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Abstract
Background: MicroRNAs are believed to play an important role in gene expression regulation. They have been shown to 
be involved in cell cycle regulation and cancer. MicroRNA expression profi ling became available owing to recent technol-
ogy advancement. In some studies, both microRNA expression and mRNA expression are measured, which allows an 
integrated analysis of microRNA and mRNA expression.

Results: We demonstrated three aspects of an integrated analysis of microRNA and mRNA expression, through a case study 
of human cancer data. We showed that (1) microRNA expression effi ciently sorts tumors from normal tissues regardless of 
tumor type, while gene expression does not; (2) many microRNAs are down-regulated in tumors and these microRNAs can 
be clustered in two ways: microRNAs similarly affected by cancer and microRNAs similarly interacting with genes; 
(3) taking let-7f as an example, targets genes can be identifi ed and they can be clustered based on their relationship with 
let-7f expression.

Discussion: Our fi ndings in this paper were made using novel applications of existing statistical methods: hierarchical 
clustering was applied with a new distance measure—the co-clustering frequency—to identify sample clusters that are 
stable; microRNA-gene correlation profi les were subject to hierarchical clustering to identify microRNAs that similarly 
interact with genes and hence are likely functionally related; the clustering of regression models method was applied to 
identify microRNAs similarly related to cancer while adjusting for tissue type and genes similarly related to microRNA 
while adjusting for disease status. These analytic methods are applicable to interrogate multiple types of -omics data in 
general.
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Background
MicroRNAs (miRNAs) are a class of small non-coding RNAs that are believed to regulate gene expression 
[1, 2]. The fi rst two miRNAs, lin-4 and let-7, were experimentally discovered in 1993 and 2000 [3, 4]. 
Since then more than 4300 miRNAs have been identifi ed in plants, animals, and viruses using cDNA 
sequencing and computational predictions [5–8]. MiRNAs regulate their target genes, through base-
pairing, by inducing mRNA degradation and translational repression [1, 2]. In humans, miRNAs might 
regulate as many as a third of the protein coding genes [9]. MiRNAs are likely to have an important 
impact on development in various cellular processes, such as cancer. MiRNAs have been shown to be 
linked to a number of cancer types in several studies on individual miRNAs [10, 11].

Cancer is a complex and heterogeneous disease whose initiation and progression are infl uenced by 
a variety of molecular changes [12]. A complete characterization of the genomic changes may help 
predict the pathologic behavior of cancer. Genome-wide profi ling of gene expression has been increas-
ingly applied in clinical settings to understand genomic changes at the mRNA level. Examples can be 
found in breast, colon, ovarian, and prostate cancer [13–16]. Such knowledge has improved our under-
standing of cancer biology and facilitated the discovery of new cancer subtypes and new biomarkers 
for cancer diagnosis, prognosis, and treatment [17, 18].

Large-scale expression profi ling has recently become available for miRNAs as well [19]. Profi ling 
methods for miRNA expression are mostly based on glass-slide microarrays [20–22] and the latest 
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development is the bead-based fl ow cytometry 
technique [23]. Genome-wide miRNA studies 
allow the investigation of genomic changes in 
cancer at the miRNA level and are likely to provide 
additional clues to the mechanisms of tumorigen-
esis [23–25]. In particular, when miRNA and 
mRNA expression are both measured on the same 
samples, an integrative analysis can be performed 
to compare miRNAs and mRNAs profi les and to 
study their interaction patterns. The goal of this 
paper is to demonstrate three aspects of such an 
integrative analysis through novel applications of 
existing statistical methods.

In this paper, we will focus on the following 
three aspects of an integrative analysis of mRNA 
and miRNA expression data, while taking into 
account of sample phenotype data (for example, 
tumor versus normal samples).
(1)  Stable sample clustering based on miRNA 

expression in comparison with that based on 
gene expression.

(2)  Identifi cation of cancer-related miRNAs and 
clustering of these miRNAs into groups that 
similarly interact with genes and into groups 
that are similarly affected by cancer.

(3)  Identifi cation of candidate target genes for a 
given miRNA and clustering of these genes 
based on their relationship with miRNA 
expression and disease status.

We will demonstrate these three aspects of an 
integrative analysis using a published study of 
miRNA and mRNA expression in various types of 
tumor samples [23]. A set of 46 samples, whose 
miRNA expression and gene expression were both 
measured, was used in our analysis (Supplementary 
Table 1). These 46 samples consist of 28 tumor 
samples belonging to fi ve tissue types and their 18 
normal counterparts (�1 normal per tissue type). 
MiRNAs and genes with truncated values in �10% 
samples are excluded, which results in 128 miR-
NAs and 7149 genes in our analysis.

