocampus cell-type transcriptomic signatures30. Three methods
were first compared, SPOTlight18, BayesSpace14, and STIE, representing
three categories of deconvolution methods, direct deconvolution,
imputation-based deconvolution and our nuclear morphology and
gene expression integration-based single-cell level deconvolution.
First, SPOTlight18 works on each spot as bulk gene expression and
deconvoluted it into cell types at different proportions, achieving
resolution at the spot level (Fig. 3a). Second, BayesSpace14 segmented
each spot into subspots and used the information from spatial
neighborhoods to impute subspot gene expression. Following up with
SPOTlight, enhanced resolution of cell type deconvolution was
achieved at the subspot level (Fig. 3b). Third, by integrating the image
with gene expression, STIE does not only identify the cell type for each
single cell within the spot (Fig. 3c middle) but also recovers the cell
outside the spot (Fig. 3c right), making the whole-slide-wide cell type
deconvolution at the highest single-cell level (Fig. 3c left). Meanwhile,
STIE learned the distribution of morphological features for each cell
type, making the result more interpretable (Fig. 3j). STIE primarily
considered two categories of nuclear morphological features (but not
limited to): size (Area, Major, Minor, Width, Height, Feret, and Peri-
meter) and shape (Round and Circular). The best features along with λ
were selected by a grid search via evaluating the fitting of gene
expression and nuclear morphology simultaneously (Supplementary
Information; Supplementary Fig. 7–10). By comparing with the ground
truth25,30 (Fig. 3i), STIE accurately found the position of all four cell
types at the single-cell level. The other two methods found the cell
types at certain proportions, but SPOTlight found high proportions
of CA1 at all spots and failed to see CA2. Moreover, the estimated
locations of cell types largely deviate from the truth. With the
enhanced subspot resolution by BayesSpace, the follow-up SPOTlight
more accurately estimated the positions of cell types, revealing the

advantage of high resolution by BayesSpace; however, the CA2 pro-
portion is still underestimated at the true CA2 locations but
overestimated at the true CA1 locations. Besides SPOTlight, we com-
pared five other methods, which only take gene expression as
input to deconvolute cell types at spot level, including DWLS19,26,
Stereoscope27, RCTD20, Tangram28 and BayesPrism29 (Fig. 3d–h, Sup-
plementary Fig. 11 for their running time and memory usage).
DWLS and RCTD showed better results than SPOTlight, with positions
of cell types predicted more accurately. However, one of the
shortcomings of the gene expression-based deconvolution method is
that it cannot account for the cell count, therefore making misleading
the high proportion of cell types within spots. For example, CA1 is
primarily located in the pyramidal cell layer (Fig. 3i), and the other
layers have much fewer nuclei, but SPOTlight, DWLS and RCTD still
suggest the existence of CA1 in those cell-sparse layers at certain
proportions (Fig. 3a). Second, the estimated proportion of one cell
type within each spot is often accompanied by others (Fig. 3a, b, d–h),
but those locations have only one cell type as indicated by ISH (Fig. 3i),
such as the spots along the band of CA1, CA2, and CA3. This co-
existence may result from the underlying co-linearity of the cell-type
transcriptomic signatures (Supplementary Fig. 12). STIE addressed the
above shortcomings by incorporating the nuclear segmentation and
morphology as orthogonal features, facilitating better distinguishing
among cell types.

To further investigate the accuracy and applicability, we tested
STIE deconvolution on the recently released 10X Visium V2 Chemistry
CytAssist mouse brain hippocampus FFPE spatial transcriptomics
datasets. On both consecutive sections (Fig. 3k), STIE deconvoluted
the single cells accurately that are highly consistent with the ground
truth. To investigate the influenceof selection ofmarker genes on STIE
deconvolution, we used SPOTlight to construct a new transcriptomic
signature and use it to rerun STIE deconvolution. Although the new
signature has only 39% overlapping genes with the original, STIE still
deconvoluted the single cells accurately conferring high concordance
with those using original signatures (Supplementary Fig. 13a–c).
Moreover, we randomly sampled the marker genes from the original
signature and rerun STIE deconvolution to investigate its consistency
with that using the full signature. As expected, the concordance is
reduced with decreasing marker genes. However, with half marker
genes, the concordance is still higher than 80%, except the CA2 that
has few cells (Supplementary Fig. 13d). In addition, we investigated the
influence of image alignment to the STIE deconvolution, we gradually
shifted the image to make it misaligned to the spot, rerun STIE, and
evaluated its concordance with that under accurate alignment (Sup-
plementary Fig. 14). As expected, the concordance is slowly reduced
with the increasing misalignment of cells with spots. However, STIE
still has 88% and 84% concordancewith the accurate alignment, even if
the cells are misplaced by a half spot and a whole spot, respectively. A
slight misalignment, 10% spot size, does not significantly influence the
cell typing (98% concordance).

In addition, we investigated the human breast cancer 10X Visium
FFPE spatial transcriptome dataset (Fig. 3l–n). Based on the human
breast cancer scRNA-seq-derived cell type transcriptomic signature31,
we used STIE to deconvolute spots into single cells with cell typing,
including Cancer and Normal epithelial cells, Cancer-associated
fibroblast (CAF), Perivascular -like cells (PVL), Myeloids, B-cell and
T-cell (Fig. 3l), alongwith themorphological features characterized for
each cell type (Fig. 3m). Most cell types demonstrated distinct mor-
phological features. Among immune cells, Myeloid is relatively easier
to distinguish, showing a much larger nucleus size, whereas T-cell and
B-cell are well-known to resemble morphologically, but STIE still esti-
mated a slightly larger nucleus area of B-cell than T-cell, which is
consistent with the previous observation32. We compared our result
with the manual annotation by the pathologist (Fig. 3n). Despite dif-
ferent resolutions, our single-cell deconvolution still shows a high
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resemblance to the annotated regions. On this dataset, we also tested
the other deconvolution methods at the spot level, SPOTlight, DWLS,
Stereoscope, RCTD, Tangram, and BayesPrism, to deconvolute the
spot into cell type proportions (Supplementary Fig. 15). Overall, DWLS,
Stereoscope, and RCTD predicted the distinct proportions of Can-
cerEpithelial across spots, and the high-proportion spots tend to
enrich for the tumor area, while SPOTlight, Tangram, and BayesPrism
predicted more identical CancerEpithelial across all spots, at low,

moderate, and high proportions, respectively. We specifically com-
pared their predicted tumor area with the manual annotation (Sup-
plementary Fig. 16a) by evaluating the ARI and R2 (Supplementary
Fig. 16b, c). STIE gives the best concordance (ARI = 0.64, R2 =0.64),
which is slightly higher than SPOTlight (ARI = 0.54, R2 = 0.60), RCTD
(ARI = 0.57, R2 =0.6) and DWLS (ARI = 0.57, R2 = 0.59), and much
higher than Stereoscope (ARI = 0.26, R2 = 0.13), Tangram (ARI = 0.38,
R2 =0.33), and BayesPrism (ARI = 0.4, R2 =0.35).
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With the technical advancement, the spot resolution is also
increasing itself, such as the 10X Visium HD. The high-resolution spot
covering multiple cells at a small fraction can be similarly modeled
using STIE. To test this hypothesis, we simulated the high-resolution
spot mouse brain hippocampus spatial transcriptome data (Fig. 3o;
5μm in diameter) by using three pieces of information from the real
low-resolution spot (Fig. 1a left; 55μm in diameter), including the
nuclear spatial location, STIE-deconvoluted cell types (Fig. 3c), and the
associated cell-type transcriptomic signature. Next, we used STIE to
convolute the small pieces of cells from adjacent spots into single
whole cells (Fig. 3o bottom) and found that the convoluted cell types
were highly consistent with the true cell types by deconvolution.
Likewise, we also simulated the high-resolution spot spatial tran-
scriptomic data from the real human breast cancer low-resolution spot
data (Fig. 3l) and observed similarly high consistency between con-
voluted cell types (Fig. 3p) and their original truth (Fig. 3l). Despite no
real high-resolution spot spatial transcriptomics FFPE data available so
far, the above facts support the capability of STIE in convoluting small
pieces of cells into singlewhole cells resulting from the high-resolution
spot spatial transcriptomic data.

STIE enhances spatial transcriptomic clustering to single-
cell level
Given cell type transcriptomic signatures, we deconvoluted/con-
voluted spots into single cells. As opposed, we checked if the cell type
transcriptomic signature can be reversely estimated given cell typing
(see “Methods”). We investigated the mouse brain hippocampus and
human breast cancer (Fig. 4a, b, Supplementary Fig. 17) and found that
all of our learned signatures correlated most with their corresponding
scRNA-seq-derived signatures. Moreover, we used the non-negative
least square (NNLS) to deconvolute our estimated signatures based on
the scRNA-seq-derived signatures. Again, all of our learned signatures
showed high proportions of the corresponding cell types. DWLS was
used as an independent method and observed similar proportions.
Despite small variation between the original scRNA-seq and the
learned spatial transcriptomic signatures, the above results largely
corroborated that we could estimate the single-cell level tran-
scriptomic signature from the spot-level spatial transcriptome.

