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ABSTRACT: An outline of the advantages, in terms of sustainability, of Deep
Eutectic Solvents (DESs) is provided, by analyzing some of the most popular
DESs, obtained by the combination of choline chloride, as a hydrogen bond
acceptor, and six hydrogen bond donors. The analysis is articulated into four main
issues related to sustainability, which are recurrently mentioned in the literature,
but are often taken for granted without any further critical elaboration, as the
prominent green features of DESs: their low toxicity, good biodegradability,
renewable sourcing, and low cost. This contribution is intended to provide a more
tangible, evidence-based evaluation of the actual green credentials of the
considered DESs, to reinforce or question their supposed sustainability, also in
mutual comparison with one another.

1. INTRODUCTION
One of the most relevant issues in green chemistry concerns
the massive use of solvents, which are extensively employed in
chemical processes at any level. Conventional organic solvents
are mainly represented by volatile organic compounds
(VOCs), which are generally regarded as non-sustainable,
due to the hazards posed by their flammability and their
toxicity toward human health and the environment, as well as
to their non-renewable petrochemical production (with few
exceptions).1 In the search for alternatives to VOCs, Deep
Eutectic Solvents (DESs) have emerged at the beginning of the
present century and have rapidly garnered the interest of the
scientific community.2 Thanks to its peculiar and tunable
properties, this class of solvents has found application in
different fields, ranging from organic synthesis, including
enzymatic catalysis, to drug dissolution and delivery, from
biomass processing to gas capture, and from extraction
processes to electrochemistry, including energy storage.3 A
DES is a mixture of at least two components, one of which acts
as Hydrogen Bond Acceptor (HBA) and one as Hydrogen
Bond Donor (HBD). At a specific molar ratio of the
components, the mixture shows a significant depression of
the melting point (deep eutectic).4 Ever since the first reports,
the potential of DESs as sustainable solvent systems has been
pointed out.2a,5 Their components are usually small molecules,
such as alcohols, short-chain carboxylic acids, amides, sugars,
and abundant in nature, often as plant metabolites; the most
common HBA, choline chloride (ChCl), is used as an additive
for domestic animal feed.6 On this basis, there is a general

claim on the sustainability of DESs, which is usually expressed
in terms of “low toxicity, high biodegradability, low cost,
sourcing from renewable feedstock”. However, this general
claim is rather vague and rarely supported by solid evidence, as
it is often uncritically taken for granted by papers reporting
new scientific developments and applications of DESs.
Moreover, the supposed green credentials may vary signifi-
cantly according to the nature of the components of the
eutectic mixture. The present contribution aims at providing a
comparative evaluation of the sustainable features of DESs, by
choosing ChCl as HBA and six commonly employed HBDs,
reported in Figure 1: glycerol (Gly, HBD1), ethylene glycol
(EG, HBD2), urea (U, HBD3), glucose (Glu, HBD4), malonic
acid (MA, HBD5), and lactic acid (LA, HBD6).
It is worth remembering that sustainability is a concept

encompassing several aspects, as stated by the sustainable
development goals, outlined by the United Nations in the 2030
Agenda for Sustainable Development.7 Therefore, this work is
intended to critically discuss and address point by point the
aforementioned claims, which have all contributed to define
DESs as sustainable solvents, by discussing each of the “green”
features (toxicity, biodegradability, renewable feedstocks,
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production) in separate sections. Moreover, the comparison
among different DESs is meant to point out in which respect
they are comparable and in which they differ from one another
from the point of view of sustainability. It should be noted that
there is an ongoing debate to define in a more rigorous way
under which conditions an eutectic mixture can be rightfully
called a deep eutectic solvent; this discussion also involves, but
is not limited to, how “deep” should the eutectic be,
particularly when one of the components is already liquid at
room temperature.8 On this basis, not all the molar ratios of
ChCl and HBD1−6 reported in the literature could be correctly
defined as DESs. However, from an application perspective it
seems reasonable to include in the present discussion studies
performed on ChCl/HBD1−6 mixtures at several molar ratios
and not only in the proper “eutectic” composition, considering
that lots of physical properties (the simplest being the
existence in the liquid state) are shared among many
compositions. Yet, in so doing, it would be more correct to
term such systems as “DES-like”.

2. TOXICITY
The effects that the solvents used in industrial and
technological applications induce on living organisms represent
a concern for the environment, mainly through contamination
of waters and soils, and ultimately for human health. Among
the features that have raised interest around DESs as promising

alternatives to classical solvents is their supposed low toxicity,
which would represent an improvement not only over VOCs
but also over common Ionic Liquids (ILs), such as
imidazolium- or pyridinium-based ones.9 The debate on the
toxicity of DESs started from the observation that their
components are in most cases abundant in nature as
environmentally friendly plant metabolites. As summarized in
Table 1, safety data sheets of these compounds do not
highlight particular concerns for human handling, apart from
the well-known acute oral toxicity reported for EG. The
ecotoxicity, usually assessed through the effects produced on
fish or other aquatic organisms, is negligible as well (Table 1).
However, it is now well established that synergistic effects of

