
pharmaceutics

Article

Graphene Oxide Functional Nanohybrids with
Magnetic Nanoparticles for Improved Vectorization
of Doxorubicin to Neuroblastoma Cells

Luigi Lerra 1, Annafranca Farfalla 2, Beatriz Sanz 3, Giuseppe Cirillo 2,*, Orazio Vittorio 1,4,5,
Florida Voli 1, Marion Le Grand 1,4,5, Manuela Curcio 2, Fiore Pasquale Nicoletta 2 ,
Anna Dubrovska 6,7,8,9, Silke Hampel 10, Francesca Iemma 2 and Gerardo F. Goya 11

1 Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia;
LLerra@ccia.org.au (L.L.); OVittorio@ccia.org.au (O.V.); FVoli@ccia.org.au (F.V.);
MLeGrand@ccia.org.au (M.L.G.)

2 Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy;
annafranca.farfalla@gmail.com (A.F.); manuela.curcio@unical.it (M.C.); fiore.nicoletta@unical.it (F.P.N.);
francesca.iemma@unical.it (F.I.)

3 nB nanoSacale Biomagnetics SL, 50012 Zaragoza, Spain; bsanzsague@gmail.com
4 ARC Centre of Excellence for Convergent BioNano Science and Technology,

Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
5 School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
6 OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University

Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
Anna.Dubrovska@OncoRay.de

7 German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
8 German Cancer Consortium (DKTK), partner site Dresden, 01307 Dresden, Germany
9 Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-Oncoray, 01307 Dresden, Germany
10 Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany;

s.hampel@ifw-dresden.de
11 Institute of Nanoscience of Aragon (INA), Department of Condensed Matter Physics,

University of Zaragoza, 50018 Zaragoza, Spain; goya@unizar.es
* Correspondence: giuseppe.cirillo@unical.it; Tel.: +39-0984-493011

Received: 27 November 2018; Accepted: 18 December 2018; Published: 22 December 2018 ����������
�������

Abstract: With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y
cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide
nanoparticles (MNPs), acting as core elements, and a curcumin–human serum albumin conjugate
as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO
system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the
bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive
behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4)
environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y
cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional
coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low
DOX cytotoxicity levels (at concentrations of 0.44–0.88 µM), the presence of MNPs allowed remote
actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.
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1. Introduction

Patients with neuroblastoma, the third most common type of extracranial solid cancer in the
pediatric population [1], suffer for the severe acute and chronic toxicity of commonly employed
therapeutics (e.g., vinca alkaloids, platinum drugs, and anthracyclines) due to the nonspecific in vivo
distribution and their serious side effects [2,3]. The intravenous administration of conventional
chemotherapy does not distinguish between cancerous and healthy cells and, especially in the case
of childhood tumors, targeted and less toxic therapies are urgently required in order to improve the
quality of life and reduce the lifelong health issues for the survivors [4,5]. To this regard, a great hope
lies in the rising synergy between biomedicine and nanotechnology [6] with the possibility to develop
delivery vehicles able to localize the delivery of payload in the tumor site [7,8].

In this work, we combined graphene oxide (GO), iron oxide nanoparticles (MNPs), and a new
human serum albumin–curcumin conjugate (C@HSA) for the fabrication of a novel multifunctional
nanohybrid (C@HSA-MNPs@rGO) to spatially control the vectorization of doxorubicin (DOX) to
neuroblastoma SH-SY5Y cells. Due to its specific features, each component was observed to contribute
to the performance of the final nanohybrid: (1) MNPs act as a targeting element [9–11]; (2) GO
enhances the drug loading capability and makes the release profile prolonged over time [12–15]; and
(3) immobilized curcumin (CUR) in the functional coating synergizes the drug cytotoxicity [16–18].

Due to their capability to interact with remote magnetic fields, magnetic nanoparticles are used in
a growing number of strategies to actuate on biological systems for both diagnostic and therapeutic
purposes [19–22]. Similarly, the use of GO-based nanomaterials as cargo bays for drug vectorization
has grown rapidly in the past several years, by virtue of its unique structural and physic-chemical
properties, excellent biocompatibility, large surface area, and low cost [23–27]. We previously proved
that the coating of carbon nanostructures with polyphenol–polymer conjugates constituted an efficient
drug delivery system whose anticancer activity is related to either the loaded drug or the carrier
itself [28,29]. The resulting nanohybrid described here profits from two main concurrent effects:
(1) the synergistic mechanism of polyphenols associated with conventional anticancer drugs [30,31],
and (2) the possibility to finely tune the drug release according to the carrier properties [32,33].