Furthermore, we similarly estimated signatures from the whole
transcriptome besides signature genes. On this basis, we implemented
the STIE clustering algorithm when given neither cell typing nor
transcriptomic signatures: we iteratively re-estimate the clustering
transcriptomic signature and refine the clustering signature-based
single-cell deconvolution/convolution until the iteration converges
(see “Methods”). We tested this clustering algorithm on the mouse
brain hippocampus (Fig. 4c). As comparison, we also tested the other
clustering methods on this dataset, including K-means that relies on
only gene expression, SpaGCN17 and MUSE33 that also utilize the his-
tological image, and BayesSpace at the sub-spot level (Fig. 4c; Sup-
plementary Fig. 18–21). At k = 5, STIE clusteringwas close to the ground

truth andmatched the cell types of CA1, CA2, CA3, DG, and Glia in STIE
deconvolution. K-means accurately uncovered the clusters of CA1,
CA3, DG, and Glia with CA2 missed. SpaGCN roughly found the CA1,
DG, and Glia clusters. MUSE automatically determined the number of
clusters k = 5 and found the CA1, DG, and Glia clusters. At the sub-spot
level, BayesSpace clustering is more delicate with higher resolution,
but it still failed to find the CA2 cluster even at a higher number of
clusters (Supplementary Fig. 20). Furthermore, we calculated the
average gene expression of each cluster (referred to as CAGE) and
deconvoluted it based on the scRNA-seq-derived cell type tran-
scriptomic signatures as another angle to evaluate the resolution of
clusteringmethods (Fig. 4d). The rationale is that if the cluster is single-
cell level and all cells within the cluster belong to the same cell type,
the deconvolution will demonstrate a high proportion of single-cell
type for each cluster; otherwise, it will be the saturated proportions of
multiple cell types. As shown in Fig. 4d, the CAGEs by othermethods at
spot-level or subspot-level all demonstrated a mixture of cell types. In
particular, all of them showed a high proportion of Glia, suggesting
thatmost spot/subspot clustersmixwith Glia cells, whichmaymislead
the biological interpretation of the cluster. In contrast, the CAGE by
STIE (i.e., the STIE-estimatedwhole transcriptomic signature for single-
cell clusters) recovers all cell type signatures at the single-cell type
level, i.e., STIE found the matched clusters for all cell types, CA1, CA2,
CA3, DG, and Glia, and each cluster gives the high proportion of its
matched cell type by the cell type deconvolution. Likewise, we eval-
uated STIE clustering on the 10X CytAssist dataset of mouse brain
hippocampus (Supplementary Fig. 22), which accurately uncover the
clusters of CA1, CA2, CA3, and DG largely matching the ground truth.

Moreover, we applied different clustering methods to the 10X
Visium mouse brain cortex spatial transcriptome (Fig. 4e & Supple-
mentary Fig. 23–26). At k = 6, we found clear layers by K-means,
SpaGCN, BayesSpace, and STIE. Specifically, K-means at the spot level
has thinner cluster 1 (black), cluster 2 (cyan), and cluster 6 (yellow), but
thicker cluster 3 (red), while SpaGCN and BayesSpace showed more
even clusters, especially cluster 1–3, but SpaGCN identified a much
thicker cluster 6 (yellow) than the others. MUSE also identified 6
clusters automatically, but its clusters are more blurred than the other
methods. STIE clustering takes the K-means at spot level as initial
values, so it largely resembles K-means, but STIE showed more
expanded cluster 1 (black) and cluster 6 (yellow). We further checked
the cell type deconvolution based on the scRNA-seq signatures of the
mouse brain cortex by Allen Brain Atlas25. Despite different patterns by
NNLS and DWLS, both spot-level K-means, SpaGCN, MUSE, and
subspot-level BayesSpace showed saturated proportions of cortex
layers, whereas STIE demonstrated a significantly higher proportion
for the layers from L2 to L6 (Fig. 4f), which is also concordant with the
consecutive spatial location of clusters. In addition, we tested STIE
clustering on themouse brain cortex 10X V2 Chemistry CytAssist FFPE
datasets (Supplementary Fig. 27). On both section 1 and section 2, we
observed the clear layers along with the good concordance between

Fig. 3 | Single-cell level deconvolution/convolution in spatial transcriptomics
by STIE. a–j Mouse brain hippocampus 10X Visium FFPE spatial transcriptome.
a Spot-level cell-type deconvolution using SPOTlight. In the enlarged area, each pie
chart represents the proportion of cell types for the corresponding spot.
b Subspot-level cell type deconvolution using BayesSpace followed by SPOTlight.
In the enlarged area, each pie chart represents the proportion of cell types for the
corresponding subspot. c Single-cell level deconvolution by STIE (left panel), which
is the aggregation of cells captured by spots (middle panel) and cells missed by
spots but recovered by STIE (right panel). In the enlarged area, the circle is the cell
contour, with the color representing its cell type. Spot-level cell-type deconvolu-
tion using DWLS (d), Stereoscope (e), RCTD (f), Tangram (g), and BayesPrism (h).
i Ground truth of mouse brain hippocampus cell types by In Situ Hybridization
(ISH): CA1 (Mpped1), CA2 (Map3k15), CA3 (Cdh24) and DG (Prox1). The arrowhead
indicates high expression. The figure is reproduced from Fig. 1D in ref. 30. jNuclear

morphological feature distributions of cell types learned by STIE (422 CA1, 39 CA2,
115 CA3, 818 DG, and 872 Glia). k Single-cell level deconvolution by STIE on 10X
Visium V2 Chemistry CytAssist FFPE spatial transcriptomics of two consecutive
mouse brain hippocampus sections: section 1 (up panel) and section 2 (bottom
panel). l–n Human breast cancer 10X Visium FFPE spatial transcriptome. l Single-
cell level deconvolution by STIE.mNuclearmorphological feature distributions for
cell types (2910 Bcells, 12,269 CAFs, 11,957 CancerEpithelial, 3120 Myeloid, 6997
Plasmablasts, 1920 PVL, and 4584 Tcells). Center line represents median, lower and
upper hinges represent first and third quartiles, whiskers extend from hinge to
±1.5× IQR. nManually annotated human breast cancer pathological regions. Single-
cell convolution for the simulated high-resolution spatial transcriptomics data of
the mouse brain hippocampus (o) and human breast cancer (p) using spots with
5μm in diameter. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-51728-5

Nature Communications |         (2024) 15:7559 7

www.nature.com/naturecommunications


the CAGE and the scRNA-seq transcriptomic signatures. Further, to
evaluate the impact of nuclear morphology on the STIE accuracy, we
compared the above FFPE sectionswith the fresh frozen tissue section.
We run STIE clustering at the single-cell level on the 10X Visium fresh
frozen human dorsolateral prefrontal cortex34, which grouped the
single cells into clear layers that resemble the manual annotation
(Supplementary Fig. 28). By downgrading the single cells into spots,
the clusters gave a moderate concordance with the manual annota-
tion, which canbe improved bymore properly setting the initial values
(Supplementary Fig. 29), but overall, it demonstrates lower

performance and weaker robustness on the selection of nuclear mor-
phological features compared to the 10X CytAssist FFPE mouse brain
cortex (Supplementary Fig. 28–29). This is largely due to the low image
quality of the fresh frozen section and the inaccurate nuclear seg-
mentation (Supplementary Fig. 30), corroborating the importance of
nuclear morphology to the accurate single cell clustering.