the components when combined in a DES could alter the
properties of the mixture, because of the emerging interactions
in the supramolecular structure of the eutectic mixture,
characterized by a network of hydrogen bonds.10 The toxicity
of a DES could then be different from that of its components:
it thus becomes necessary to evaluate the safety profile of each
system. To date, several studies have tried to shed light on the
actual toxicity of various DESs, by investigating the effects on
human and animal cell lines, microorganisms, including
bacterial, yeast and fungi strains, and marine animal models.
However, results from different works do not always point
toward the same direction, and a lack of systematicity, also
concerning the methods used to assess DESs toxicity, has
recently been highlighted.11 In the present paragraph, the
available data on ChCl/HBD1−6 are compared to define
whether one or more among them could be able to meet the
definition of an “environmentally friendly solvent”. Since
microbial toxicity has recently been the object of a
comprehensive review,11b hereafter the discussion will focus
on toxicity toward animal models. In addition to that, two
studies on the toxicity toward plant species (phytotoxicity) are
included. Table 2 summarizes the available data concerning the
effects induced by ChCl/HBD1−6 DESs on animals. In 2013,
10 years after DESs had made their way into the scientific
debate,2a the first investigation to evaluate their actual
ecotoxicological profile was conducted on the brine shrimp

Figure 1. Hydrogen bond acceptor (HBA) and hydrogen bond donor
(HBD) components of the DESs considered in this review.

Table 1. Available Information, from Safety Data Sheet, on the Toxicity of ChCl and HBD1−6
a

Component CLP classificationb
Acute toxicity to rat

(oral LD50
c) Toxicity to fish (LC50

d)

ChCl (HBA) Not a hazardous substance LD50 = 3.40 g/kg
e No data available

Gly (HBD1) Not a hazardous substance LD50 = 27.2 g/kg LC50 = 54000 mg/L
Rainbow trout (Oncorhynchus mykiss)
Static test, 96 h

EG (HBD2) Acute toxicity, oral (category 4) Specific target organ toxicity, repeated
exposure, oral (category 2), kidney

No data available LC50 = 72860 mg/L

Fathead minnow (Pimephales promelas)
Static test, 96 h

U (HBD3) Not a hazardous substance LD50 = 8.47 g/kg No data available
Glu (HBD4) Not a hazardous substance LD50 = 25.8 g/kg No data available
MA (HBD5) Serious eye damage (category 1) LD50 = 3.25 g/kg LC50 = 95.4 mg/L

Japanese rice fish (Oryzias latipes)
Flow-through test, 96 h

LA (HBD6) Skin irritation (category 2) LD50 = 3.54 g/kg LC50 = 130 mg/L,
Serious eye damage (category 1) Rainbow trout (Oncorhynchus mykiss)

Static test, 96 h

aSafety data sheet available at Sigma-Aldrich Web site. bAccording to EC Regulation No. 1272/2008 (CLP/GHS). The definition of the categories
for each class of hazard are included in the text of the Regulation. cAmount of substance that kills 50% of test animals in a single dose.
dConcentration at which 50% mortality occurs. eOral LD50 to mice: 3.90 g/kg.
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Artemia salina, an assay which evaluates the survival rate of the
shrimp’s nauplii as a function of time after immersion in a
solution of the potentially toxic agent.12 The results showed
that solutions of the three tested DESs, ChCl/HBD1−3 in a 1/3
molar ratio, were harmful toward this organism, and their
toxicity was significantly higher than that of solutions of both
their components alone and of the simple mixture of their
components (without the prior formation of the eutectic). It
should be pointed out that the brine shrimp assay involves the
monitoring of the survival rate of the shrimp’s nauplii after
several hours or days,12b−d while in this case all organisms were
found dead after minutes or tents of minutes. Furthermore, the
authors did not include a control group in the experiment, to
exclude other possible reasons for the toxicity, and did not
report the concentration of the DESs in the solutions used for
the assay: thus, no reliable LC50 (lethal concentration, at which
50% mortality occurs) values could be provided. These data
should then be considered as a preliminary assessment of the
toxicity and a starting point for further investigations,
suggesting that the synergistic effect could lead to a toxicity
enhancement of the system, probably due to the involvement
of ChCl and HBDs in the eutectic mixture. This point is of
paramount importance to design suitable procedures for DES-
containing waste treatment, for example, through dilution in
aqueous medium and subsequent disruption of the supra-
molecular structure. Following efforts were focused on the
toxicity toward other aquatic species, such as Hydra sinensis, a
freshwater invertebrate.13 Again, DESs (or DES-like mixtures)
composed of ChCl and HBD1−3 (in 1/1, 1/2, and 2/1 molar
ratios) were tested (Table 2). In all cases, the exposition to a
10 mM concentration of the DESs caused significant
shortenings in the survival times of the hydras, compared to