Results

Clustering samples
Pioneered by Eisen et al. [26], hierarchical clustering 
is the most commonly used method for sample 
clustering using expression profi les. With hierarchical 
clustering, a distance measure is calculated between 
the expression profi les of each gene (or gene cluster) 

pair, and a recursive bottom-up or top-down 
algorithm is then employed to merge or split genes 
based on their distance. Examples of distance 
measures include the Euclidean distance and one 
minus the Pearson correlation coefficient. 
Hierarchical clustering does not require the number 
of clusters to be pre-specified and has nice 
visualization properties (dendrogram and heatmap). 
Similar to many other clustering algorithms, a well-
recognized drawback of hierarchical clustering, 
however, is that it always generates a clustering even 
when there is no real underlying clustering in the 
data. It is not apparent whether the clustering 
structure refl ects a ‘true’ pattern in the data or is just 
an artefact of the clustering algorithm. Methods 
based on resampling have been proposed to evaluate 
the significance of a clustering [27–29]. These 
methods simulate perturbations of the original data 
and assess the stability of the clustering results.

Also based on resampling, Monti et al. proposed 
a method, called ‘consensus clustering’, that makes 
use of the resampling results to guide clustering 
[30]. Briefl y, consensus clustering quantifi es the 
agreement among clustering runs over the per-
turbed data sets, measured by a consensus matrix 
whose elements are the frequency that two samples 
are clustered together, and then performs hierarchi-
cal clustering using the consensus matrix as simi-
larity matrix.

In the consensus clustering, the co-clustering 
frequency measure counts co-clustering frequency 
of two samples among perturbed data sets that 
include both samples. Instead, we apply the cluster-
ing of each perturbed data set to classify samples 
in the original data set using the nearest-centroid 
method and then count the frequency of two sam-
ples being classifi ed together among all perturba-
tions. We will call this method as ‘stable 
hierarchical clustering’. We used a partitional clus-
tering method, PAM (partitioning around medoids) 
[31], to cluster each perturbed data set in this paper. 
Details of the stable hierarchical clustering method 
are provided in Method section.

We fi rst applied stable hierarchical clustering 
to identify stable sample clusters based on miRNA 
expression (Fig. 1a). Interestingly, except for three 
colon tumors, tumor samples were well separated 
from normal samples, regardless of tissue type. 
A potential explanation of the mis-clustering of the 
three colon tumors is normal tissue contamination, 
which colorectal cancer is prone to. The three colon 
tumors were excluded from our subsequent 
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analysis. Nonetheless, this clustering result 
suggests that miRNA expression has the potential 
of distinguishing tumors from normal samples for 
clinical diagnosis.

We also applied stable hierarchical clustering 
to cluster samples based on gene expression. It did 
not separate tumors from normal samples as effi -
ciently and it tended to recognize tissue types rather 
than disease status (Fig. 1b). A possible explanation 
is the following: (i) only a small number of genes 
have signals differentiating cancer from normal 
and a large number of genes are only adding noise, 
which might obscure or distort the signals; and 
(ii) miRNAs are upstream in the regulatory network 
and thus might contain more accurate information 
about the state of the sample.

Hierarchical clustering has been applied to 
cluster samples in the original publication by Lu 
et al. [23]; however, they clustered tumor samples 
only and discovered clusters refl ecting various 
tumor characteristics. We showed, through 
subjecting both tumors and normals to clustering 
and adopting a new distance measure for clustering, 
that miRNA expression can clearly distinguish 
tumors from normals, regardless of tissue type. Lu 
et al. showed the inferiority of mRNA expression 
in distinguishing GI versus Non-GI tumors, while 

we showed its inferiority in distinguishing tumors 
versus normals.

Identifying and clustering 
cancer-related miRNAs
Filtering has been commonly adopted as a useful 
pre-processing step, to remove uninformative 
genes and to reduce computational burden, for gene 
clustering. We applied similar fi ltering step for 
miRNA clustering. Specifi cally, we selected a 
subset of miRNAs that are related to cancer, by 
modelling miRNA expression using a per-gene 
linear regression model with disease status and 
tissue type as covariates [32] and evaluating the 
signifi cance of the correlation with disease status 
using an Empirical Bayesian t test [33]. Among 
the 128 miRNAs, 89 (70%) were found to be 
related to cancer at the signifi cance level of 0.001. 
The 89 miRNAs were all down-regulated in 
tumors. In the subsequent cluster analysis, we 
focused on a subset of 38 miRNAs, which had both 
a small p-value (�0.001) and a large fold change 
(�3) (Table 1, Fig. 2).

To better understand the grouping structure 
among these 38 cancer-related miRNAs, we clus-
tered them in two ways. One is to identify groups 
of miRNAs that similarly interact with genes. The 
other is to identify groups of miRNAs that are 
similarly affected by disease status.

MiRNAs were clustered based on their 
correlation patterns with gene expression. The 

Figure 1a. Sample clustering based on miRNA expression. The 
heatmap represents the co-clustering frequency between samples: 
the co-clustering frequency on the diagonal is always 1, as a sample 
is always clustered with itself. The dendrogram represents the sample 
clustering using the hierarchical clustering method with the co-
clustering frequency as the similarity measure. Each sample is denoted 
with its disease status (T = Tumor, N = Normal) and tissue type (BRST 
= Breast, COLON, KID = Kidney, LUNG, PROST = Prostate).