Third, we investigated the 10X Visium human breast cancer FFPE
spatial transcriptome (Fig. 4g & Supplementary Fig. 31–34). Overall, all
K-means, BayesSpace, SpaGCN, and STIE demonstrated clear clusters,
where the clustering at k = 6 demonstrates the best concordance with

Fig. 4 | Single-cell level clustering in spatial transcriptomics by STIE. Cell type
specific transcriptomic signature learning from 10X Visium mouse brain hippo-
campus FFPE (a) and 10X Visium human breast cancer FFPE (b). Spot-level clus-
tering by K-means, SpaGCN, MUSE, subspot-level clustering by BayesSpace and
single-cell-level clustering by STIE on 10X Visium FFPE mouse brain hippocampus
(c),mouse brain cortex (e) and humanbreast cancer (g). Cell type deconvolutionof
spot-, subspot-, and single-cell-level clustering-derived CAGE in the mouse brain
hippocampus (d), mouse brain cortex (f), and human breast cancer (h). For the
mouse brain cortex, the cell types in the transcriptomic signature, which are not
cortex layers and have small proportions, are not shown in the barplot. The box
plot (h) represents the deconvoluted proportion of 9 cell types, where center line
represents median, lower and upper hinges represent first and third quartiles, and
whiskers extend fromhinge to ±1.5 × IQR. The p-value was calculated based onone-

sided Wilcoxon signed-rank test without adjustment for multiple comparisons.
i TheUMAPplot of humanbreast cancer scRNA-seq data from 26primary tumors31.
The top panel is the original cell typing of 10,060 single cells, and the bottompanel
is the subset of cells that are mapped to the six STIE clusters. Spot-level clustering
by K-means (left), SpaGCN (middle), and single-cell-level clustering by STIE (right)
on the simulated high-resolution spot spatial transcriptome data of the mouse
brain hippocampus (j) and human breast cancer (m). Cell type deconvolution of
spot- and single-cell-level clustering-derived CAGE in the mouse brain hippo-
campus (k) and human breast cancer (n). l, o The consistency table of single-cell
clusters between the simulated high-resolution spot-based STIE clustering and the
original low-resolution spot-based STIE clustering as ground truth of the mouse
brain hippocampus (c) and human breast cancer (g). Source data are provided as a
Source Data file.
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the STIE deconvolution (Fig. 3l). By comparing with the manual
annotation, their clusters are largely consistent with the tumor region
(cluster 1 of K-means with R2= 0.63, cluster 1&2 of BayesSpace with
R2 =0.49, cluster 1&2 of SpaGCN with R2 =0.58, and cluster 1&2 of
STIE with R2 = 0.64; Supplementary Fig. 35). AlthoughMUSE identified
18 clusters automatically, it also uncovers clusters partially matching
the tumor regionswell (cluster 1–4withR2 =0.38). By checking the cell
type deconvolution, cluster 1 and cluster 3 in the spot/subspot level
clustering showed relatively higher proportions of CancerEpithelial
andCAFs, respectively, while the other clusters allmixedwith different
cell types, especially CAFs. In contrast, STIE clusters showed much
higher cell type proportions (Fig. 4h & Supplementary Fig. 36),
thereforematching well with the known cell types: cluster 1 (14.3% out
of all cells) for CancerEpithelial, cluster 2 (21.3%) for CancerEpithelial,
cluster 3 (14.2%) for CAF, cluster 4 (35.8%) for Plasmablasts, cluster 5
(10.2%) for Myeloids, and cluster 6 (4.2%) formixed T-cells, B-cells and
Plasmablasts. Of note, different from the deconvolution (Fig. 3l), STIE
clustering identified two clusters for the tumor regions (cluster 1 and
cluster 2), where cluster 2 was only located at the bottom tumor and
the boundary of the other tumor regions. We aligned the clusters to
~100,000 human breast cancer single cells from 26 primary tumors31

(Fig. 4i & Supplementary Fig. 37). SCINA35 was used to assign cell
clusters based on the clustering-derived transcriptomic signature. A
total of 60.7% of cells were identified with known clusters assigned
(Fig. 4i right), matching 6 cell types: CancerEpithelial, CAF, Plasma-
blasts, Myeloids, T-cells, and B-cells (Fig. 4i left). We found a group of
closely neighboring clouds for cluster 2 (brown) in the big category of
CancerEpithelial, which is separated from cluster 1 (steel blue),
revealing a putative subtype of breast cancer. The CAGE of cluster 2
comprises a mixture of CAF and CancerEpithelial (Fig. 4h). It may
implicate the epithelial-mesenchymal transition (EMT)36, which is
associated with tumor progression and migration.

STIE has shown good clustering performance on the current spot
size, i.e., 55μm in diameter. Next, we tested whether STIE can also
achieve single-cell level clustering on the high-resolution spot. We
simulated the high-resolution spot spatial transcriptome from the 5
clusters in the mouse brain hippocampus (Fig. 4c) and checked whe-
ther spot-level K-means, SpaGCN, MUSE, and single-cell-level STIE can
recover those 5 clusters. We did not test the subspot level clustering,
since the spot was even smaller than the cell size, with no need for
further segmentation. Consequently, the K-means clusters on high-
resolution spots are highly mixed together (Fig. 4j left), which heavily
deviate from the truth (Fig. 4c right) and are even worse than K-means
on low-resolution spots (Fig. 4c left). Consistently, the cell type
deconvolution of CAGEs revealed that different cell types were mixed
in all K-means clusters and that one cell type was lost (Fig. 4k left &
Supplementary Fig. 38). These facts posed an even more difficult
challenge for the K-means on the high-resolution spot. Compared to
the K-means, SpaGCN performed much better clustering on high-
resolution spots (Fig. 4j middle), which accurately found the region of
CA1, CA2, CA3, and DG. The cell type deconvolution of CAGEs also
recovers those four cell types despite slightly mixing with others
(Fig. 4k middle), but two clusters were found for Glia with CA2 regions
missed. However, as opposed to K-means and SpaGCN, STIE recovered
all 5 clusters accurately, and all CAGEs were composed of single-cell
clusters at a very highproportion (Fig. 4j–k). Specifically, the single cell
clusters from the high-resolution spots are highly concordant with
those from the low-resolution spots (Fig. 4l). A similar observation was
alsomade for the simulatedhigh-resolution spotdata onhumanbreast
cancer (Fig. 4m–o & Supplementary Fig. 39). We also tested MUSE on
the simulated high-resolution spatial transcriptomics data, which
automatically determined 50 clusters for the mouse brain hippo-
campus and 159 clusters for the human breast cancer (Supplementary
Fig. 40). The clusters are highly mixed and difficult to compare with
the ground truth. Together, STIE can perform single-cell clustering for

both low- and high-resolution spot spatial transcriptomics data, which
outperforms spot-/subspot-level clustering in terms of both resolution
and associated CAGEs.

STIE reveals single-cell level insights in spatial transcriptomics
As discussed above, differing from the single-cell gene expression
profiling, the spot cannot always capture the complete cells, resulting
in loss of information fromcells at the spot boundary or contamination
of cells from outside. Therefore, the first question is raised: does the
gene expression captured by the spot derive from all cells located in
the spot, partially from cells at the center of the spot, or even more
cells outside the spot? Since STIEdeconvoluteswhole-slide-wide single
cells with both cell typing and spatial information retained, we can
check different areas surrounding the spot center and their covering
cells. The area that shows the best concordance between the spot gene
expression and its covering cell typing can provide the answer to the
actual area captured by the spot. We referred to the size of that area as
the “bona fide spot size” to distinguish it from the reported spot size.
Accordingly, we fit the STIE model by varying the bona fide spot sizes
with the spot center fixed and checked themodel fitting between gene
expression and cell type deconvolution. In the mouse brain hippo-
campus 10X Visium spatial transcriptome, the area in 2x-3x spot dia-
meter demonstrated the best model optimization with the least root-
mean-square error (RMSE) (Fig. 5a). The analysis was repeated on the
10X Visium human breast cancer FFPE spatial transcriptome, and a
consistent observation was made (Fig. 5b). Moreover, we investigated
the new released 10X Visium V2 chemistry CytAssist datasets from two
mouse brain replicates (Fig. 5c), and consistently observed the mini-
mum RMSE around 2.5x spot diameter. Although a small variation was
observed among datasets, the above facts suggest that the spot may
capture even more gene expression from the spot surroundings, fur-
thermotivating us to reevaluate the resolution of the spot. As such, the
above simulation (Figs. 1, 3o, p, 4j–n, 5h, i) should have even higher
spot resolution than we reported, since we simulated the bona fide
spot size rather than spot size. In STIE, we introduced the hyperpara-
meter γ to represent the bona fide spot size, and we have set γ = 2.5x
reported spot diameter (55μm) for all above analyses.

Second, unlike the traditional cell-type deconvolution method,
STIE integrates nuclear morphological information with gene expres-
sion. Therefore, we wanted to investigate whether the nuclear mor-
phology can really contribute to the deconvolution. According to Eq.
(7) (“Methods”), the parameter λ penalizes the difference between
morphology- and transcriptome-based prediction. The extremely
large λ renders the prediction entirely rely on nuclear morphology,
which is first confirmed by the consecutively diminished difference
between morphology- and transcriptome-based prediction along the
increasing λ (Fig. 5d, e top). Therefore, we gradually attribute more to
the morphology by increasing the shrinkage penalty λ and check the
model fitting. Consequently, the RMSE slightly decreased and reached
a minimum between 1e + 03 and 1e + 04 in the human breast cancer
spatial transcriptomics dataset (Fig. 5e bottom), indicating the λ value
of the best balanced contribution between transcriptome and mor-
phology. Afterwards, the RMSE sharply increased with the extremely
large λ value, suggesting that the optimized model cannot fully reply
on the nuclear morphology. It is worth noting that the nuclear mor-
phology has been incorporated into the STIEmodel even at λ=0 (Eq. 9)
when determining the single cell type. In 10X Visium and V2Chemistry
CytAssist mouse brains (Fig. 5d bottom & Supplementary Fig. 41), we
observed allflat RMSE at the beginning followedby the elevation at the
large λ, suggesting the best model has been achieved at λ=0. The
difference between STIE deconvolution at λ=0 and other methods
relying on only gene expression (Fig. 3a–h) supports the additional
contribution of nuclear morphology to the accurate cell typing. The
similar difference can also be observed from the comparison between
STIE clustering at λ=0 and K-means clustering on the CytAsssistmouse
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brain cortex (Supplementary Fig. 27). These facts corroborated the
coordinated contribution of gene expression and nuclearmorphology
to cell typing in the spatial transcriptome.