the control group; in addition, before death, the morphology of
the organisms underwent the changes typical of exposure to a
toxic chemical. Interestingly, while the HBD1−3 solutions
displayed limited toxicity, ChCl proved to be much more lethal
than the DESs; the components ChCl and HBD1−3, mixed
together in solution but without prior formation of the
eutectic, were also as toxic as the choline salt alone. In this
case, then, a synergistic effect of the DES appears to be able to
mitigate the toxicity of the most harmful component by
incorporating it in the eutectic structure, in an opposite way to
that observed in the A. salina assay. However, it should be
observed that the DES concentration in the solution into
which the organisms were immersed was quite high (10 mM,
i.e., in the range 2000−4000 mg/L depending on the
considered DES): studies within a range of concentrations
would be necessary to determine LC50 values. Among aquatic
invertebrates, the toxicity of three DESs, ChCl/HBD1−3 in a 1/
2 molar ratio, was studied also on the planktonic crustacean
Daphnia magna. The test, conducted according to OECD
Guideline No. 202, evaluated the immobilization of the
organisms after 24 h of exposition to different concentrations
of the considered DESs.14 According to the results, expressed
as EC50 (half maximal effective concentration), the three
eutectic mixtures could be classified as “relatively harmless”,
with EC50 values higher than 1000 mg/L (Table 2).
Noteworthy, significant differences were observed with differ-
ent HBDs, as ChCl/Gly had an EC50 value more than twice
greater than ChCl/U.14a The acute toxicity (expressed as
LC50) of DESs composed of ChCl and HBD1−5 (in various
molar ratios, see Table 2) on a fish model, the Eurasian carp
(Cyprinius carpio), was investigated in two different papers.15

In sharp contrast with the experiments on A. salina and H.

Table 2. Toxicity of ChCl/HBD1−5 DESs Towards Animal Modelsa

DES

Animal model Components Ratio Results Ref.

Brine shrimp (Artemia salina) ChCl/Gly 1/3 • All DESs were toxic 12a
ChCl/EG 1/3 • Higher toxicity for DESs than for components alone or their mixture
ChCl/U 1/3

Hydra (Hydra sinensis) ChCl/Gly Variousb • All DESs were toxic 13
ChCl/EG Variousb • Lower toxicity for DESs than for components alone (particularly ChCl) or their mixture
ChCl/U Variousb

Crustacean (Daphnia magna) EC50 (mg/L) 14a
ChCl/Gly 1/2 2530 • All DESs were “relatively harmless”
ChCl/EG 1/2 1870 • The DES components alone were not tested
ChCl/U 1/2 1100

Fish (Cyprinius carpio) LC50 (mg/L) 15
ChCl/Gly 1/2, 1/3 >100 • All DESs were “practically harmless”, as well as their components alone or

their mixture
ChCl/EG 1/2, 1/3 >100
ChCl/U 1/2 >100 • Among DES components, slight toxicity for MA solution (LC50 = 50 ± 15

mg/L) and ChCl + MA solution (LC50 = 55 ± 13 mg/L)
ChCl/Glu 2/1 >100
ChCl/MA 1/1 >100

Mice LD50 (g/kg) 17
ChCl/Gly 1/3 6.39 ± 0.53 • All DESs were relatively toxic

1/2 7.73c • Higher toxicity for DESs than for components alone
ChCl/EG 1/3 5.33 ± 0.49 • Liver and kidney injury detected (oxidative stress)
ChCl/U 1/3 toxic • Ammonia stress detected with ChCl/U 1/2

1/2 5.46 ± 0.36
aAll other DESs studied in the considered papers are not reported. b1/1, 1/2, 2/1 ratios were tested, without significant differences from one
another. c95% confidence interval: 7.13−8.39 g/kg.17c
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sinensis, and in accordance with that on D. magna, all tested
DESs were practically harmless: the LC50 values were higher
than 100 mg/L in all cases. Indeed, the tests were conducted
according to the OECD Guideline No. 203 for fish acute
toxicity, which poses 100 mg/L as a threshold above which it is
not necessary to determine the exact LC50 figure.

16 Never-
theless, the latter was calculated for three systems only, namely
ChCl/Gly, ChCl/EG, and ChCl/U in 1/2 molar ratio,
resulting in values in the 6000−10000 mg/L range.15a

Similarly, the single components, as well as their mixtures
without prior eutectic formation, showed no significant effects
on the fishes, in line with low ecotoxicities reported in the
safety data sheets (Table 1). The only exception was MA,
which revealed to be slightly toxic (again, in line with what
reported in Table 1) when not incorporated into a DES,
highlighting a synergistic mitigation by the eutectic mixture.15b