The experimental protocol involved the synthesis of MNPs stabilized with polyethyleneimine,
and their subsequent mounting on GO sheets. Thus, MNPs@GO was loaded with doxorubicin and
finally coated with a C@HSA to obtain the final nanohybrid, characterized in terms of physico chemical
and magnetic properties and in vitro anticancer performance, providing new effective opportunities
for targeted drug delivery.

2. Materials and Methods

2.1. Preparation of Graphene Oxide

A modified Hummers method was employed for the preparation of GO [34]. One gram of
graphite (99.99%, 200 mesh), exfoliated by grinding with 50.0 g NaCl for 10 min, freed from NaCl by
dissolution in distilled water (40 ◦C) and recovered by filtration using a 450 nm porous TEFLON filter
paper, was mixed with 23 mL H2SO4 (96% w/w) overnight to allow graphite layers being intercalated
by H2SO4.

The oxidization process was performed by adding 3.0 g KMnO4 over 3 h under constant stirring,
and then the suspension was sonicated for 3 h and continuously stirred for 30 min at 35 ◦C and 45 min
at 50 ◦C, respectively. Then, the suspension was added with distilled water (46 mL) and stirred for
45 min under reflux. After cooling to room temperature, distilled water (140 mL) and H2O2 (10 mL,
30%) were added to reduce the residual permanganate and manganese dioxide to manganese sulfate.
The resulting material, filtered and washed 5 times with 5% HCl and distilled water to remove any
reaction by-products, was cracked in water using a horn-tipped ultrasonic probe at 28 W for 2 h,
in order to reduce the dimensions of the exfoliated GO sheets in terms of both lateral width and height.
Uniformly sized GO particles (100 nm) were obtained via sucrose density gradient centrifugation.
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In a standard procedure, GO particles (335 mL) were added on the top of a gradient sucrose solutions
(20–60% w/v), gently dropped into the bottom of centrifuged tube. The tube was directly centrifuged
under controlled conditions (6000 g for 5 min) using Beckman Coulter, Allegra 64 R centrifuge, and the
GO recovered by rinsing thoroughly with distilled water to remove sucrose.

All chemicals were from Merck KGaA (Darmstadt, Germany) for synthesis.

2.2. Synthesis of Magnetic Nanoparticles

The poly(ethyleneimine) (PEI)-coated magnetic nanoparticles (MNPs) were synthesized following
the modified oxidative hydrolysis method [35]. The main steps of this protocol are as follows: a
solution containing iron (II) sulphate heptahydrate (FeSO4·7H2O) and (PEI, Mw = 25 kDa) is added
dropwise over a basic solution with a mild oxidant under continuous mechanic stirring. Both solutions
are mixed in a three-necked flask where a flux of N2 was bubbled. The synthesis temperature is
maintained at 90 ◦C for 24 h, and after this time the PEI–MNPs are collected using a magnet and
washed with deionized water several times to maintain the physiological pH.

All chemicals used for the synthesis were purchased from Merck KGaA (Darmstadt, Germany).

2.3. Laccase Immobilization

The immobilization of Laccase was carried out as previously reported [36]. Twenty-five milligrams
of laccase from Trametes versicolor (EC 1.10.3.2) were dissolved in 3.0 mL sodium citrate buffer solution
(10−3 mol L−1, pH 5.0) in the presence of 534 mg acrylamide and then, 466 mg polyethylene glycol
dimethacrylate 750 and 2.4% 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one
(Irgacure 2959, with a maximum absorption at around 275 nm) were added as crosslinker and
photo-initiator, respectively. After pouring in a reaction cell consisting of two 10 × 10 cm2 glass plates
brought together by binder clips and separated with Teflon spacers (thickness 1.6 mm), the solution was
polymerized by using a high pressure mercury lamp (HPK 125, Philips, Amsterdam, The Netherlands,
10 mW cm−2, wavelength 275 nm, irradiation time 10 min). The resulting hydrogel was freed from
unreacted species by washing with distilled water and then dried for 12 h in an oven under vacuum at
40 ◦C.