Third, wewanted to investigate cell type deconvolution-based cell
type colocalization. The cell type proportion can be estimated within
each spot given the gene expression. Subsequently, the correlation
between the predicted cell-type proportions has been widely used to
measure cell type colocalization as a clue of cell type interaction27,37,38.
Here, we compared STIE with the other six methods that take gene
expression as input and deconvolute cell types at spot level. Similar to
Stereoscope, we calculated for eachmethod the Pearson’s correlation
(n = 2518) between cell type proportion within spots as a measure of
cell type colocalization (Fig. 5f). Overall, the transcriptomic signature-
based methods suggested more cell type colocalization with more
saturated and pronounced values, whereas STIE was more

conservative (Fig. 5f, Supplementary Fig. 42). Specifically, all methods
found a negative correlation between CAF and CancerEpithelial, indi-
cating that CAF spatially dissociates from the tumor cell area, which is
consistent with the gross histological distributions of fibrous tissue
area and invasive carcinoma foci in the original H&E image (Fig. 3n). In
addition, a negative correlation between immune cells and Cancer-
Epithelial was observed by all seven methods, suggesting less immune
cell infiltration into tumor cell areas, which can be further related to
the efficacy of immuno-oncology therapy. However, by checking the
cell type transcriptomic signatures, we found that signature similarity
was significantly correlatedwith cell type colocalizationby allmethods
except STIE (Fig. 5g), revealing a potential co-linearity bias within
transcriptomic signatures for the methods relying only on gene
expression. For instance, the original tissue slide is limited to the
cancer area and may not contain “normal epithelia” histologically.

Fig. 5 | Relevant questions in spatial transcriptomics addressed by the single-
cell level deconvolution. Identification of the bona fide area captured by spots in
the mouse brain hippocampus (a) and human breast cancer (b). The x-axis repre-
sents the putative size of the bona fide area measured by the spot in the unit of a
regular 10X Visium spot size (55μm). The top panel represents the chart of bona
fide spot size in the real tissue. Themiddle panel represents the cell count (y-axis) in
the spot area (x-axis); the bottom panel represents the RMSE by fitting the STIE
model using the cells within the corresponding area indicated by the x-axis. The
distributions are drawn from 80 to 151 spots in mouse brain hippocampus and
1568–2508 spots in human breast cancer, respectively. c Identification of the bona
fide area captured by spots in the 10X Visium V2 Chemistry CytAssist mouse brain
hippocampus. The distributions are drawn from 120 to 230 spots in section 1 and
121–245 spots in section2, respectively. The evaluationof image contribution to the
cell type deconvolution in human breast cancer (d) andmouse brain hippocampus
(e). The top panel represents the difference between cell-type proportions esti-
mated from the spot gene expression and the nuclear morphological features; the
bottompanel represents the RMSE of gene expression fitting. The x-axis represents

the value of λ in Formula (7). The distributions are drawn from 151 spots in mouse
brain hippocampus and 2,451 spots in humanbreast cancer, respectively, which are
presented asmean values ±SEM. fHeatmapof the correlation between the cell type
proportion within spots by SPOTlight, DWLS, Stereoscope, RCTD, Tangram,
BayesPrism, and STIE. g The association between transcriptomic signature simi-
larity and cell-type colocalization by SPOTlight, DWLS, Stereoscope, RCTD, Tan-
gram, BayesPrism, and STIE. The two-sided p values are calculated for the Pearson’s
correlation coefficients (n = 36) without adjustment for multiple comparisons. h–i
High-resolution spots alongwith STIE holds thepremise to distinguish nuanced cell
types. h Random assignments of Memory Bcell or Naïve Bcell to the Bcell; CD8+
Tcell, CD4+ Tcell, NK cells, Cycling Tcell, or NKT cell, to the Tcell; andMacrophage,
Monocyte, Cycling Myeloid, or DCs to the Myeloid. i The barplot represents the
concordance of STIE deconvoluted/convoluted single cells with the simulation
ground truth (h). The x-axis represents the simulated spot diameter, and the y-axis
represents the concordance. The color refers to the cell type in the legend. Source
data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-51728-5

Nature Communications |         (2024) 15:7559 10

www.nature.com/naturecommunications


However, due to the high correlation of the signatures between Can-
cerEpithelial and NormalEpithelial (Pearson’s correlation coefficient
r =0.61with n = 1071 and p = 5.1e–130), DWLS, SPOTlight, and RCTD all
suggested their high colocalization. In contrast, STIE identified very
few NormalEpithelial cells by utilizing the nuclear shape to further
distinguish them from the CancerEpithelial, even though they are lar-
gely similar in the transcriptome. Therefore, STIE suggests no colo-
calization between NormalEpithelial and CancerEpithelial in this
dataset. In addition, the misidentification of colocalization may also
result from the lack of sparsity in statistical inference or failure to
characterize cell counts by gene expression-based methods. For
example, the cell typewith anextremely small proportion is still kept in
one spot, and the high proportions of cell types are still estimated for
those cell-sparse areas (Fig. 3a–h). These facts implied the benefits of
accurate cell typing at single-cell level via exploiting both gene
expression and nuclear morphological information, which facilitates
less biased downstream exploration.

At last, it would be very useful for digital pathology if STIE could
distinguish more nuanced cell types, for instance, the heterogeneous T
and B cells that are morphologically similar but transcriptomically dif-
ferent. Intuitively, the current low-resolution spot coversmultiplewhole
cells simultaneously, making it almost infeasible to distinguish two
nuanced T or B cells covered by the same spot. However, this could be
potentially addressed by the upcoming high-resolution spot-based
spatial transcriptomics, which is corroborated by the following simula-
tion analysis. Based on the STIE-deconvoluted Tcell, Bcell, and Myeloid
fromthehumanbreast cancer low-resolution spatial transcriptomics,we
randomly assigned them the new nuanced immune cell type: Memory
Bcell orNaïve Bcell to theBcell; CD8+Tcell, CD4+Tcell, NK cells, Cycling
Tcell, or NKT cell, to the Tcell; and Macrophage, Monocyte, Cycling
Myeloid, or DCs to the Myeloid. The randomly assigned cell types were
used as ground truth in the following investigation (Fig. 5h).Weused the
scRNA-seq data31 to rebuild a new highly-heterogeneous cell-type tran-
scriptomic signature, and further, simulated spatial transcriptomics
datasets with spot diameters of 55μm, 30μm, 20μm, 10μm, and 5μm,
respectively, for which the gene expression of each spot was simulated
based on the fraction of its covering cell types and the corresponding
high-heterogeneous cell type transcriptomic signatures. Of note, the
spot size and gene expression are different between simulated datasets,
while the pathology image and nuclear morphology remain the same.
Using the high-heterogeneity cell type signature, we run STIE on each
simulation to investigate if we can recover those nuanced cell types. The
accuracy of low-heterogeneity cell types, including CAFs, Plasmablasts,
PVL andCancer Epithelial, is consistently highwith small variation across
spot sizes (Fig. 5i). As opposed, the accuracy of high-heterogeneity
immune cells demonstrated a high variation, and with the spot size
becoming smaller, the accuracy is largely improved. At 5μm, the
nuanced immune cells are convoluted very accurately. The high-
resolution spot still covers multiple cells partially, but it is less likely to
completely cover two cells compared to the low-resolution spot, so that
the cell type could be determined by the spot that captures the largest
fraction of the cell and gives the highest probability. Thus, the high-
resolution spot alongwith STIE single-cell convolutionprovides a higher
power in distinguishing nuanced cell types.