Finally, DESs composed by ChCl and HBD1−4 were tested for
the toxicity toward mice.17 The LD50 (lethal dose, the amount
of a solid or liquid material that kills 50% of test animals in a
single dose) values after oral administration (Table 2) showed
that the considered DESs are relatively toxic, with an
approximative two-/four-fold decrease compared with the
components alone. The authors observed a correlation
between the toxicity and the ChCl/HBD molar ratio, as in
the case of ChCl/U 1/3 the lethality was so fast that it did not
allow the determination of the LD50, while the 1/2 ratio was
revealed to be less toxic.17a It should as well be considered that,
for ChCl/U, the 1/2 ratio is the one that identifies the
“proper” DES composition, and its reduced toxicity could then
arise from inherent synergistic effect in the deep eutectic
mixture. The metabolomics analysis of the treated mice was
also evaluated, revealing acute liver and kidney injury,
associated with elevated oxidative stress.17a,b Moreover, stress
response to ammonia exposure was detected after the oral
administration of ChCl/U 1/2, at a dose of 1.5 g/kg; the
authors traced this back to ammonia impurities present in the
urea used to produce the DES, hypothesizing that the
absorption and toxicity of this chemical could be enhanced
by the presence of the DES itself.17b On this basis, it is possible
that ammonia stress is involved in the higher toxicity of ChCl/
U 1/3, compared to ChCl/U 1/2 (Table 2). Apart from
ChCl/HBD1−3, also the toxicity of the sugar-based ChCl/Glu
2/1 was tested.18 However, in the paper, there is a discordance
between the materials and methods and the results sections,
which poses doubts on whether the authors evaluated the
toxicity upon oral or parenteral administration of the mixtures
(the latter is more likely, according to the authors’ discussion).
For this reason, the results are not included in Table 2. The
investigation of the compatibility of DESs with parenteral
administration is more focused on the possible use of the
eutectics as drug delivery systems, rather than on their
ecotoxicity.3d,e

Alongside studies on animals, the phytotoxicity of DESs was
evaluated with testng garlic (Allium sativum)13b and wheat
(Triticum aestivum)19 as specimen; the results are summarized
in Table 3. In the case of garlic, the effect of ChCl/HBD1−3
1/1 DESs on germination from garlic cloves was evaluated by
measuring the root growth inhibition after soaking in the DES
solution. The results showed that all DESs were harmful
toward the root growth, as well as their components, among
which U was the less toxic, while ChCl and Gly had the worst
effect: it is then particularly noteworthy that the ChCl/Gly
DES displayed a synergistic effect such that its toxicity was
significantly lower than both its two components.13b Regarding
the T. aestivum experiment, three parameters were monitored
after treatment with different concentrations of DESs: the seed
germination, and the root and shoot growth of the seedling
after germination. It was found that both ChCl/Gly 1/2 and
ChCl/Glu 2/1 were practically harmless toward seed
germination (EC50 > 20000 mg/L), while some root and
shoot growth inhibition was observed (EC50 ≈ 800−3700 mg/
L), with roots being more sensitive than shoots. This was
explained by the direct contact of roots with the DES solutions.
The study did not evaluate the toxicity of single DES
precursors.19 It should be noted that another work by the
same group revealed lower values of EC50 for imidazolium-
based ILs, using barley (Hordeum vulgare) as a plant model,
confirming the higher phytotoxicity of the ILs compared to the
above-mentioned DESs.20

The analysis of available information on the toxicity of DESs
on animal and plant species reveals different possible scenarios,
in which the hazard of the eutectic mixtures may be higher,
lower, or equal compared to their components alone. It is now
diffusely recognized that the initial assumption of DESs as
generically “environmentally friendly”, based on the nature of
their constituents, is somehow naıv̈e. As a matter of fact, the
studies reported in this chapter indicate that even these
apparently harmless compounds may represent a concern for
the environment, and the cases of ChCl toxicity toward hydra
(Table 2) and garlic (Table 3) are illustrative in this regard.
The matter could be particularly relevant in case DESs were
used as solvents in large-scale applications, because of their
amount in waste effluents, which could result in high
concentrations in the environment. Furthermore, as suggested
by some of the results presented in this chapter and by studies
on microbial toxicity, the peculiar physicochemical properties
of DESs, such as their viscosity, may have a role in altering
their intrinsic chemical toxicity and their ability to constitute a
hazard for the environment. Indeed, a rigorous evaluation of
the safety of DESs should involve an effort not only in trying to
apply standard procedures to produce comparable data, as
remarkably done for example in the carp toxicity studies, but
also in establishing new general guidelines to take into account
the nature and the characteristics of these mixtures.11a,b In

Table 3. Phytotoxicity of ChCl/HBD1−4 DESsa

DES

Plant Components Ratio Results Ref.

Garlic (Allium sativum) ChCl/Gly 1/1 • Root growth inhibition by DESs as well as their components 13b
ChCl/EG 1/1 • High toxicity of ChCl, mitigated in ChCl/U, but not in ChCl/EG
ChCl/U 1/1 • ChCl/Gly significantly less toxic than both its components

Wheat (Triticum aestivum) ChCl/Gly 1/2 • Practically harmless toward seed germination 19
ChCl/Glu 2/1 • Relatively higher toxicity for shoot and root growth inhibition

aAll other DESs studied in the considered papers are not reported.
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conclusion, it seems premature to make a pronouncement on
the actual toxicity of DESs. However, it is worth mentioning
that the available data on ecotoxicity toward aquatic organisms
are encouraging, with LC50 values in the order of 102−103 mg/
L (Table 2). Among those considered in this review, the
studies in which some differences were observed highlighted
that MA could be a relatively more harmful HBD (the only
one to display some toxicity in the C. carpio studies), as
highlighted also in Table 1, while U appeared much safer than
others in the A. sativum works (Table 3). One point that
certainly identifies DESs as safe and environmentally friendly is
their negligible vapor pressure, which excludes the possibility
of atmospheric contamination and hazards deriving from
inhalation.21