Irgacure 2959 was from BASF, Ludwigshafen, Germany, all other chemicals from Merck KGaA
(Darmstadt, Germany).

2.4. Synthesis and Characterization of the C@HSA Conjugate

C@HSA was synthesized via enzyme catalysis as follows: 500 mg HSA and 60 mg curcumin
(CUR) were dissolved in 20 mL phosphate buffer solution (10−3 mol L−1, pH 6.8)/DMSO mixture
75/25 by volume and reacted by adding immobilized laccase (500 mg, 0.23 U) at 37 ◦C under 70 rpm for
12 h. The conjugate was purified by dialysis process (dialysis tubes of 6–27/32” Medicell International
LTD (Liverpool, UK), MWCO: 12,000–14,000 Da) and dipped into a glass vessel containing distilled
water at room temperature for 72 h, until complete removal of unreacted CUR in the washing media
was confirmed by high-pressure liquid chromatography (HPLC) analysis. The resulting solutions were
frozen and dried with a freeze drier (Micro Modulyo, Edwards Lifesciences, Irvine, CA, USA) to afford
vaporous solids.

The HPLC analysis conditions were: Jasco PU-2089 Plus liquid chromatography equipped with
a Rheodyne 7725i injector (fitted with a 20 µL loop), a Jasco UV-2075 HPLC detector operating at
420 nm, Jasco-Borwin integrator (Jasco Europe s.r.l., Milan, Italy), and a Tracer Excel 120 ODS-A
column particle size 5 µm, 15 × 0.4 cm (Barcelona, Spain), mobile phase consisting of methanol at a
flow rate of 1.0 mL min−1 [37].

The (2,4,6)-trinitrobenzenesulfonic acid (TNBS) assay was used to determine the free amino groups
in HSA and C@HSA, and thus to indirectly calculate the functionalization degree expressed as mg of
CUR per g of conjugate [38]. Briefly, 0.5 mL 2,4,6-trinitrobenzenesulfonic acid solution (0.01% w/v)
were added to 1.0 mg NaHCO3 (0.1 mol L−1, pH 8.5) containing HSA or C@HSA (2.0 mg mL−1)
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and, after mixing in the dark, placed in a water bath at 37 ◦C for 4 h under shaking. Then, SDS (50 µL,
0.35 mol L−1) and HCl (25 µL, 1 mol L−1) were added to terminate the reaction the absorbance measured
at 335 nm on the V-530 Jasco UV–Vis spectrophotometer operating with 1.0 cm quartz cells (Jasco Europe,
Milan, Italy). The amount (mg) of CUR in C@HSA was calculated according to Equation (1):

mgCUR =
A0 − A1

A0
× n0

NH2
× MWCUR (1)

Here, n0
NH2

refers to the amount of NH2 groups in the HSA, MWCUR the molecular weight of CUR,
and A0 and A1 the absorbance of HSA and C@HSA, respectively.

All chemicals were from Merck/Sigma Aldrich, Germany.

2.5. Synthesis and Characterization of Nanohybrid C@HSA-MNPs@rGO

For the synthesis of the nanohybrid C@HSA-MNPs@rGO, 45 mg C@HSA were added to 2.5 mL
of MNPs@GO suspension synthesized by mixing 0.2 mL MNPs and 5.0 mg GO [39], and the resulting
solution was stirred at 37 ◦C for 12 h. The nanohybrids were recovered as dark powder after
freeze-drying process (Micro Modulyo, Edwards Lifesciences, Irvine, CA, USA).

Control nanoconjugates and nanocarriers were prepared in the same conditions employing HSA
instead of C@HSA (HSA-MNPs@GO) or in the absence of MNPs (C@HSA-rGO and HSA-GO).

Scanning electron microscopy (SEM) images were obtained using a NOVA NanoSEM 200 (Thermo
Fisher Scientific, Hillsboro, OR, USA) with an acceleration voltage of 15 kV after depositing samples
onto self-adhesive conducting carbon tape (Plano GmbH, Wetzlar, Germany).

Thermogravimetric analysis (TGA) was performed with an SDT Q600 (TA Instruments, Wetzlar,
Germany). Measurements were conducted in a nitrogen atmosphere (flow of 10 mL min−1), with an
initial sample weight of ∼10 mg in the temperature range 25–600 ◦C at a heating rate of 10 ◦C min−1.