STIE enables the investigation of spatially resolved cell-cell
interactions
Given the STIE-obtained single cells with spatial information retained,
we further investigated the spatially resolved cell-cell interaction in the
tissue. We use STIE to re-estimate the cell-type whole-transcriptomic
signature fromhumanbreast cancer spatial transcriptomics and take it
as input for CellChat39, a toolkit and a database of interactions among
ligands, receptors, and their cofactors, to quantitatively infer the cell-
cell interaction.We investigated the interactions at λ=1e3 and λ=1e4 for
STIE, respectively, given their similar measurements in the gene

expression and nuclear morphology fittings (Supplementary Fig. 10).
By further aggregating the ligand-receptor into pathways, we found
that, in both settings, the interactions of extracellular matrix (ECM)
pathways, such as COLLAGEN and FN1, predominantly occur between
CAF, CancerEpithelial, and PVL, as well as the immune pathways, such
as SPP1 and MIF, between immune cells, CAF and CancerEpithelial
(Fig. 6a & Supplementary Fig. 43). We spatiallymapped the interaction
strength to the cell pairs under a cutoff of cell-cell distance that may
permit the potential cell-cell interaction. The COLLAGEN pathway was
taken as an illustrative example (Fig. 6b). The outgoing signal is sent
mainly fromCAFs with a widespread distribution on the tissue (Fig. 6b
left), while the incoming signal is received locally by the Cancer-
Epithelial at the tumor region and the PVL at the tumor boundary,
confirming that the spatially resolved interaction is driven not only by
the ligand-receptor interaction strength but alsoby the cell abundance
and spatial location. Accordingly, we incorporated the information of
the neighboring cell pairs into the cell-cell interaction strength (Fig. 6c
left) and obtained the global spatial cell-cell interaction strength
(Fig. 6c right), which further suggests that spatial intercellular inter-
actions primarily occur among CAFs and CancerEpithelial cells in this
tissue.

To simplify the interpretation of complex intercellular interac-
tions, we used non-negative matrix factorization (NMF) implemented
by CellChat to identify the global interaction patterns beyond only
exploring individual pathways. The sending and receiving patterns are
learned independently and do not necessarily correspond to each
other. We uncovered three sending and three receiving patterns of
signaling pathways, respectively (Supplementary Fig. 44–45 & Fig. 6d
left and right), revealing how the signaling pathways coordinate to
drive communication for certain sender cell types and respond to
incoming signals for certain target cell types. First, a large portion of
ECM signaling among CAFs, CancerEpithelial, and PVL is characterized
by communication between sending pattern 1 and receiving pattern 1,
which represent multiple pathways, including but not limited to
COLLAGEN, FN1, THBS, TENASCIN, PERIOSTIN, and ANGPTL. Second,
an immune signaling pattern among T-cells, B-cells, Plasmablast,
Myeloids, CAFs, and CancerEpithelial is characterized by sending
pattern 2 and receiving pattern 2, representing multiple pathways,
including SPP1, MIF, COMPLEMENT, ITGB, and ICAM. Third, a weak
pattern among Endothelial, CAFs, Myeloids, and Plasmablast was also
uncovered, characterized by receiving pattern 3 with the most minor
pathways, e.g., CXCL andCCL.Mappingpatterns to the spatial location
provides quick insight into their global abundance (Fig. 6e), with pat-
tern 1 being the most predominant, pattern 2 less pronounced, and
pattern 3 the sparsest for both sending and receiving signals. At λ=1e4,
two patterns were uncovered, corresponding to the dominant pattern
1 (ECM signaling) and pattern 2 (immune signaling) at λ=1e3, with the
weak pattern 3 eliminated (Supplementary Fig. 46–48).

There are multiple lines of biological evidence supporting the
intercellular interaction in human breast cancer. For example, the
stiffened collagenous stroma has been reported as a promoter of
malignant transformation and a poor prognostic feature of breast
cancer40,41. Accordingly, the collagen signaling between cancer cells
and stromal cells in our analysis may indicate a potential impact of the
molecular interaction on patient prognosis. Fibronectin (FN) is
another component of the ECM that induces an EMT response and
tumor progression to breast cancer cells. It is reported to be linked
with collagenous bundles40,42,43, which is consistent with our data that
FN signaling is activated along with collagen signaling among cancer
cells, CAFs, andPVLs. Furthermore, FNcontributes to thedevelopment
of EMT through cooperation with signals initiated by the type-I TGFβ
receptor that is also found in our data. Thus, our analysis clearly
visualizes the spatial cancer-stroma association via ECM-related
molecular pathways in breast cancer. In addition, our data illustrate
that osteopontin (SPP1) signaling is mainly sent from myeloid cells,
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although osteopontin has been reported to be secreted from various
cells44 (Fig. 6f). Interestingly, the high signal of the osteopontin path-
way frommyeloid cells to cancer cells was observed in tumor necrotic
areas in our analysis, and many of these myeloid cells could be mor-
phologically classified as macrophages in the H&E staining slide.
Considering that osteopontin from TAMs is reported to be a poor
prognostic factor in breast cancer patients45, the necrotic area of
breast cancer tissue can be one of the hotspots of osteopontin sig-
naling leading to poor prognosis of the patient. Moreover, differing
from the intracellular MIF, extracellular MIF is reported to play a pro-
oncogenic role in promoting breast cancer cell-stroma interactions46.

In addition to human breast cancer, we investigated the mouse
brain hippocampus as another testing tissue with potentially different
mechanisms. As expected, the interaction primarily occurred among

the neuron-associated pathways (Fig. 6g), e.g., NRXN, CADM, CNTN,
PTN, and PSAP. As supporting evidence, transcripts encoding the
synaptic adhesion molecules neurexin-1,2,3 are commonly expressed
in principal cells and interneurons of themousehippocampus, and the
conditional ablation of NRXN alternative splice insertions results in
differential hippocampal network activity by changing the synaptic
interaction between neurons and impairment in a learning task47. The
non-spatially resolved intercellular communication indicated connec-
tions among the majority of cell types with similar strengths (Fig. 6h
top), while after considering the cell spatial location, intercellular
communication between cell types became less pronounced and
tended to occur more frequently within cell types (Fig. 6h bottom).
The spatially resolved interaction is more reasonable because the
hippocampal cell types are distributed locally and separated fromeach

Fig. 6 | Cell-cell communication with spatial information retained. a–f The
spatially resolved cell-cell interaction in human breast cancer at λ=1e3 for STIE.
aHeatmapof the cell-cell interaction strength ofpathways in sender cell types (left)
and receiver cell types (right). In sender and receiver heatmaps, the barplots on top
and right represent the total amount of cell-cell interaction within the cell type and
pathway, respectively. b Cell-cell interaction in the COLLAGEN pathway. The color
of the edge is indicated by the sender cell type on the left panel and the receiver cell
type on the right panel, respectively, and the thickness is proportional to the
interaction strength. The middle panel is the combined sending and receiving
signals with nuclear segmentation and spots overlaid (The black color of edges and
circles does not represent cell types). c The non-spatially resolved interaction
strength between cell types (left) and the total amount of spatially resolved cell-cell
interaction strength (right), which is the strength of interaction (left) times the
number of cell pairs at proximity. The size of the dot is proportional to the number
of cell types, and the edge thickness is proportional to the interaction strength

(left) and the amount of interaction (right). d Heatmap of the contribution of
pathways (top) and cell types (bottom) to the patternof senders (left) and receivers
(right). The enriched pathways in each pattern further overlapped with the top
30 strongest pathways (in Fig. 6a) and are listed beside the heatmap. e The sender
and receiver cell-cell interaction patterns across the tissue. The color of the edge is
indicated by the sender cell type and the receiver cell type in the sender and
receiver patterns, respectively. f Cell-cell interactions in the FN1, SPP1, MIF and
CXCL pathways. g–i Spatial cell-cell interactions in the mouse brain hippocampus.
gHeatmapof the cell-cell interaction strength ofpathways in sender cell types (left)
and receiver cell types (right). h The non-spatially resolved interaction strength
between cell types (top) and the total amount of spatially resolved cell-cell inter-
actions (bottom). i Heatmap of the contribution of pathways (top) and cell types
(bottom) to the pattern of senders (left) and receivers (right). In all above analyses,
only cell-cell interactions within 3μm were counted to consider the potential
autocrine and paracrine signaling. Source data are provided as a Source Data file.
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other. Consistently, five sending patterns and five receiving patterns
are dedicatedly identified for five cell types, respectively (Supple-
mentary Fig. 49–51 & Fig. 6i).

To conclude, we adapted the CellChat toolkit to fit the STIE-
obtained single-cell level spatial transcriptomics so thatwecanexplore
the spatially resolved cell-cell interaction by integrating gene expres-
sion with both cell spatial information and prior knowledge of inter-
actions between signaling ligands and receptors. Thus, the cell-cell
interaction is explored at the single-cell level, holding the premise to
reveal more informative and meaningful biological insights over the
original spot-level spatial transcriptomics and scRNA-seq data.

Discussion
In this paper, we used both real and simulation data, demonstrating
that due to fixed position and fixed size of spots, the spot-based spatial
transcriptomics essentially does not capture single cells. The single
cells cannot be resolved by only enhancing spot resolution via com-
putational imputation or technical improvement, i.e., single-cell reso-
lution is not single-cell level. To bridge the gap, we integrated the
histology image generated along with the spatial transcriptomics and
aligned the gene expression to the image-basednucleus segmentation,
thereby achieving the single-cell level deconvolution and convolution
for the low- and high-resolution spot-based spatial transcriptomics,
respectively. The STIE method relies on cell/nucleus segmentation to
locate cells and morphological information to distinguish cells. The
current 10X Visium supports FFPE that better preserves the cell mor-
phological information compared to fresh frozen tissue section,
therefore holding the great premise for more reliable nucleus seg-
mentation. STIE takes as input the generalized nucleus segmentation
by “Multi-Organ Nucleus Segmentation”22, aiming to provide broader
support to different tissues. STIE also allows for the segmentation of
other cells/nuclei as input. Thededicated segmentationmodel tailored
for a specific organ may further improve the accuracy.