3. BIODEGRADABILITY
The discussion on the biodegradability of DESs takes its cues
from the same assumptions that have been enunciated
regarding their toxicity: since their components are plant
metabolites, present in variable amounts in the environment
and in biological systems, they should get easily degraded by
naturally occurring microorganisms. The assessment of the
persistence of a substance in the environment is once again
particularly important to design suitable protocols for waste
treatment, especially in the case of solvents, whose disposal
may involve large amounts of substance. Under this point of
view, it would be of course desirable to replace non-
biodegradable conventional solvents with “endogenous” ones.
The DES components considered in this review are classified
as “readily biodegradable” by their safety data sheet, except for
malonic acid and urea, for which no data are available (anyway,
they are classified as not persistent in the environment). As for
toxicity, however, also the biodegradability of DESs cannot be
taken for granted and should be evaluated on a case-by-case
basis. Up to now, the topic has been investigated in some

studies, all of which were conducted according to OECD
Guideline No. 301 D (namely, the “closed bottle test”), that
allows classifying a chemical as “readily biodegradable” or not
in an aerobic aqueous medium.22 The experiment consists of
adding the test chemical, previously dissolved into a saline
solution, to a bottle containing an inoculum, i.e., a water
sample collected from a secondary effluent of a wastewater
treatment plant or from surface water (e.g., of a lake), diluted
with deionized or distilled water. The bottle is closed and
stored in the dark, and the amount of dissolved O2 is measured
at different time intervals to determine the biochemical oxygen
demand (BOD, the amount of O2 consumed by aerobic
organisms to metabolize organic matter) by comparison with a
blank solution, not containing the test chemical. The BOD
value is then used to calculate the percentage of the theoretical
oxygen demand (ThOD), which is based on the mass and
molecular formula of the chemical employed. If this percentage
reaches 60% in a 14-days window, starting from the day in
which it has reached 10%, and not exceeding the 28th day from
the beginning of the experiment, the test chemical can be
considered as “readily biodegradable”. To validate the results,
the experiment is also performed on a reference compound,
which is known to meet the criteria for ready biodegradability:
if such compound reaches the pass level (60% ThOD) within
14 days, the test is considered valid.22 The results from the
different papers in which the biodegradability of ChCl/
HBD1−5 DESs has been investigated are summarized in
Table 4. First of all, it should be noted that the criteria for
ready biodegradability are met in almost all cases, with high
levels of % ThOD not only at 28 days from the beginning of
the experiment but also after 14 or even 7 days. In one work
only, ChCl/Gly and ChCl/EG DESs, both in a 1/1 molar
ratio, failed to reach the pass level.13b The authors attributed
this significant discrepancy to different experimental conditions
and different source and concentration of the inoculum, even if

Table 4. Biodegradability of ChCl/HBD1−5 DESs

aNot explicitly stated in the paper. bObtained through manometric respirometry (OECD 301 F) instead of a closed bottle test (OECD 301 D).22
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their experiment was successfully validated with sodium
benzoate as a reference compound, obtaining results
comparable to other studies.23 The effects of microbial
populations coming from different sites have also been pointed
out by a study on pyridinium and imidazolium-based ILs.24

Beyond the definition of “readily biodegradable”, that is
common to all the considered DESs in Table 4, some
differences can be highlighted, according to the nature of the
HBD component. ChCl/Gly and ChCl/U show the highest
biodegradability values: under the same experimental con-
ditions, ChCl/Gly 1/2 and ChCl/U 1/2 (at a 3 mg/L
concentration) showed % ThOD values of 96% and 97%
respectively, while ChCl/EG 1/2 and ChCl/MA 1/1 were one
step below, with 82% and 76% ThOD respectively, after 28
days. Remarkably, the difference was even greater in the first
14 days, with 83% and 81% for Gly- and U-based DESs, while
ChCl/EG only reached 58%, similarly to the 50% ThOD for
ChCl/MA (Table 4).23b A similar trend was observed with the
same DESs at a 5 mg/L concentration (91% for ChCl/Gly,
85% for ChCl/U, 75−80% for ChCl/EG).15a These slight
differences have been interpreted according to the Boethling’s
rules of thumb for designing biodegradable small molecules,25