The magnetization curves as a function of field and temperature were obtained using a commercial
Superconducting Quantum Interference Device (SQUID, model MPMS by Quantum Design, Inc.,
San Diego, CA, USA). Measurements were performed within the 5 ≤ T ≤ 300 K temperature range,
and applied magnetic fields up to H = 3989 kA/m (5 Tesla).

2.6. In Vitro Releasing Tests

Here, 0.5 mg DOX were stirred with 50 mg C@HSA-MNPs@rGO, HSA-MNPs@GO, and
C@HSA-rGO in 5.0 mL distilled water for 24 h and then the loaded nanohybrids recovered after drying
under vacuum. The release experiments were performed in phosphate buffered saline (10−3 mol L−1)
at pH 7.4 or 5.0. Briefly, 15.0 mg loaded nanohybrid was dispersed into 1.5 mL phosphate buffered
saline at selected pH into a dialysis bag (MWCO: 12,000–14,000 Da), and dialyzed against 13.5 mL
of the corresponding buffer. At predetermined time intervals, the amount of DOX in the releasing
media was determined by UV–Vis on a Jasco V-530 UV/Vis spectrometer (Jasco Europe s.r.l., Milan,
Italy) at 496 nm. From the calibration curves of DOX sketched in PBS (pH 7.4 and pH 5.0, respectively),
the cumulative amount of drug released was calculated using Equation (2):

Mt

M0
=

Mt

Mtotal
(2)

where Mt and M0 are the amounts of drug in solution at time t and loaded into the carrier, respectively.

2.7. Cell Viability Assay

Human neuroblastoma SH-SY5Y (ATCC®CRL-2266™) cells were employed to assess the cytotoxicity
effect. Cells were grown in DMEM medium supplemented with 1% L-glutamine and 10% fetal bovine
serum, routinely maintained in culture at 37 ◦C and 5% CO2 and regularly screened to ensure the absence
of mycoplasma contamination using the MycoAlert MycoPlasma Detection Kit (Lonza, Switzerland).
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For cytotoxic experiments, cells were plated in clear transparent 96-well plates at optimized cell
densities of 104 cells per well. To ensure cell attachment, cells were seeded 24 h before being treated.
Cells were treated with free DOX and DOX loaded nanohybrids for 72 h. To determine the effect of
the treatments on the cell viability, we counted the viable cell by using the Trypan Blue exclusion
method as previously described [40]. All the cell viability assays have been conducted in the presence
of 10% serum.

Finally, to evaluate the possibility to spatially control the DOX activity, viability experiments
were performed by treating 250 × 103 cells seeded in a 35-mm petri dish with DOX loaded on either
C@HSA-MNPs@rGO (DOX-C@HSA-MNPs@rGO) or C@HSA-rGO (DOX-C@HSA-rGO) for 72 h under
the effect of a magnetic field generated by a permanent magnet (100 G).

2.8. Cell Internalization Studies

To prepare the samples for TEM analysis, the human neuroblastoma cells SH-SY5Y were seeded
and incubated with C@HSA-MNPs@rGO. Cell internalizations study was carried out after 6 and
24 h. After co-incubation, the medium was removed and the cells were detached and fixed with 2%
glutaraldehyde solution at 4 ◦C. After washing, cells were dehydrated with increasing concentrations
of acetone and embedded in a solution (50:50) of epoxy resin. Then the EPOXI resin was cut in 70-nm
thin slices. The samples were analyzed by transmission electron microscopy (TEM) using a FEI Tecnai
T20 microscope operating at 200 keV.

2.9. Statistical Analysis

Three experiments were carried out in triplicate. Values were expressed as means ± standard
error of the mean (SEM). For viability assay, statistical significance was assessed by one-way analysis
of variance followed by post-hoc comparison test (Tukey’s test). Significance was set at p < 0.01.

3. Results

The multifunctional nanohybrid described here is composed of C@HSA conjugate, GO, and
MNPs, each addressing a specific requirement to develop a cancer therapy that could efficiently deliver
DOX to neuroblastoma SH-SY5Y cells (Figure 1).
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The synthetic procedure involved at first the synthesis of the inorganic (MNPs@GO) and organic
counterparts (C@HSA), and subsequently their coupling for the obtainment of the nanohybrid
C@HSA-MNPs@rGO.