The resolved single cell with retaining spatial location and cell
typing facilitates addressing the critical relevant questions: first, how
large an area can the spot capture?We found that the area captured by
the 10X Visium spot is larger than its reported spot size, i.e., ~2x-3x
reported spot diameter, which demonstrates the best concordance
between spatial transcriptome and nuclear morphology. The larger
spot-capturing area is supported by independent 10X Visium datasets,
suggesting that the resolutionof spot-based transcriptomics shouldbe
re-evaluated. Likewise, the simulation spatial transcriptomics data
used in this paper may have even higher spot resolution than we
reported, since we simulated the bona fide spot size rather than spot
size. The fact that the bona fide spot size is larger than the reported
spot size has both cons and pros: it further downgrades the resolution
of the spot due to covering even more cells; however, it reduces the
loss of information by capturing the gap area between spots. The
integration of imaging and transcriptomics can balance the trade-off
to achieve enhanced resolution and minimize the loss of information.
In addition, we demonstrated that the inclusion of nuclear morphol-
ogy information improves the cell type deconvolution compared with
relying only on gene expression by modulating the ratio of contribu-
tion to the model between nuclear morphology and gene expression.
Thus, one question is raised: if STIE can resolve the single cells and
rescue the gap area from the low-resolution spot spatial tran-
scriptomics, do we really need the high-resolution spot? Our result
suggested that compared to the low-resolution spot, the high-
resolution spot spatial transcriptomics combining with the STIE con-
volution has superior power in distinguishing the nuanced cell types,
such as CD4+ and CD8+ Tcells. This is a promising advantage, which
may lead to many useful applications. Given the improved single-cell
level deconvolution with both spatial information and cell types, we
checked the cell type colocalization. We found that the cell type
deconvolution methods, which only take gene expression as input,

tend to be biased by the underlying similarity among cell-type tran-
scriptomic signatures, thereby overestimating cell type colocalization,
whileby incorporatingnucleusmorphology as orthogonal features, we
better distinguish cells from their resembling transcriptome, enabling
less biased cell type colocalization and misleading conclusions.

In addition to cell deconvolution, STIE can perform single-cell
level clustering when given no cell-type transcriptomic signatures, i.e.,
signature-free single-cell deconvolution/convolution. Since the spot
covers multiple cells simultaneously, the resulting cluster inevitably
comprises a mixture of cell types, making the clustering average gene
expressionmisleading due to themixed cell-type gene expression. The
same challenge can also be raised for the high-resolution spot. STIE
addressed the challenge well and achieved single-cell level clustering.
More importantly, the STIE clustering-derived gene expression
showed the high concordance with scRNA-seq-derived cell type sig-
natures, suggesting that STIE can extract the cell type-specific gene
expression variation from the spatial transcriptomics similar to the
scRNA-seq. However, the cluster can be too small to be found as sig-
nificant, sometimes, for which the signature-based cell deconvolution
is recommended. However, the predefined signaturemay not cover all
possible cell types, which may also bias or misclassify the cell groups.
As such, two methods should be combined to balance the trade-off
and gain a better understanding.

Finally, given the deconvoluted/convoluted single cells with spa-
tial information retained, we explored the spatially resolved cell-cell
interaction at the single-cell level rather than spot level. We did not
attempt to discover the ligand-receptor interaction de novo or esti-
mate the best distance of the cell-cell interaction but instead relied on
prior knowledge, which is well validated and reliable. The dominant
ECM pathway interaction between CAFs and tumors was uncovered in
human breast cancer, and neuron-associated pathways were found in
the mouse brain hippocampus.

Taken together, STIE provides a timely and effective solution for
the currently most predominant spot-based spatial transcriptomics
technique to fill the gap between spot resolution and single-cell level.
We expect it tomake a rich set of applications indiverse domains, such
as genomics, biochemistry, and clinical studies, and lead to broadly
novel biological insights.

Methods
Ethical Statement
This study does not conduct any human or animal experiments.

10X Visium ST data preprocessing
The raw reads and images of 10X ST Visium FFPE for mouse brain,
mouse kidney and human breast cancer and the processed gene-level
read count matrix and image of 10X CytAssist Spatial Gene Expression
(V2 Chemistry) for mouse brain section 1&2 were downloaded from
www.10xgenomics.com/resources. The raw data were preprocessed
using Spaceranger ver. 1.3.0 with parameters in the downloaded
“web_summary.html”. We used the automatic tissue detection by
SpaceRanger workflow to filter out the spots located outside tissue
areas based on the histological examination. Further, considering that
the contamination of background RNA other than cellular RNA may
cause automatic tissue detection to falsely identify spots outside the
tissue, we also performed manual annotation, to exclude the location
that do not overlap tissues. For the specific area of tissue, e.g., the
mouse brain cortex and mouse brain hippocampus, we used Loupe
Browser ver. 5.1.0 VisiumManual Alignment to manually annotate and
select the area of interest and generate the.json file for the following
analysis. The spaceranger ver. 1.3.0 count command was run with the
parameter “--loupe-alignment” set to be the.json file.

The processed gene-level read count matrix, histology image
and nuclear segmentation of 10X Visium frozen
human dorsolateral prefrontal cortex were downloaded from
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http://research.libd.org/globus. The nuclear morphological features
were extracted using ImageJ.

Image-based nucleus segmentation using deep learning
The ImageJ plugin DeeplmageJ21 with the “Multi-Organ Nucleus Seg-
mentation” model22,48–50 was used to perform nucleus segmentation.
The Multi-Organ Nucleus Segmentation model was proposed by the
“Multi-Organ Nucleus Segmentation Challenge22”, aiming to train
the generalized nucleus segmentation model in H&E stained
tissue images to address the challenge that nucleus segmentation
algorithms working well on one dataset can still perform poorly on
other datasets with variation resulting from different organs, disease
conditions, and even digital scanner brands or histology technicians.
The cell location and morphology features were extracted for every
single cell using ImageJ ROI Manager. To reduce memory consump-
tion, the large H&E images were split into small images of
3000 × 3000 pixels. To avoid cells being split on the image
boundary, each split image has four 100-pixel margins over-
lapping with its adjacent images. The overlapped cells were
checked from the four 100-pixel margins based on their location
distance and cell diameter. The larger cell among overlapped
cells was kept for the following analysis. The ImageJ macro was
incorporated into the STIE R package to run the ImageJ plugin for
each split image.

Construction of cell-type transcriptomic signature from the
scRNA-seq data
Given the single-cell data set,weused thebuildSignatureMatrixMAST()
R function developed by DWLS to select the marker genes and build
the matrix of cell-type transcriptomic signature. The cell types in the
single-cell data are expected to represent all cell types in the spatial
transcriptomics. The clusters of the single cells that reveal the con-
stituent cell types are required as input. Upon characterization of the
cell types, differential expression analysis is performed to identify
marker genes for each cell type. We definemarker genes as genes with
an FDR adjusted p value of <0.01 (defined using the hurdle model in
theMAST R package), and a log2mean fold change >0.5. To create the
final signature matrix G, the expression values of these chosen genes
are averaged across each cell type, so that each resulting candidate
matrix is an N ×T matrix, where N is the number of genes and T is the
number of cell types.

STIE model
We first listed the variables used in the model (see Supplementary
Information for detailed derivation):

• N, C,T , S, and F represent the number of genes, cells, cell types,
spots, and morphological features, respectively.

• G= Git

� �
1≤ i≤N;1≤ t ≤T is a matrix of cell-type gene expression

signatures, where Git is the expression of the i-th signature gene
of the t-th cell type.

• E = Eis

� �
1≤ i≤N;1≤ s ≤ S is amatrix of gene expression from the spatial

transcriptomics, where Eis is the expression of the i-th gene in the
s-th spot.

• c= cs
� �

1≤ s ≤ S is the cell index on the histology image, where cs
represents the c-th cell in the s-th spot, and Cs represents the total
cell count in the s-th spot. Theparameter γ is used to represent the
bona fide area captured by the spot, which can be different from
the reported spot size.

• M = Mcf

n o
1≤ c≤C;1≤ f ≤ F

is a matrix of nuclear morphological fea-

tures obtained from the histology image, whereMcf is the value of
the f -th morphological feature of the c-th cell.

• Let q= qc

� �
1≤ c≤C represent the hidden cell type of one single cell

that generates the observed morphological featuresMc and gene

expression Ec, with qc = t representing the c-th cell that takes the
cell type t.