since a higher number of hydroxyl groups per mole (Gly vs
EG) or the presence of carboxylic derivatives, such as acids,
esters, or amides (as in the case of U) should improve the
biodegradability profile. For MA-based DES, acidification of
the aqueous medium was invoked to account for the less
efficient biodegradation.15a,23b High values of % ThOD were
obtained also with Glu as HBD: under the same experimental
conditions, ChCl/Glu 2/5 and ChCl/Gly 1/1 (at a 3 mg/L
concentration) reached 79% and 85% ThOD respectively after
just 14 days, and more than 90% after 28 days (Table 4).23a It
appears then that the issue on the biodegradability of DESs is
less controversial than the one on toxicity: the available
literature data point toward the definition of “readily
biodegradable” for the considered ChCl/HBD1−5 DESs, in
particular for Gly, U, and Glu as HBDs, with EG and MA just
immediately following. To the best of our knowledge, no
biodegradability studies were performed on LA-based DESs.
Interestingly, this green feature is shared with a series of ILs
composed of choline as the cation and 19 amino acids as the
anion, in contrast with the often low biodegradability of more
classical pyridinium- or imidazolium-based ILs.26 This suggests
that the use of naturally occurring compounds, such as plant
metabolites, may be enough to ensure a good biodegradability
for their eutectic mixtures too. It should be noted that these
encouraging results have all been obtained in an aqueous
medium, i.e., in the most relevant conditions in the context of a
possible industrial application of DESs. However, it would be
interesting to investigate also the biodegradability in soil,
another possible recipient of environmental pollution, as it was
done for example for imidazolium-based ILs.27 Lastly, the mere
fact that DESs are easily metabolized by wastewater micro-
organisms may represent just a part of the issue, as the nature
of the products of such mineralization should be taken into
account too. Looking at ChCl/HBD1−6 DESs, for example, the
common HBA, ChCl, would most certainly release chloride
anions in solution, which may represent a concern for the
aquatic environment.28 On this regard, the chemical oxygen
demand (COD, amount of oxygen needed to oxidize a given
substance, including oxidizable inorganic matter), could be a
better indicator than BOD. A complete picture of the
environmental fate of DESs would therefore require the

investigation and monitoring of the nature, concentration, and
speciation of all their biodegradation products.

4. FEEDSTOCKS
A typical sentence that one could frequently read in the
introduction of papers on DESs is that they “come from
(potentially) renewable sources”. This claim is rooted into the
fact that the most commonly employed DESs’ components are
commodity chemicals, which are (or could be) sourced from
biorenewable feedstocks, through fermentation processes or
direct extraction from biomass. While this statement is in
principle correct, its current validity ought to be verified by
considering the actual feedstocks that are employed to produce
each precursor on an industrial scale. The aim of the present
section is to provide a picture of which shade of the
“potentially” renewable definition has been currently achieved
for the seven DES components reported in Figure 1. This
approach would help classify the different DESs according to
their real or only foreseeable renewable features. For this
purpose, the Ullmann’s Encyclopedia of Industrial Chemistry was
used as a reference for the relevant commercial-scale processes,
and it was compared with recent literature on the topic.
The HBA salt of choline chloride (ChCl) is already a

significant example in this regard, since it is produced through
the reaction of trimethylamine, hydrochloric acid, and ethylene
oxide (represented in Figure 2).6a,29 Among the building

blocks used in the chemical process, trimethylamine is
produced from methanol and ammonia, which are actually
derived from fossil sources, and the synthesis of ammonia is
also particularly energy demanding; ethylene oxide comes from
a renowned petrochemical derivative, ethylene,30 but its
synthesis from ethanol (and thus from renewable bioethanol)
has also been proposed, as well as its replacement with
glycolaldehyde.31 It should be pointed out that choline could
theoretically be isolated from the different bioavailable sources
(such as animal wastes, legumes...); yet, as far as we are aware,
there are not scientific studies nor industrial processes dealing
with its sustainable and/or cost-effective extraction. For these
reasons, the renewable production of ChCl appears to be far
from an actual implementation. Ethylene oxide is a substrate
also for the industrial synthesis of HBD2, ethylene glycol
(EG).32 In the case of EG, however, alternative biosynthetic
routes from sugars and lignocellulosic biomass have been
developed, which appear to be promising: at present, efforts
are being devoted to improve the efficiency of such processes,

Figure 2. Fossil sources-derived chemicals involved in the industrial-
scale production of the ChCl and HBDs. aEthanol should be excluded
from this list when it is bioethanol.
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in order to be economically competitive with the chemical
synthesis, which means productivity (g/L/h), EG titer (g/L),
and yield (g/g) values higher than 3.0 g/L/h, 100 g/L, and 0.5
g/g, respectively.33 Recently, an engineered Escherichia coli
strain has been employed at laboratory scale to obtain results
as high as 2.25 g/L/h, 108 g/L, and 0.36 g/g, respectively.34

EG may even be derived by HBD1, glycerol (Gly),
35 which,

despite being closely related to EG from a structural point of
view, has a completely different sourcing. Indeed, Gly is the
byproduct in the processes of hydrolysis or transesterification
of triglycerides, among which the production of biodiesel is
undoubtedly the most relevant, while the petrochemical
synthesis from propylene has only seen some importance in
the past century.36 Gly can thus be considered as a
biorenewable raw material, even if it is well-known that the
crop-growing for the biodiesel industry poses sustainability
issues related to soil exploitation and biodiversity; on this
matter, an interesting alternative is represented by the use of
microalgae as biomass for biodiesel (and Gly) production.37

Another biorenewable HBD component is of course glucose
(Glu), which is produced from starch via acid- or enzyme-
catalyzed hydrolysis, the latter being the most relevant.38

Conversely, the production of the HBD3, urea (U), which is a
major player in the fertilizer industry, depends on fossil
sources: it is synthesized from ammonia (see above) and
carbon dioxide, obtained during the process of ammonia
synthesis.39 Recent studies have shown that a viable alternative
could be represented by the exploitation of biomass, in
particular, urban waste, through gasification to syngas and
further conversion into urea; however, this appears still far
from a commercial application.40