Figure 1b. Sample clustering based on gene expression.
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correlation matrix between miRNA expression 
and gene expression were calculated and graphi-
cally displayed with a heatmap, where rows are 
genes and columns are miRNAs. MiRNAs were 
then clustered based on this correlation matrix, 
so that miRNAs with similar correlation profi les 
(ie. similar columns of the correlation matrix) 
were clustered together. For the clustering step, 
the hierarchical clustering method was employed, 
with the Euclidean distance as the distance mea-
sure. MiRNAs closer on the dendrogram share 
similar correlation pattern with genes and are thus 

likely functionally related. The miRNA-gene cor-
relation heatmap and the corresponding miRNA 
clustering were generated separately for tumor 
samples and normal samples (Figs. 3a–b). Of 
note, several let-7 family miRNAs, although 
belonging to different clusters based on mean 
expression levels, share similar correlation pat-
terns with gene expression profi les in both tumor 
and normal tissues.

MiRNAs were also clustered based on their 
relationship to disease status. A new clustering 
method, the clustering of regression models 
(CORM) method, models expression using 
regression and assumes that miRNAs in the same 
cluster share the same regression coeffi cients [34]. 
This method tends to provide more stable cluster-
ing than K-means clustering, as it explicitly mod-
els different sources of variations and bases 
clustering solely on the systematic variation [35]. 
Using the CORM method with disease status and 
tissue type as the covariates, miRNAs were clus-
tered so that miRNAs in the same cluster have 
similar mean expression among tumor samples and 
normal samples for each tissue type (Table 1, 
Fig. 4). It is reassuring to see that variants of the 
same miRNA tend to belong to the same cluster. 
For example, let-7f and let-7g are both in cluster 2. 
Of note, miRNAs in cluster 2 (let-7f, let-7g, 
miR-15a, miR-30c, and miR-126) are expressed 
at a similar level among normal samples and down-
regulated at a similar level among tumors, regard-
less of tissue type. In addition, miRNAs in cluster 
4 (miR-199a, miR-199b, miR-200a, and miR-214) 
are signifi cantly down-regulated in kidney tumors. 
Interestingly, miR-200a was fi rst cloned in mouse 
kidney tissue and its expression was confi rmed in 
humans [36].

Identifying and clustering target genes 
for let-7f
MiRNAs are thought to negatively regulate mRNA 
in one of two ways depending on the degree of 
complementarity between the miRNA and its target 
[37]: (1) miRNAs that bind perfectly to their tar-
get’s coding sequence are thought to result in 
mRNA degradation, and (2) miRNAs that bind 
with imperfect complementarity to the 3’ UTR 
block target gene expression at the level of protein 
translation.

Target gene prediction is an important but com-
plicated task for miRNA studies [38]. Several 

Table 1. The 38 cancer-related miRNAs with p-value � 
0.001 and fold-change �3.

Cluster Name Fold-change P-value
1 hsa-miR-23b 3.11 3.37E-09
1 hsa-miR-26b_

(sub_1)
3.34 3.53E-10

1 hsa-miR-125b 3.21 7.13E-06
2 hsa-let-7f 3.27 1.40E-12
2 hsa-let-7g 3.45 4.00E-15
2 hsa-miR-15a 3.65 4.82E-10
2 hsa-miR-30c 3.65 2.96E-11
2 hsa-miR-126 4.12 5.70E-10
3 hsa-let-7d 3.79 2.89E-08
3 hsa-let-7i 3.51 3.52E-09
3 hsa-miR-19a 4.33 7.72E-10
3 hsa-miR-20_

(sub_1)
3.68 6.63E-11

3 hsa-miR-28 3.75 5.73E-10
3 hsa-miR-34a_

(sub_1)
3.36 3.58E-07

3 hsa-miR-101 6.37 1.41E-15
3 hsa-miR-130a 6.58 3.89E-15
4 hsa-miR-199a* 4.52 1.79E-08
4 hsa-miR-199a_

(sub_1)
4.03 1.51E-05

4 mmu-miR-199b 3.68 2.62E-05
4 hsa-miR-200a 3.02 1.62E-05
4 hsa-miR-214 4.05 3.81E-07
5 hsa-miR-99a 6.99 2.78E-07
5 hsa-miR-100 5.26 3.80E-07
6 hsa-miR-33 5.56 4.82E-07
6 hsa-miR-141 4.46 3.58E-06
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Figure 2. Boxplot for the 38 cancer-related miRNAs among normal samples (grey) and tumor samples (red).