We formulate that Es =
PT

t astGt + εs, s:t:ast ≥0 and εs ∼N 0,σ2
� �

,
where ast is the non-negative regression coefficient for the s-th spot
and the t-th cell type. On the other hand, we assume that the prob-
ability of the nuclear morphological feature follows a Gaussian dis-
tribution, P Mcs

jqcs = t
� �

∼N μt ,Σt

� �
, where μt and Σt are the mean and

variance of the nuclear morphological features of the t-th cell type,
respectively. Thus, the parameter of STIE is a 3-tuple: θ= ast ,μt ,Σt

� �
.

We used the Expectation-Maximization (EM) algorithm to solve
the STIE model and estimate θ. The Q function takes the following
form:

Q θjθ0� �
=
X
q

P qjM, E,θ0� �
logP M, E, qjθð Þ ð1Þ

We assume that each cell is generated independently and that E
andM are conditionally independent given its cell type, q. Thus, the Q
function is rewritten as:

X
s2S

X
cs

X
t

P qcs
= tjMcs

, E
cs
, θ0

� �
logP Mcs

jqcs = t, θ
� �

+
X
s2S

X
cs

X
t

P qcs
= tjMcs

,E
cs
, θ0

� �
log P qcs = tjEcs

, θ
� �

+
X
s2S

X
cs

X
t

logP Ecs
jθ

� �
ð2Þ

The transcriptome of cells in the same spot are profiled in bulk
and observed as the same gene expression profile, i.e., Ecs

= E
s
. Like-

wise, P qis
= tjEis

,θ
� �

of the cell is and P qjs = tjEis
, θ

� �
of the

cell js from the same spot s are also indistinguishable, and
therefore, we obtain that for any cell cs in the spot s,
P qcs

= tjEcs
,θ

� �
=P qcs

= tjEs, θ
� �

=ast=
P

t ast . So, the Q function is
rewritten as:

X
s2S

X
cs

X
t

Ncst
log P Mcs

jqcs = t, θ
� �

+
X
s2S

X
t

Nst log
astP
t ast

+Ns log P Esjθ
� �( )

ð3Þ

where Ncst
=P qcs

= tjMcs
,E

s
,θ0

� �
=

P Mcs
jqcs = t,θ

0ð ÞP qcs = tjEs ,θ
0ð ÞP

t
P Mcs

jqcs = t,θ
0ð ÞP qcs = tjEs ,θ

0ð Þ, Nst =
P

cs

Ncst
, and Ns =

P
cs

P
tNcst

.

In the M-step, we first take the derivative of the Q function (Eq. 3)
with respect to μt , and Σt , respectively. These two parameters are only
in the first term, and the derivative of the second term is zero. To
optimize it, we obtained the following equations:

μtf =
1
Nt

X
s2S

X
cs

Ncst
Mcsf

Σt =
1
Nt

X
s2S

X
cs

Ncst
ðMcs

� μtÞðMcs
� μtÞT ð4Þ

where Nt =
P

s2S
P

cs
Ncst

.
Since the parameter ast for spatial gene expression are only in the

second term of Eq. (3), we optimize the second term to solve out ast .
Each spot can be solved independently as following:

/ � 1
2σ2

X
i

Eis �
X
t

astGit

 !2

+
X
t

Nst

Ns
log

astP
t ast

ð5Þ
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According to the Gibbs’ inequality,
P

ipi logpi ≥
P

ipi log qi, the

right part reaches the maximum at astP
t
ast

= Nst
Ns
. The term astP

t
ast

repre-

sents the cell type proportion estimated from gene expression (we

denoted it as Propt Esjθ0
� �

), while Nst
Ns

represents the cell type propor-

tion estimated from both gene expression and nuclear morphology
(denoted by Propt Ms, Esjθ0

� �
). Further, we assume that

Propt Esjθ0
� �

=Propt Msjθ0
� �

=Propt Ms, Esjθ0
� �

, that is, the cell type
proportion estimated from gene expression and that from nuclear
morphology are the same (Supplementary Note 1), and our aim is to
find their consensus Propt Ms,Esjθ0� �

as the final estimation of cell type
proportions. Therefore, the objective of formula (5) is to estimate the
cell type proportion from gene expression (left part), while also
minimizing its difference from that from morphology (right part). Of
note, the right partfixed the contribution ofmorphological features to
the model. Therefore, similar to spaGCN and Tangram, we added a
hyperparameter ξ to make it more flexible to balance contribution
between gene expression and morphological features. Therefore, the
formula becomes

� 1
2σ2

X
i

Eis �
X
t

astGit

 !2

+ ξ
X
t

Nst

Ns
log

astP
t ast

ð6Þ

This is not a convex optimization. To this end, we reformulated it
as an approximate constrained minimization problem, which makes
the same goal to simultaneously solve the left non-negative least
square and minimize the difference between estimates using gene
expression and morphology:

argminast
Es �

XT
t

astGt

 !2

,

s:t:
X
t

Propt Esjθ
� �� Propt Msjθ

� �� �2
≤ c, c≥0,and ast ≥0

Similar to Tikhonov regularization, we use a Lagrange multiplier
and rewrite the problem as follows:

X
i

X
t

astGit � Eis

 !2

+ λ
X
t

Propt Esjθ0
� �� Propt Msjθ0� �� �2

, ð7Þ

where Propt Esjθ0� �
=ast=

P
tast and Propt Msjθ0

� �
=
P

cs
P qcs

= tj
�

Mcs
, θ0Þ=Cs represent the proportion of cell type t in spot s, which are

estimated from gene expression and nuclearmorphology, respectively.

Theoretically, there are one-to-one correspondences between c,
ξ , and λ. Thus, we transformed Formula (5) to an easier quadratic
optimization and simultaneously optimized the left and right parts of
Formula (5) around Propt Esjθ0

� �
=Propt Msjθ0

� �
.

By assuming that
PT

t ast approximately equals the current esti-
mate

PT
t a

0
st , the formula can be represented in the format of inner

products:

Gas � Es

� �T Gas � Es

� �
+ ζ as � a0

sps

� �T as � a0
sps

� �
,

where we take ζ = λ=
P

ta0
st

� �2 for brevity; as = as1, . . . ,asT

� �T , repre-
senting the T × 1 vector of regression coefficients for the s-th spot;
G= Git

� �
, representing the matrix of signature gene expression whose

first index refers to themarker gene and the second index refers to the
cell type; a0

s =
P

ta
0
st , representing the sum of the current estimates of

as; and ps = ps1, . . . ,psT

� �T with pst =

P
cs
P qcs = tjMcs

,θ0ð Þ
Cs

:

By expanding all items and matching the standard form of
quadratic linear programming,

argminas
aT
s Das � 2dTas, s:t:A

Tas ≥b

we got that

D=GTG+ ζ I

dT = ET
s G+ ζa0

sp
T
s I

i:e:,d =GTES + ζa0
sIps

A= I

b=0 ð8Þ

Given the standard form, we solved the quadratic linear pro-
gramming using the R package “quadprog” (https://cran.r-project.org/
web/packages/quadprog/index.html). The function is
solve.QP(D,d,A,b).

Filling up missing cells outside spots via spot neighborhood
information
Given the STIE model with the parameters θ= ast ,μt ,Σt

� �
, the cell

types were assigned as following:
First, for the cell lying inside thebonafide spot,weassigned the cell

type using the gene expression parameter ast of the bona fide spot that
covers the cell, and the nuclear morphological parameters, μt and Σt ,
estimated from all bona fide spot-covering cells, which is formulated

as argmaxtP qcs = tjEs,Mcs
,θ

� �
= argmaxt

P Mcs
jqcs = t,θð ÞP qcs = tjEs ,θð ÞP

k
P Mcs

jqcs = k,θð ÞP qcs = kjEs ,θð Þ
Second, for the cell, which still lies outside the bona fide spot, we

kept enlarging the spot size until themissing cells are covered.We also
considered both the gene expression parameter ast of the enlarged
spot that covers the cell, and the nuclearmorphological parameters,μt

and Σt to assign the cell type. Of note, we do not update the para-
meters, even though the spot size is enlarged.

The cell covered by different enlarged spots is assigned based on
its highest probability, i.e., for a single cell cs, and the spot set S cov-
ering cs, the cell type is assigned by the following formula:

argmaxt maxs2SP qcs
= tjEs,Mcs

,θ
� �� �

ð9Þ

Cell type signature estimation from spatial transcriptomics and
the spatial transcriptomics clustering at the single-cell level
Given the cell type/cluster proportion in each spot, ast , the signature
gene expression Git was estimated using the following non-negative
least square solution:

argminGit

X
s2S

Eit �
XT
t

astGit

 !2

, s:t:Git >0 ð10Þ

When carrying out clusteringwith both unknowngene expression
signatureGit and unknown cell type proportion of spots, ast , the initial
values of clusters were first given using the spot level clustering, e.g.,
K-means, Louvain clustering or SpaGCN, the cells within the spot were
assigned the same initial cluster, and the initial value of cluster sig-
naturewas set to be the average gene expression of spots belonging to
the cluster. In each iteration, the clustering whole transcriptomic

Article https://doi.org/10.1038/s41467-024-51728-5

Nature Communications |         (2024) 15:7559 15

https://cran.r-project.org/web/packages/quadprog/index.html
https://cran.r-project.org/web/packages/quadprog/index.html
www.nature.com/naturecommunications


signature was re-estimated using Formula (10) in the M-step, and the
cluster of each single cell was re-assigned in the E-step.