Finally, the two acids HBD5−6, malonic acid and lactic acid,
albeit structurally similar, are quite different from the point of
view of renewability. Malonic acid (MA) is obtained from the
hydrolysis of alkyl malonates, which derive from fossil sources.
Indeed, they are produced either through the hydrogen
cyanide process or the carbon monoxide process: in the first
case, the building blocks are chloroacetic acid, hydrogen
cyanide, and the appropriate alcohol, while the carbon
monoxide process employs a chloroacetate, its corresponding
alcohol and carbon monoxide (Figure 2).41 Alternative
pathways may be represented by the thermocatalytic or
enzymatic conversion of sugars and lignocellulosic biomass:
on this matter, it should be noted that MA was inserted into
the list of the top 30 value-added chemicals that can be
produced from sugars, drawn up on behalf of the U.S.
Department of Energy in 2004.42 Conversely, lactic acid (LA)
has been predominantly obtained through fermentation
processes, which also ensure a high degree of enantiomeric
purity, since the 1990s.43 Nowadays, scientific and techno-
logical advances in the biorenewable production of LA are
focused on lowering the cost of the feedstock, by exploitation
of lignocellulosic biomass or food waste instead of more
expensive starch or refined sugars.44

Some conclusions can be drawn from this brief survey. The
first one is that, at the present time, no ChCl-based DES can
be defined as totally renewable on a commercial scale, due to
ChCl itself: indeed, several papers apply this definition, but
they only justify it by the recyclability of the DES for the
specific application, for a certain number of times, and by its
biodegradability. Secondly, it is possible to sort ChCl/HBD1−6
DESs into three “shades of renewability”, based on the
different HBD components. This comparative classification

would see at the first place those HBDs whose production is
currently detached from fossil sources, i.e., Gly, Glu, and LA,
thus making their DESs the “most renewable” among those
considered in this review. On the other hand, U seems the
furthest one from a concrete renewable sourcing, while EG and
MA stand in between, since they are not currently produced
from biobased sources on a commercial scale, but the scientific
progress on the matter appears to be in a more advanced state.
It should also be considered that fermentation and biosynthetic
pathways may afford the compounds of interest with lower
purities compared to their chemical synthesis. For example,
crude Gly produced from biodiesel industry has purities of
60−80%, and the price for refined Gly (96−99% or higher
purity) fluctuated between 4 and 17 times higher than that for
crude Gly, in the 2001−2009 period.45 The issue on purity of
DESs components is then articulated in two different
questions. The first one concerns whether it would be possible
to form the eutectic mixtures even with lower-grade
components, compared to those usually employed in research
laboratories, where DESs have been formed and studied up to
now. Second, assuming that the first point can be fulfilled, it
would be necessary to assess which applications of DESs are
more sensitive to contamination in the components: for
example, these would probably be less impacting when the
eutectic mixture is employed in extractive or biomass
treatment processes, while it can be envisaged that applications
of DESs in fine organic synthesis, drug delivery, or electro-
chemistry would require high-purity solvent media. Thus, the
evaluation of renewable source-derived HBA and HBD
components cannot ignore the costs (and the environmental
impact) associated with their possibly indispensable purifica-
tion processes.

5. PRODUCTION
Alongside the renewability of their components, a notable
feature that is often acknowledged to DESs is their cheap and
environmentally friendly production. The claim is motivated
both with the low cost of DESs components and the intrinsic
simplicity of the eutectic mixture formation, since it involves
the simple mixing of the components, through stirring at a
suitable temperature, usually in the range 60−100 °C.46 As
mentioned in the previous chapter, ChCl and HBD1−6 are
commodity chemicals, produced in bulk by the petrochemical
industry or from renewable sources, which would account for
their low price. This aspect is particularly relevant in
comparison with ILs, since the starting materials to produce
the latter are usually specialty or fine chemicals, e.g. imidazole
and alkyl iodides or bromides, for imidazole-based ILs.
However, the actual cost is dramtically dependent on the
required purity (as well as on the volumes involved) once
more; therefore, a rigorous cost analysis should take into
account the specific application for which the DES is intended.
The aspects involved in the preparation of the DES from its
components are most interesting because it is in principle very
easy and intrinsically atom-economic. Compared to the
synthesis of ILs, which generally involves alkylation reactions,
performed in other solvents and in controlled atmosphere, with
conventional workup and purification of the IL product, this
represents a major improvement for what concerns sustain-
ability. From an industrial point of view, however, the DES
formation process is not trivial because of the issues related to
the mixing of two solids, as well as to the handling of the
viscous liquid produced. Furthermore, long heating times may
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result in partial decomposition of the DES components.47

Mechanochemical synthesis, through twin screw extrusion
technology, was proposed as a possible solution to these
problems, affording ChCl/U 1/2 (and two other DESs) with
high efficiency, avoiding prolonged exposition to high
temperature, to dramatically reduce the thermal degradation.48