The MNPs@GO system obtained via GO functionalization with polyethyleneimine polymer
(PEI)-coated magnetic nanoparticles (PEI-MNPs) exploited the ability of PEI to covalently react with
GO sheets via a “grafting to” process to produce highly stable nanohybrids [39]. For this purpose,
MNPs were synthesized by a previously reported procedure [19] based on the oxidation of Fe(OH)2 by
nitrate in basic aqueous media in the presence of branched PEI (25 kDa). By using this approach, we
obtained PEI-MNPs with an average particle size of 25 ± 5 nm, composed of a thin layer (7–9 Å) of PEI
coating around the Fe3O4 core, showing high stability to aggregation, and the presence of functional
groups on the particle surface suitable for further modification [35]. Then, the MNPs@GO system was
obtained by mixing GO (average size of 100 nm), synthesized by a modified Hummer’s method [34],
with PEI-MNPs under vigorous stirring at room temperature.

The FTIR spectrum of MNPs@GO (Figure 2) showed the retention of the typical GO peaks at 3440
(O–H stretching), 1725 (stretching COOH), and 1625 (stretching C=C) cm−1, with the disappearance
of the stretching peak of epoxy C–O groups located at 1225 cm−1 invoked as a confirmation of
the successful formation of MNPs@GO system due to the reaction with the amine groups of PEI.
The presence of MNPs on GO surface was further confirmed by the increase in the intensity of the
band located at around 3400 cm−1, which can be mainly ascribed to the N–H stretch vibration of PEI,
and O–H stretching of water molecules bound to MNPs.
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It is well known that for the preparation of effective nanocarriers, a surface modification of GO
sheets is required to overcome their tendency to aggregate in physiological environment [15]; for this
purpose different types of polymeric materials have been proposed as coating element [41]. Here, we
coated MNPs@GO with a C@HSA conjugate to take advantage of the excellent biocompatibility and
non-immunogenicity of HSA [42,43], and the biological activity of curcumin, a naturally occurring
polyphenol with pronounced anticancer activity [17], with the aim to fabricate a functional nanohybrid
(C@HSA-MNPs@rGO), in which the anticancer activity is related to both the controlled release
of loaded drug and the carrier itself [29]. The covalent conjugation of CUR to HSA improved its
stability within the physiological compartments [44]. This is a quite important point considering that
improved aqueous solubility and stability of CUR are essential for its potential clinical application [45].
Furthermore, it is important to note that the CUR dose remain unmodified during the vectorization
process, since no CUR delivery occurred within 24 h (data not shown).
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The C@HSA conjugate was synthesized via a fully green process involving the use of a solid
biocatalyst previously developed and characterized and consisting of laccase immobilized into acrylate
hydrogel film with a functionalization degree of 91 mg of CUR per gram of conjugate, as per combined
UV–VIS analysis and TNBS assay. Moreover, the hypsochromic shift recorded comparing the UV–VIS
spectra of C@HSA and CUR from 420 to 347 nm was used as a confirmation of the covalent conjugation
of the polyphenols to the protein backbone [46]. The reaction mechanism for the coupling of nanocarrier
MNPs@GO with nanoconjugate C@HSA consisted of a redox reaction between the organic and
inorganic counterparts, where the polyphenol moieties were converted to the corresponding oxidized
quinone forms with adequate potential to reduce the oxygen-rich functionalities of GO, obtaining a
reduced graphene oxide (rGO) nanohybrid (C@HSA-MNPs@rGO) [47–50]. The effective formation of
nanohybrid C@HSA-MNPs@rGO was verified by SEM investigation (Figure 3a,b), where it is clear
that the rGO nanosheets were homogeneously coated by the protein film.
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Figure 4. Main panel: Magnetization M data vs. applied field H of nanohybrid C@HSA-MNPs@rGO at
room temperature. Upper left panel: Zero-field-cooled and field-cooled M(T) curves at applied field
H = 15.92 kA/m. Low-right panel: Magnification of the low-field region of the M(H) hysteresis loop,
showing the measurable coercive field at T = 295 K as a reflect of the blocked state of the magnetic
nanoparticles within the nanohybrid.
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The temperature dependence M(T) using zero-field-cooling and field-cooling protocols showed no
maximum in the ZFC curves corresponding to a blocking temperature, as expected due to the fact that
single-domain magnetic cores of magnetite have an average size of over 40 nm (as observed in TEM
images, see later). These Fe3O4 nanoparticles are expected to be blocked [51,52], given their size and
value of magnetocrystalline anisotropy that yield an anisotropy relaxation energy barrier larger than
thermal energy at room temperature. The hysteresis loops at room temperature showed saturation
magnetization values (MS) = 48–52 Am2/kg, somewhat lower than the bulk Fe3O4. The observed
lowering of the Ms when compared to the bulk values of 80–85 Am2/kg is related to a low crystallinity
of the MNPs that in turn is probably originated in the low temperature of the hydrothermal route
used in this work [35,53]. The existence of a coercive field of HC = 5.82 kA/m at room temperature
supported the hypothesis that these magnetic cores are magnetically blocked.