Figure 3a. (left panel)—Hierarchical clustering of the 38 cancer-related miRNAs based on the miRNA-gene correlations among 
tumor samples. Heatmap represents the miRNA-genes correlations, with columns for miRNAs and rows for genes.
Figure 3b. (right panel)—Hierarchical clustering of the 38 cancer-related miRNAs based on the miRNA-gene correlations among 
normal samples.
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algorithms have been proposed for miRNA target 
prediction, which mostly rely on the assumption 
of base pairing and evolutionary conservation. 
Examples of the sequence-based prediction algo-
rithms include MiRanda, PicTar, and TargetScanS 
[39–42]. A large number of miRNA targets are still 
unknown [43]. MiRNA expression profi ling pro-
vides an alternative for identifying target genes, 
especially those targeted through degradation, by 
correlating miRNA and gene expression. It can 
potentially provide in vivo evidence of gene target-
ing, as opposed to the in silico evidence provided 
by the sequence-based prediction algorithms.

We took let-7f as an example to demonstrate 
how to identify and cluster miRNA target genes 
using miRNA and gene expression. For each gene, 
the expression level is modeled using a linear 
regression model with let-7f expression, disease 
status, and their interaction as the covariates. This 
full model is then compared to a reduced linear 
regression model with disease status as the covari-
ate, using a likelihood ratio test, to evaluate the 
association between gene expression and let-7f 
expression. A set of 178 genes showed signifi cant 
association with let-7f expression using a 
signifi cance cut-off of p-value = 0.001 (Supple-
mentary Table 2). These 178 are potential let-7f 
target genes, with a false discovery rate of about 
0.015 [44]. These 178 genes are enriched in nucleic 

acid binding and regulation of DNA replication or 
transcription; a number of the predicted target 
genes are related to cancer, such as RASSF7, 
RAB34, ARAF, BCL2L14, MLL3, MORF4L2, 
PERP, and SELENBP1. The RAS family has been 
shown to be let-7 targets experimentally [45]. In 
our analysis, RASSF7 (alias HRAS1) and RAB34 
(member of RAS super-family) were predicted to 
be let-7f targets. Specifi cally, RASSF7 is nega-
tively correlated with let-7f expression among 
normal samples and positively correlated among 
tumors (Fig. 5a). The opposite pattern holds for 
RAB34 (Fig. 5b).

Using CORM with let-7f expression, disease 
status, and their interaction as covariates, the 178 
genes were clustered so that genes in the same 
cluster vary similarly as let-7f varies given the 
disease status (Supplementary Table 2). Interest-
ingly, clusters 1–4 seem to be mirror images of 
clusters 5–8, respectively (Fig. 6). Genes in cluster 
1 are negatively correlated with let-7f in normal 
samples; genes in cluster 2 and 3 are negatively 
correlated in normal samples and positively cor-
related in tumors; genes in cluster 4 are positively 
correlated in tumors; and genes in cluster 9 are 
positively correlated in normal samples and 
negatively correlated in tumors. RASSF7 and 
ARAF belong to cluster 3, while RAB34 and PERP 
belong to cluster 6.

Figure 4. Profi le plot for CORM clusters of the 38 cancer-related miRNAs. Each panel is for a miRNA cluster and each line is for a 
miRNA. X axis represents combinations of disease status (T = Tumor, N = Normal) and tissue type (BRST=Breast, COLON, KID = Kidney, 
LUNG, PROST = Prostate). Y axis is the mean miRNA expression level for a given tissue type and disease status.
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Methods

Stable hierarchical clustering
Stable hierarchical clustering groups samples based 
on the co-clustering frequency among repeated 
bootstrap sampling. Specifically, (i) bootstrap 
sample sets are generated by resampling with 
replacement from the original sample set; (ii) for 
each bootstrap sample set, samples were parti-
tioned to a prespecifi ed number of clusters using 
PAM (partitioning around medoids) method and 
the corresponding cluster centers are applied to 
classify the samples in the original sample set using 

the nearest-centroid method; (iii) for each sample 
pair in the original sample set, the frequency of 
being assigned to the same cluster is calculated 
across bootstrap sample sets. The co-clustering 
frequency is then used as a similarity measure for 
hierarchical clustering to identify stable clusters 
of samples.

Clustering of regression models 
method
As for per-gene regression analysis, CORM uses 
regression to model systematic variation in 
expression levels but, in addition, assumes that 

Figure 5a. Scatter plot for RASSF7 expression versus let-7f expression. X axis is let-7f expression and Y axis is RASSF7 expression. 
Tissue type is labeled under each point. Color of the label represents disease status: red for tumor and blue for normal.
Figure 5b. Scatter plot for RAB34 expression versus let-7f expression.
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genes in the same cluster share the same values of 
regression coefficients [34]. To identify gene 
clusters, CORM was applied using the same 
regression model as for their per-gene analysis.

Let Xgi (ngi × p) denote the design matrix for gene 
g and sample i, Fβk,ξk the conditional distribution of 
genes in cluster k given the covariates with param-
eters βk and ξk, βk (p × 1) the vector of regression 
coeffi cients, and µ(.; .) the regression function. The 
model underlying CORM can be written as

 ygi | (Xgi, ug = k) ∼ Fβk,ξk 
 E(ygi | Xgi, ug = k) = µ(Xgi; βk) 

where ug is a random variable on (1, 2, ... , K) 
with probabilities (π1, π2, ... , πK). Complete spec-
ification of the CORM modeling framework 
requires identifi cation of the error structure (param-
eterized by ξ), which depends on the form of the 
regression model. The specifi c form of the regres-
sion model used for CORM is fl exible. For example, 
it can be the linear model, the linear mixed model, 

the nonlinear model, and the nonparametric regres-
sion model. Its choice should depend on the 
experimental design and the scientifi c question.