High-resolution spatial transcriptomics data simulation from
the real data
To take into account different nuclear sizes of cell types, real 10X
Visium Spatial transcriptomics data from the mouse brain hippo-
campus, mouse brain cortex, mouse kidney, and human breast cancer
were used to simulate high-resolution spot spatial transcriptomics
data. Spot diameters of 30 μm, 20 μm, 10μmand 5μmwere simulated
to cover the whole tissue evenly, where the distance between two spot
centerswas set to be 2x spot diameter. The spot is defined to cover the
cell if the distance of the centroids between the spot and the nucleus is
smaller than the sum of the spot radius and the nucleus major radius.
The cell is approximately treated as a circle with the cell radius being
the nucleus major radius. The cell area covered by the spot was mea-
sured as the area of intersection between the spot and the cell, and the
spot-covering cell proportion was defined as the area of the intersec-
tion divided by the cell area.

Given one high-resolution spot, its transcriptome was simulated
by the following formula:

Es =
X
cs

pcs
Gcs ð11Þ

where cs represents the cell covered by spot s, pcs
represents the cell

area proportion covered by spot s, and Gcs
represents the whole

transcriptomic signature of cell type/cluster cs.

Low-resolution spatial transcriptomics data simulation
We simulated the low-resolution spatial transcriptomics data to test
the STIE and other tools. We simulated 10,000 cells, which are ran-
domly generated from 10 cell types and located in 1000 spots. We
further simulated the gene expression signature comprising of 500
marker genes based on the 10 distinguishable uniform distributions,
respectively, representing the average gene expression within each
cell type. For each cell type,wegenerated 100 single cells as the scRNA-
seq data (100×10 single cells in total), whose gene expression was
simulated from the negative binomial distribution by taking as mean
the corresponding gene expression signature. For each spot in the
spatial transcriptomics, we simulated its bulk gene expression based
on the negative binomial distribution, whose mean is the sum of pro-
ducts between the number of cell types and the corresponding gene
expression signatures. Meanwhile, for each cell in the spatial tran-
scriptomics, we simulated 3 nuclear morphological features based on
theGaussiandistribution, with themean uniformly generated between
0 and 3. To investigate the relative contribution of nuclear morpho-
logical features and spatial gene expression to the final cell typing at
different scenarios, we tweaked the variations of the Gaussian dis-
tribution for morphological features and the negative binomial dis-
tribution for gene expression, respectively, to generate four
combinations between morphological features and spatial gene
expression with either high or low noise. To test the nuclear mor-
phological feature selection, we generated 6 more features: 3 inter-
mediate features that are the sum of any two true features along with
random noise, and 3 irrelevant features that are completely
random noise.

Spatially resolved cell-cell interactions across the sample tissue
We first used STIE to learn the whole-transcriptomic signature of
each cell type/cluster from the spatial transcriptome data. Although
the cell type transcriptomic signature pre-defined from scRNA-seq
was used for cell type deconvolution, we re-estimated the signature
to account for the variation in the real spatial transcriptome data, as
well as the whole transcriptome to cover the potential interaction

beyond the signature genes. We replicated each cell type tran-
scriptomic signature for the times of the corresponding cell count and
used it as the single-cell gene expression for CellChat as input so that
CellChat can evaluate the interaction significance by permuting cells
and recalculating the average gene expression of each permuted
cell type.

Calculation of intercellular interaction probability follows the
steps in CellChat39. Briefly, the ligand-receptor mediated signaling
interactions were calculated using the law of mass action. The random
walk-based network propagation technique was used to project the
single-cell level spatial gene expressiononto aprotein-proteinnetwork
from STRINGdb51. The communication probability pk

i,j between cell
types i and j for a particular ligand-receptor pair k was modeled by
CellChat and adapted as follows:

pk
i,j =

LiRj

Kh + LiRj
1 +

AGi

Kh +AGi

� 	
1 +

AGi

Kh +AGi

� 	
Kh

Kh +ANi

Kh

Kh +ANj
ð12Þ

where Li and Rj represent the expression level of ligand L and receptor
R in cell types, i and j, respectively, which are approximated by the
geometric mean of the expression level of their subunits. AG and AN
represent the average expression of multiple soluble agonists and
antagonists for the ligand-receptor pair. The Hill function was used to
model the interactions between ligand and receptor as well as the
modulations of agonists and antagonists, with a parameterKh set to be
0.5. The probability of ligand-receptor pairs from the same signaling
pathway was summarized, thereby obtaining a communication
probability matrix PT ×T ×K between T ×T cell type pairs and K
signaling pathways.

Of note, CellChat assumes for unsorted single-cell data that
abundant cell populations tend to collectively send stronger signals
than rare cell populations. However, the spatial cell-cell interaction
strength may depend on their distance to a greater extend, compared
to their abundance. Accordingly, we did not include the term cell
count in cell types i and j in Eq. (12), as CellChat did. Moreover, given a
distance cutoff, we recalculate the global cell-cell interaction by con-
sidering the spatial proximity.

Cij =
X
k

nijPijk ð13Þ

where nij represents the number of cell pairs within a distance cutoff,
and Cij represents the weighted total count of spatially resolved
interactions between cell types i and j. We left the distance between
nucleus centroids along their major axes as a parameter and set it as
default to be 3 μm as the cell-cell attachment distance52.

In addition, non-negative matrix factorization (NMF) was applied
to the intercellular communication probability matrix to infer the
latent outgoing and incoming signal patterns of ligand-receptor pairs
or signaling pathways for sender cells and target cells, respectively,
which reveal how these ligand-receptor pairs or signaling pathways
work together to drive communication for certain sender cell groups
and respond to incoming signals for certain target cell groups,
respectively. The Cophenetic and Silhouette metrics were used to
select the number of latent patterns. Two contribution matrices,Wout

ir
and Hout

rk , were obtained for outgoing patterns via NMF, representing
the contribution of cell group i and the contribution of signaling
pathway k in the incoming pattern r, respectively; likewise, two con-
tribution matrices, Win

ir and Hin
rk , were obtained for the incoming pat-

terns. Furthermore, we calculated the cell communication strength in
each outgoing and incoming pattern as follows:

Or
ij =
X
k

Wout
ir PijkH

out
rk and Irij =

X
k

Win
jr PijkH

in
rk ð14Þ
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Most of the above functions are implemented and extended
based on CellChat.

Statistics & reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The investigators were not blinded to the labels of the samples
in the test set before themodel evaluation. All the statistical details can
be found in the figure legends as well as in the “Method” section.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are avail-
able within the article and its Supplementary Information files. The
authors analyzed the publicly available spatial transcriptome
and single-cell RNA-seq datasets. The data were acquired from
the following websites or accession numbers: (1) 10X Visium
adult mouse brain FFPE; (2) 10X Visium adult mouse kidney FFPE;
(3) 10X Visium human breast cancer FFPE; (4) 10X Visium frozen
postmortem human dorsolateral prefrontal cortex (the Globus end-
point ‘jhpce#HumanPilot10x’); (5) 10X CytAssist Spatial Gene
Expression (V2 Chemistry) mouse brain coronal section1 FFPE and
section 2 FFPE; (6) Human breast cancer spatial transcriptomics
(https://www.spatialresearch.org/resources-published-datasets/doi-
10-1126science-aaf2403/); (7) H&E images for primary breast cancer
frozen tissue section in HDST; (8) Single nucleus RNA-seq dataset of
1,402 cells in the adult mouse hippocampus (https://singlecell.
broadinstitute.org/single_cell/study/SCP1/-single-nucleus-rna-seq-of-
cell-diversity-in-the-adult-mouse-hippocampus-snuc-seq#study-
download); (9) Single cell RNA-seq dataset of 14,249 adult mouse
cortical cell taxonomy from the Allen Institute (https://www.
dropbox.com/s/cuowvm4vrf65pvq/allen_cortex.rds?dl=1); (10) Sin-
gle cell RNA-seq of 26 primary tumors from three major clinical
subtypes of human breast cancer (GSE176078). (11) Themarker genes
of 31 preliminary cell clusters across 7 broad cell types on the single
nucleus RNA-seq data from DLPFC using 5,231 nuclei (https://github.
com/LieberInstitute/spatialLIBD). Source data are provided with
this paper.

Code availability
STIE is publicly available as an open-source R package on GitHub
(https://github.com/zhushijia/STIE) and Zenodo (https://zenodo.org/
records/12754760)53.
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