TGA analyses (Figure 5a) were performed to check the thermal stability of the final nanohybrids.
At first, HSA-GO was employed as control sample, and the effect of each component was highlighted
by measuring C@HSA-rGO and C@HSA-MNPs@rGO. The presence of CUR residues was found to
enhance the thermal stability of C@HSA-rGO [54], with a lower degradation (73% vs. 77%) recorded
at 600 ◦C (Figure 5a). On the other hand, the higher amount of organic counterpart (PEI coating
of PEI-MNPs) resulted in a lower thermal stability of C@HSA-MNPs@rGO (degradation of 80%).
The same trend was recorded when considering the weight loss at the degradation temperature, located
at around 310 ◦C for all samples (see the derivative thermogravimetric analysis, DTG curve, Figure 5b),
with the degradation values of 38 (HSA-GO), 33 (C@HSA-rGO), and 40% (C@HSA-MNPs@rGO).
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3.1. In Vitro Doxorubicin Release

The nanohybrid C@HSA-MNPs@rGO was designed as DOX delivery vehicle, employing a drug
to rGO ratio (by weight) of 12.5%. Release experiments were performed at pH 5.5 and 7.4, simulating
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the endosomal pH of cancer cells and the normal physiological pH, respectively [55], and, to highlight
the importance of rGO within the nanocarrier, the results were compared with those obtained when
C@HSA-MNPs, not containing rGO, were employed (Figure 6).
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Assuming that the amount of DOX in the release media is a result of the partition between the
carrier and the surrounding environments, the application of a mathematical modelling proposed
in literature allowed the determination of key parameters describing this phenomenon according to
reversible first- and second-order kinetics (Equations (3) and (4)) [56]:

Mt

M0
= Fmax(1 − e−(

kR
Fmax )t) (3)

Mt

M0
=

Fmax(e2( kR
α )t − 1)

1 − 2Fmax + e2( kR
α )t

(4)

Fmax is the maximum value of relative release (Mt/M0), kR the release rate constant, while the
physicochemical affinity of the drug between the carrier and solvent phases (α) can be determined
according to the following Equation (5):

α =
Fmax

1 − Fmax
(5)

Both Equations (3) and (4) can be used to calculate the time required for reaching 50% of Fmax (tR
1/2)

(Equations (6) and (7)), respectively:

tR1

1/2 =
Fmax

kR
ln2 (6)

tR2

1/2 =
α

2kR
ln(3 − 2Fmax) (7)

The experimental data were well fitted by either Equation (3) or (4) (R2 > 0.95, Table 1), with
predominant reversible first-order kinetics.
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Table 1. R2 values and kinetic parameters.

Mathematical Model Parameter

C@HSA-MNPs C@HSA-MNPs@rGO

pH

2.0 7.0 2.0 7.0

Mt
M0

= Fmax

(
1 − e−(kR/Mmax)t

) R2 0.9935 0.9747 0.9563 0.9731
Fmax 0.97 0.53 0.45 0.28

α 32.33 1.13 0.82 0.39
kR (10−2) 1.13 0.79 0.60 0.50
tR1

1/2 (min) 60 47 52 39

Mt
M0

= Fmax(e2(
kR
α )t−1)