The clustering of linear models (CLM) method 
can be applied to cross-sectional data to fi nd genes 
whose expression levels are similarly related to a 
set of covariates. In cross-sectional data, a single 
expression value is measured for a gene on a 
sample; hence, ygi reduces to ygi and Xgi to xgi. The 
underlying model for CLM can be written as

 ygi | (xi, ug = k) = xT
iβk + εgi 

 εgi ∼ N(0, σ2
k) 

The EM algorithm can be used to fi t the CLM 
model, and implementation details can be found 
in [34].

For the analysis of the human cancer data in this 
paper, the CLM method was used to (1) identify 
miRNAs similarly related to disease status and tissue 
type with disease status and tissue type as covariates, 
and (2) identify genes similarly related to let-7f and 

Figure 6. Profi le plot for CORM clusters of the 178 genes predicted as let-7f targets. Genes were clustered based on their relationship 
with let-7f and disease status using the CORM method. Each panel is for a gene cluster and each line is for a gene. X axis represents four 
conditions: normal, normal with one unit let-7f expression, tumor, and tumor with one unit let-7f expression. Y axis represents the average 
gene expression level for a given condition.
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disease status with let-7f expression level, disease 
status, and their interaction as covariates.

CLM is closely related to K-means clustering, 
both being partitional clustering; however, K-
means clusters gene based on the expression levels 
directly, while CLM based on the relationship 
between expression and the covariates and hence 
pools information across samples. Comparing to 
K-means, CLM tends to identify more stable clus-
ters across samples [35].

Discussion
The study of miRNAs has received a lot of atten-
tion lately [1, 2]. There is evidence that miRNAs 
are involved in animal development and cell cycle 
regulation. MiRNAs might play an important role 
in cancer and in regulating cancer-related genes 
[10, 11, 23, 45]. Our fi ndings in this paper suggest 
the signifi cance of microRNA expression itself in 
cancer diagnosis. Using let-7f as an example, we 
showed that its expression is correlated with the 
expression of a number of known oncogenes and 
the directionality of the correlation (positive cor-
relation versus negative correlation) may be dif-
ferent in tumors and in normal tissues.

Target prediction is an important component in 
understanding miRNAs and their functions. As an 
alternative to existing sequence-based algorithms, 
an expression-based strategy for miRNA target 
prediction was proposed in this paper and its 
feasibility was demonstrated through an application 
to a human cancer data set. Like the sequence-
based predictions, the expression-based predic-
tions also have limitations. For example, 
correlation is not direct interaction and genes cor-
related with a miRNA might be down-stream 
genes of miRNA direct targets. Rather the two 
predictions are complementary and could be com-
bined to prioritize candidate targets for experi-
mental validation.

Many types of high-throughput ‘-omics’ data 
have recently emerged, such as gene copy number, 
gene expression, and proteomics data. The inter-
pretation and integration of these data pose a chal-
lenge for both experimental and quantitative 
scientists in this fi eld. The analytic methods in this 
paper provide a new tool to interrogate these 
high-throughput data in an integrative fashion. In 
particular, CORM has been previously applied to 
data collected under various experimental designs, 
such as cross sectional, longitudinal with no rep-
lication, and longitudinal with replications. In this 

paper, we demonstrated yet another application of 
CORM to clustering miRNAs or genes with respect 
to specifi c covariates of interests. We have focused 
on the cluster analysis in this paper, including the 
clustering of samples, miRNAs, and genes. These 
exploratory analyses are one aspect of an integra-
tive analysis of miRNA and gene expression. We 
will investigate other types of integrative analysis 
in the future to gain a better understanding of the 
relationship between miRNAs and genes as well 
as their joint behaviors.
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Supplementary Table 1 – Sample list


List of samples used in this paper. 