The DES production through twin screw extrusion was
recently taken as the reference method to analyze the
environmental impact of ChCl/U 1/2 through cradle-to-gate
(i.e., from the raw materials to the finished product) life-cycle
assessment (LCA).49 The LCA approach considered both the
synthesis of the components, ChCl and U, and the
manufacturing of the eutectic mixture; seven indicators,
including but not limited to the global warming potential or
the water depletion potential, were used to compare the
production of ChCl/U 1/2 with that of four VOCs, namely
dichloromethane, ethyl acetate, methanol, and ethanol. The
produced amount of the five solvents was normalized for a
specific application, i.e., the use as solvents for the synthesis of
0.2 kg of acetophenone through oxidation of 1-phenyl-
ethanol.49 The study revealed that the DES had a lower
environmental impact than dichloromethane and ethyl acetate
for almost all the considered indicators, but it was overcome by
methanol and ethanol, whose manufacturing was more
environmentally friendly. Furthermore, the authors compared
the production of 1 kg of ChCl/U 1/2 with 1 kg of other
DESs, including ChCl/Gly, ChCl/EG, and ChCl/Glu, all in 1/
2 molar ratio. The results showed that the different HBDs did
not lead to dramatic changes in the output: with Gly, slightly
higher global warming potential and terrestrial acidification
potential were observed, this last indicator being higher than
ChCl/U also for ChCl/Glu. Only in the case of water
depletion potential, the value was significantly higher for
ChCl/Gly, compared to the others. With EG as HBD, the
results were substantially identical to ChCl/U.49 An interesting
outcome of the LCA study is that the feedstocks and the
synthesis of the two components, ChCl and U, account for the

largest part of the burden on the seven indicators, as reported
in Figure 3, while the actual production of the DES through
mixing and heating impacts only to a limited extent. This
provides a quantitative ground to the initial assumption that
the preparation of DESs is simple and low-impacting, even at
an industrial scale. In this framework, the environmental (and
economical) impact of DESs production would be dumped
mainly on the production of their components, thus orienting
the direction for further improvement: indeed, increasing the
environmental-friendly character of the synthesis of ChCl and
HBDs would constitute a relevant part in addressing the whole
issue. As shown by the LCA analysis, DESs production is
already more desirable than that of two VOCs (at least for the
specific application taken into account), but the target of
overcoming also less impacting VOCs, such as methanol and
ethanol, has not been met yet, and must be set in forthcoming
development.

6. CONCLUSION
A comparative, broad-spectrum survey on the sustainability of
widely employed DESs (or DES-like mixtures), sharing ChCl
as their common HBA component, has been depicted. Four
main aspects, i.e., toxicity, biodegradability, renewable
sourcing, and production have been considered and treated
together for the first time, to provide a comprehensive outline.
Toxicity and biodegradability have often been reported
together (see references cited in Table 4); more in-depth
analysis on the issues related to production has received
attention only in recent times48,49 but assumptions on the
renewability of DES components have never been tackled in
detail. Overall, from our survey it appears that the “greenest”
credentials could be attributed to ChCl/Gly mixtures, which
show negligible toxicity and promising biodegradability
profiles, together with current production of the HBD from
renewable sources, even if the LCA gives a slightly worse
outcome, compared to the others. On the other hand, ChCl/U
DESs share with Gly-based ones good biodegradability and

Figure 3. Different contributions, in the production of ChCl/U 1/2, to the seven indicators employed in the LCA study: GWP = global warming
potential, FEP = freshwater eutrophication potential, TAP = terrestrial acidification potential, MDP = metal depletion potential, WDP = water
depletion potential, FETP = freshwater ecotoxicity potential, HTP = human toxicity potential.49 Adapted with permission from ref 49. Copyright
2022 The Royal Society of Chemistry.
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appear even able to surpass them in terms of reduced toxicity
and a more environmental-friendly production, at least as
stated by the LCA; however, our aggregate evaluation is
burdened, under a medium- and long-term sustainability point
of view, by the negative impact of the current absence of
feasible synthetic pathways for U from other resources than
fossil fuels. Therefore, in our opinion these mixtures should be
placed one step behind ChCl/Gly. Also ChCl/EG DESs
display comparatively interesting results in terms of toxicity,
biodegradability, and production, while their renewable
sourcing at an industrial scale is not established yet, and
could be regarded as a “yellow street light”. EG-based mixtures
could then be considered similar to U-based ones in terms of
sustainability, of course always keeping in mind the inherent
hazard of EG as a pure component (see Table 1). Less
information is available on ChCl/Glu mixtures, particularly
concerning their toxicity toward animals, apart from the
encouraging results on fish (Table 2). However, they are
biodegradable according to the studies published so far, and
the production of Glu from biomass is well established. On this
basis, it would be desirable to have more insights into the
toxicity of these mixtures, in order to properly compare them
with so far best performing ChCl/Gly DESs. Lack of
information also affects the evaluation of LA-based DESs, in
which the HBD component is remarkably obtained from
renewable sources, but surprisingly no studies on biodegrad-
ability or animal toxicity were found. On the other hand, the
other carboxylic acid HBD considered, MA, was revealed to be
less convincing than its competitors under all point of views: it
was the only one to show some toxicity in the fish study (Table
2), it had worse biodegradability performances (Table 4), even
if not bad in absolute terms, and its industrial production from
renewable sources has not been achieved yet. Even if also in
this case there is no sufficient available information to provide
a complete assessment, ChCl/MA mixtures appear to be the
less sustainable ones, among those here considered.
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