1−2Fmax+e2(
kR
α )t

R2 0.9717 0.9765 0.9527 0.9639
Fmax 0.98 0.53 0.45 0.28

α 49.00 1.13 0.82 0.39
kR (10−2) 1.87 0.81 0.58 0.44
tR2

1/2 (min) 52 46 52 39

Mt
M0

= 1 − e−ktn

R2 0.9946 0.9933 0.9888 0.9248
K (10−2) 2.90 8.46 7.28 6.14

n 0.78 0.37 0.35 0.29
tA

1/2 (min) 58 294 # #

# outside experimental range.

Figure 6 clearly showed pH-sensitive behavior, with the reduction of pH values carrying out to
higher amount of released drug (Fmax of 45% and 28% at pH 5.5 and 7.4, respectively, see Table 1).
Compared to physiological environments, at lower pH value, indeed an easier DOX protonation
occurred, with a reduction of the hydrophobic-driven interactions between drug and carrier (α moved
from 0.39 to 0.82), somehow fastening the DOX dissolution (kR increases from 0.50 to 0.60 and tR

1/2
decreases from 52 to 39 min). However, at both pH values, the amount of DOX in the surrounding
environments was always lower than 50%, highlighting the strong ability of rGO to load and carry
drug molecules with high affinity [57]. The low DOX release at physiological pH is expected to
dramatically reduce the drug side effects, thus enhancing the therapeutic index. This result underlines
the importance of rGO into the nanocarrier, with C@HSA-MNPs showing a lower drug to carrier
affinity (highest α values at both pH), with 53% of DOX released at pH 7.4, increasing up to 97% at
acidic pH.

More detailed information about the release mechanisms can be obtained by applying the
mathematical model proposed by Avrami (Equation (8)) [58], fitting well with the experimental
data (R2 values > 0.92):

Mt

M0
= 1 − e−ktn

(8)

n and k are the Avrami parameter and release rate constant, respectively and were calculated by
rewriting of Equation (8) by double logarithm (Equation (9)) and plotting of ln(ln(1 − X)) vs. ln t.

ln
(
− ln

(
1 − Mt

M0

))
= ln k + n ln t (9)

The recorded n values for C@HSA-MNPs@rGO (Table 1) allowed for hypothesizing that the release
kinetics were mainly diffusive (n close to 0.54). Interestingly, the carrier prepared in the absence of
rGO (C@HSA-MNPs) showed a similar behavior at pH 7.4, while under acidic conditions a first-order
kinetic was invoked to explain the higher DOX release.

The effect of rGO and pH on the releasing rate was better highlighted by the introduction of the
half-life release time obtained when Mt/M0 is 0.5 (t1/2), according to Equation (10).
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t1/2 = e(
− ln k−0.367

n ) (10)

The model reflected the experimental fact that, in the absence of rGO, faster release was detected in
acidic (t1/2 of around 60 min) compared to neutral (t1/2 of around 290 min) conditions, while the
presence of GO dramatically slowed the release and the t1/2 values were found to be outside of the
experimental range of 24 h. Finally, for both models, it should be pointed out that the presence of CUR
did not significantly interfere with the release kinetics (p > 0.05), with the release profiles of HSA-MNPs
and HSA-MNPs@GO being closer to C@HSA-MNPs and C@HSA-MNPs@rGO, respectively (data
not shown).

3.2. Evaluation of Cytotoxic Activity

The cytotoxic activity of DOX after loading into C@HSA-MNPs@rGO nanohybrids (DOX to
carrier ratio of 12.5% by weight) was tested on neuroblastoma SH-SY5Y cells (Figure 7). As a control
sample, we employ DOX-loaded HSA-MNPs@GO to highlight the effect of the functional coating on
the nanohybrid structure.
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Figure 7. SH-SY5Y viability after treatment with free and loaded DOX on HSA-MNPs@GO and
C@HSA-MNPs@rGO.

At first, free drug was tested in the range of 0.22–2.20 µM, showing a typical dose-dependent
response. Then, empty carriers showed no toxicity in the tested concentrations (10.2 to 102 µg mL−1),
with cell viability values (%) higher than 95% in all cases (data not shown).