		id

		sample.name

		disease.status

		tissue.type



		1

		N_COLON_1

		N

		COLON



		2

		N_COLON_3

		N

		COLON



		3

		N_COLON_4

		N

		COLON



		4

		N_COLON_5

		N

		COLON



		5

		T_COLON_2

		T

		COLON



		6

		T_COLON_3

		T

		COLON



		7

		T_COLON_4

		T

		COLON



		8

		T_COLON_5

		T

		COLON



		9

		T_COLON_7

		T

		COLON



		10

		T_COLON_9

		T

		COLON



		11

		T_COLON_10

		T

		COLON



		12

		N_KID_1

		N

		KID



		13

		N_KID_2

		N

		KID



		14

		N_KID_3

		N

		KID



		15

		T_KID_1

		T

		KID



		16

		T_KID_3

		T

		KID



		17

		T_KID_4

		T

		KID



		18

		T_KID_5

		T

		KID



		19

		N_PROST_1

		N

		PROST



		20

		N_PROST_2

		N

		PROST



		21

		N_PROST_4

		N

		PROST



		22

		N_PROST_6

		N

		PROST



		23

		N_PROST_7

		N

		PROST



		24

		N_PROST_8

		N

		PROST



		25

		T_PROST_1

		T

		PROST



		26

		T_PROST_2

		T

		PROST



		27

		T_PROST_3

		T

		PROST



		28

		T_PROST_4

		T

		PROST



		29

		T_PROST_5

		T

		PROST



		30

		T_PROST_6

		T

		PROST



		31

		N_LUNG_1

		N

		LUNG



		32

		N_LUNG_3

		N

		LUNG



		33

		T_LUNG_1

		T

		LUNG



		34

		T_LUNG_2

		T

		LUNG



		35

		T_LUNG_3

		T

		LUNG



		36

		T_LUNG_4

		T

		LUNG



		37

		T_LUNG_6

		T

		LUNG



		38

		N_BRST_1

		N

		BRST



		39

		N_BRST_2

		N

		BRST



		40

		N_BRST_3

		N

		BRST



		41

		T_BRST_1

		T

		BRST



		42

		T_BRST_2

		T

		BRST



		43

		T_BRST_3

		T

		BRST



		44

		T_BRST_4

		T

		BRST



		45

		T_BRST_5

		T

		BRST



		46

		T_BRST_6

		T

		BRST
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Supplementary Table 2 – Predicted target genes for let-7f based on expression profiles


List of the 178 genes predicted as targets for let-7f, together with their CORM cluster memberships. 


		Cluster

		Gene.Symbol

		Gene.Title



		1

		SELENBP1

		selenium binding protein 1



		1

		MGC61598

		similar to ankyrin-repeat protein Nrarp



		1

		CFL1

		cofilin 1 (non-muscle)



		1

		ARPP-19

		Cyclic AMP phosphoprotein 19 kD



		1

		ALKBH7

		AlkB alkylation repair homolog 7 (E. coli)



		

		

		



		2

		PRKACG

		protein kinase cAMP-dependent catalytic gamma



		2

		FLJ35348

		FLJ35348



		2

		BCL2L14

		BCL2-like 14 (apoptosis facilitator)



		2

		PTK6

		PTK6 protein tyrosine kinase 6



		2

		AMELY

		amelogenin (amelogenesis imperfecta 1 X-linked) 



		2

		 FCBBF3021807

		CDNA FLJ34214 fis



		

		

		



		3

		GPR3

		G protein-coupled receptor 3



		3

		MTMR11

		myotubularin related protein 11



		3

		SMG5

		Smg-5 homolog nonsense mediated mRNA decay factor (C. elegans)



		3

		PIGR

		polymeric immunoglobulin receptor



		3

		SPTBN1

		spectrin beta non-erythrocytic 1



		3

		C2orf24

		chromosome 2 open reading frame 24



		3

		PHF7

		PHD finger protein 7



		3

		CCR9

		chemokine (C-C motif) receptor 9



		3

		GAP43

		growth associated protein 43



		3

		SLCO2A1

		solute carrier organic anion transporter family member 2A1



		3

		MASP1

		mannan-binding lectin serine peptidase 1 (C4/C2 activating component of Ra-reactive factor)



		3

		GYPA

		glycophorin A (MNS blood group)



		3

		ZNF622

		Zinc finger protein 622



		3

		PCDH1

		protocadherin 1 (cadherin-like 1)



		3

		GABRA1

		gamma-aminobutyric acid (GABA) A receptor alpha 1



		3

		DRD1

		dopamine receptor D1



		3

		CREBL1

		cAMP responsive element binding protein-like 1



		3

		CREBL1 /// TNXB

		cAMP responsive element binding protein-like 1 /// tenascin XB



		3

		HLA-DOA

		major histocompatibility complex class II DO alpha



		3

		HLA-DOB

		major histocompatibility complex class II DO beta



		3

		BTN2A2

		butyrophilin subfamily 2 member A2



		3

		URG4

		up-regulated gene 4



		3

		ACHE

		acetylcholinesterase (Yt blood group)



		3

		PMS2L1 /// PMS2L5 /// LOC441259 /// PMS2L11 /// LOC641799 /// LOC641800 /// LOC645243 /// LOC645248

		postmeiotic segregation increased 2-like 1 /// postmeiotic segregation increased 2-like 5 /// similar to postmeiotic segregation increased 2-like 2 /// postmeiotic segregation increased 2-like 11 /// similar to postmeiotic segregation increased 2-like 2 /// similar to postmeiotic segregation increased 2-like 2 /// similar to postmeiotic segregation increased 2-like 2 /// similar to postmeiotic segregation increased 2-like 2



		3

		TRBV21-1

		T cell receptor beta variable 21-1



		3

		NEFL

		neurofilament light polypeptide 68kDa



		3

		POP1

		processing of precursor 1 ribonuclease P/MRP subunit (S. cerevisiae)



		3

		ODF1

		outer dense fiber of sperm tails 1



		3

		C9orf21

		Chromosome 9 open reading frame 21



		3

		PSD

		pleckstrin and Sec7 domain containing



		3

		TTC17

		tetratricopeptide repeat domain 17



		3

		PAX6

		paired box gene 6 (aniridia keratitis)



		3

		RASSF7

		Ras association (RalGDS/AF-6) domain family 7



		3

		TUB

		tubby homolog (mouse)



		3

		KLRK1

		killer cell lectin-like receptor subfamily K member 1



		3

		ACVR1B

		activin A receptor type IB



		3

		SILV

		silver homolog (mouse)



		3

		SMARCD1

		SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily d member 1



		3

		GSTZ1

		glutathione transferase zeta 1 (maleylacetoacetate isomerase)



		3

		TRAF3

		TNF receptor-associated factor 3



		3

		ITGAD

		integrin alpha D



		3

		SPN

		sialophorin (leukosialin CD43)



		3

		SCNN1G

		sodium channel nonvoltage-gated 1 gamma



		3

		C16orf45

		Chromosome 16 open reading frame 45



		3

		AYTL1

		acyltransferase like 1



		3

		GNAO1

		guanine nucleotide binding protein (G protein) alpha activating activity polypeptide O



		3

		CALB2

		calbindin 2 29kDa (calretinin)



		3

		COX10

		COX10 homolog cytochrome c oxidase assembly protein heme A: farnesyltransferase (yeast)



		3

		P2RX5

		purinergic receptor P2X ligand-gated ion channel 5



		3

		MGC4172

		short-chain dehydrogenase/reductase



		3

		GFAP

		glial fibrillary acidic protein



		3

		ATP6V0A1

		ATPase H+ transporting lysosomal V0 subunit a1



		3

		ITGA3

		integrin alpha 3 (antigen CD49C alpha 3 subunit of VLA-3 receptor)



		3

		PNMT

		phenylethanolamine N-methyltransferase



		3

		CHERP

		calcium homeostasis endoplasmic reticulum protein



		3

		ATP4A

		ATPase H+/K+ exchanging alpha polypeptide



		3

		ATP1A3

		ATPase Na+/K+ transporting alpha 3 polypeptide



		3

		IGL@

		Immunoglobulin lambda locus



		3

		PPM1F

		protein phosphatase 1F (PP2C domain containing)



		3

		DUSP18

		dual specificity phosphatase 18



		3

		TXN2

		thioredoxin 2



		3

		SSTR3

		somatostatin receptor 3



		3

		SSX2 /// LOC653088

		synovial sarcoma X breakpoint 2 /// similar to synovial sarcoma X breakpoint 2 isoform b



		3

		ARAF

		v-raf murine sarcoma 3611 viral oncogene homolog



		3

		APLN

		apelin AGTRL1 ligand



		3

		ZWINTAS

		ZW10 interactor antisense



		3

		---

		PTR2 mRNA for repetitive sequence



		3

		---

		MRNA full length insert cDNA clone EUROIMAGE 146729



		3

		---

		---



		3

		---

		---



		3

		---

		---



		3

		---

		---



		3

		---

		---



		3

		---

		---



		3

		---

		---



		

		

		



		4

		GPATC3

		G patch domain containing 3



		4

		CD34

		CD34 molecule



		4

		INPP5E

		inositol polyphosphate-5-phosphatase 72 kDa



		4

		GLCE

		UDP-glucuronic acid epimerase



		4

		STARD3

		START domain containing 3



		4

		CNP

		2' 3'-cyclic nucleotide 3' phosphodiesterase



		4

		MAP4K1

		mitogen-activated protein kinase kinase kinase kinase 1



		4

		C20orf4

		chromosome 20 open reading frame 4



		4

		ZNF317

		zinc finger protein 317



		4

		---

		Transcribed locus moderately similar to XP_517655.1 PREDICTED: similar to KIAA0825 protein [Pan troglodytes]



		4

		---

		---



		

		

		



		5

		EHBP1

		EH domain binding protein 1



		5

		ZC3HAV1

		zinc finger CCCH-type antiviral 1



		5

		SERPINH1

		serpin peptidase inhibitor clade H (heat shock protein 47) member 1 (collagen binding protein 1)



		

		

		



		6

		PHGDH

		phosphoglycerate dehydrogenase



		6

		SFRS4

		splicing factor arginine/serine-rich 4



		6

		CCNL2 /// LOC643556

		cyclin L2 /// similar to Aurora kinase A-interacting protein (AURKA-interacting protein)



		6

		SLC35E2

		solute carrier family 35 member E2



		6

		CLK2

		CDC-like kinase 2



		6

		TOMM20

		translocase of outer mitochondrial membrane 20 homolog (yeast)