Performing the viability assays with loaded systems at equivalent DOX concentrations, the
effect of the nanohybrid was evident. The high affinity of GO for the anticancer therapeutic
resulted in a significant reduction of the cytotoxic effect when HSA-MNPs@GO was employed as
carrier. This is in accordance with the literature data proving that a slower release of DOX from
nanoparticule delivery system is associated with a reduction of toxicity of loaded vs. free DOX at
equivalent concentrations [59–62]. While free DOX penetrated the cell membrane through passive
diffusion, comparatively long time was required for loaded DOX due to strong π–π stacking and
endocytosis-mediated cytosolic sustained release [63–65]. In our experimental conditions, the ability
of nanohybrid to cross the cell membrane is proved by TEM analysis (Figure 8), showing the presence
of nanohybrids within the cytoplasm of SH-SY5Y cells.
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Figure 8. TEM images of SH-SY5Y after incubation with C@HSA-MNPs@rGO, proving the presence of
nanohybrid within the cytoplasm.

To further improve the therapeutic outcome, we performed additional experiments employing
similar carriers but functionalized with CUR (C@HSA-MNPs@rGO). In these experiments the
well-known synergistic activity between the polyphenol species and DOX [66] enhanced the activity
of the released drug, with the cytotoxicity becoming similar to the free DOX at 0.44 and 0.88 µM
(Figure 7). The maintenance of the DOX anticancer efficiency, combined with both the selective release
capability in acidic conditions and the magnetic properties, makes the proposed C@HSA-MNPs@rGO
nanohybrid a promising carrier for a targeted therapy. It can be hypothesized that the carrier is
able to spatially control the DOX anticancer activity being selectively attracted from a magnetic field.
To confirm this finding, we incubated 250 × 103 cells seeded in a 35-mm petri dish with DOX loaded
on either C@HSA-MNPs@rGO or C@HSA-rGO for 72 h under the effect of a magnetic field generated
by a permanent Nd-Fe-B magnet. For DOX-C@HSA-MNPs@rGO, the results showed a clear targeted
cell death at the region close to the magnet, as a consequence of the increased local concentration of
the drug by MNPs. Concurrently, no relevant toxicity was observed on the opposite region of the petri
dish, where the magnetic forces were negligible (Figure 9a). The same experiment was performed with
DOX-C@HSA-rGO as a control for the magnetic field effects, since the absence of the MNPs makes the
compound not responsive to the magnetic field, which results in absence of any spatial control of the
drug activity (Figure 9b).
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Our results have proved the potential applicability of DOX-C@HSA-MNPs@rGO in the
vectorization of DOX to neuroblastoma cells due to their capability to be selectively attracted from
a magnetic field. These nanoparticles can potentially accumulate in tumors as a consequence of the
enhanced permeability and retention (EPR) effect, and enable preferential drug release in response
to the decreased tissue pH of either the extracellular (e.g., hypoxia) or intracellular (e.g., endosomes)
tumor compartments [67]. Future experiments will be performed for evaluating the pharmacokinetics
profiles with or without magnetic field, the anticancer activity, and the theranostics (e.g., MRI imaging)
properties of the nanohybrid in suitable orthotopic neuroblastoma xenograft models.

4. Conclusions

We presented experimental evidence that the novel C@HSA-MNPs@rGO is a capable
nanoplatform to provide spatial control for the release of cytotoxic agents such as DOX, due to
the combined unique features of GO, MNPs, and C@HSA conjugates. While GO was responsible for
the observed high loading capacity, the MNPs provided remote-actuation capabilities to deliver the
nanohybrids to specific target sites. Moreover, the C@HSA conjugate coating acted synergistically with
the DOX to increase the therapeutic effects on cancer cells.

The synthetic strategy consisted in two steps: C@HSA and MNPs@GO were preliminary fabricated
via enzyme catalysis and chemical coupling, respectively, and then assembled to form the final
nanohybrid C@HSA-MNPs@rGO. The physico-chemical characterization of the nanohybrids regarding
their morphological, thermal, and magnetic properties showed the correct assembly of the components
as well as the magnetic responsiveness expected for a targeted delivery vehicle for DOX. The DOX
release profile was found to be tunable by pH, as a consequence of the modulation of the drug to
carrier affinity, whereas the in vitro viability assays clearly showed the enhancement of cytotoxic
activity due to the presence of CUR moieties within the nanohybrid coating. The observed levels of
nanohybrid internalization by SH-SY5Y cells, together with magnetic actuation by external magnetic
fields to increase local concentration at targeted sites, makes this nanohybrid a promising carrier for
neuroblastoma treatment.
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