		6

		ASCC3L1

		activating signal cointegrator 1 complex subunit 3-like 1



		6

		C2orf12 /// LOC648293

		chromosome 2 open reading frame 12 /// region containing chromosome 2 open reading frame 12; RNA binding motif single stranded interacting protein 1



		6

		LAMB2

		laminin beta 2 (laminin S)



		6

		SPCS1

		signal peptidase complex subunit 1 homolog (S. cerevisiae)



		6

		SEC22C

		SEC22 vesicle trafficking protein homolog C (S. cerevisiae)



		6

		RPL14

		ribosomal protein L14



		6

		EIF2A

		eukaryotic translation initiation factor 2A 65kDa



		6

		CTBP1

		C-terminal binding protein 1



		6

		CCNI

		cyclin I



		6

		HIST1H2BK

		histone 1 H2bk



		6

		C6orf111

		chromosome 6 open reading frame 111



		6

		PERP

		PERP TP53 apoptosis effector



		6

		GTF3C4

		General transcription factor IIIC polypeptide 4 90kDa



		6

		FER1L3

		fer-1-like 3 myoferlin (C. elegans)



		6

		BANF1 /// LOC645870

		barrier to autointegration factor 1 /// similar to barrier to autointegration factor 1



		6

		CD276

		CD276 molecule



		6

		RAB34

		RAB34 member RAS oncogene family



		6

		MTMR4

		myotubularin related protein 4



		6

		RBX1

		ring-box 1



		6

		 clone NT2RP2005980

		CDNA FLJ14188 fis



		6

		---

		---



		6

		---

		---



		6

		---

		---



		6

		---

		---



		

		

		



		7

		HIAT1

		hippocampus abundant transcript 1



		7

		BSDC1

		BSD domain containing 1



		7

		C2orf30

		chromosome 2 open reading frame 30



		7

		JAGN1

		jagunal homolog 1 (Drosophila)



		7

		FSTL1

		follistatin-like 1



		7

		RPL35A

		ribosomal protein L35a



		7

		TBCA

		tubulin-specific chaperone a



		7

		HSP90AB1

		heat shock protein 90kDa alpha (cytosolic) class B member 1



		7

		MLL3

		myeloid/lymphoid or mixed-lineage leukemia 3



		7

		STX17

		syntaxin 17



		7

		NDUFC2

		NADH dehydrogenase (ubiquinone) 1 subcomplex unknown 2 14.5kDa



		7

		KRT5

		keratin 5 (epidermolysis bullosa simplex Dowling-Meara/Kobner/Weber-Cockayne types)



		7

		CDK2AP1

		CDK2-associated protein 1



		7

		METTL3

		methyltransferase like 3



		7

		ACTN1

		actinin alpha 1



		7

		DLST /// PA2G4

		dihydrolipoamide S-succinyltransferase (E2 component of 2-oxo-glutarate complex) /// proliferation-associated 2G4 38kDa



		7

		RPL4

		ribosomal protein L4



		7

		MGC18216

		hypothetical protein MGC18216



		7

		MT1M /// MT2A /// LOC441019

		metallothionein 1M /// metallothionein 2A /// hypothetical gene supported by X97260; BC070289



		7

		GLG1

		golgi apparatus protein 1



		7

		SNTB2

		syntrophin beta 2 (dystrophin-associated protein A1 basic component 2)



		7

		LOC339287

		hypothetical protein LOC339287



		7

		RPL18A

		ribosomal protein L18a



		7

		CHERP

		calcium homeostasis endoplasmic reticulum protein



		7

		RNF12

		Ring finger protein 12



		7

		MORF4L2

		mortality factor 4 like 2



		7

		REPS1

		RALBP1 associated Eps domain containing 1



		7

		---

		---



		

		

		



		8

		PRDX1

		peroxiredoxin 1



		8

		SERINC2

		serine incorporator 2



		8

		FLJ14668

		hypothetical protein FLJ14668



		8

		FLJ20254

		hypothetical protein FLJ20254



		8

		IQSEC1

		IQ motif and Sec7 domain 1



		8

		HSPA1A

		heat shock 70kDa protein 1A



		8

		C6orf111

		chromosome 6 open reading frame 111



		8

		LSM5

		LSM5 homolog U6 small nuclear RNA associated (S. cerevisiae)



		8

		COX6C

		cytochrome c oxidase subunit VIc



		8

		MGEA5

		meningioma expressed antigen 5 (hyaluronidase)



		8

		KIAA0692

		KIAA0692



		8

		COPS2

		COP9 constitutive photomorphogenic homolog subunit 2 (Arabidopsis)



		8

		PSMA4

		proteasome (prosome macropain) subunit alpha type 4



		8

		PRPSAP1

		phosphoribosyl pyrophosphate synthetase-associated protein 1



		8

		TXNL4A

		thioredoxin-like 4A



		8

		---

		---



		

		

		



		9

		CCT5

		chaperonin containing TCP1 subunit 5 (epsilon)



		9

		PSMA6

		proteasome (prosome macropain) subunit alpha type 6



		9

		HM13

		histocompatibility (minor) 13



		9

		---

		---
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