
Computational and Structural Biotechnology Journal 20 (2022) 1914–1924
journal homepage: www.elsevier .com/locate /csbj
Scalable in-memory processing of omics workflows
https://doi.org/10.1016/j.csbj.2022.04.014
2001-0370/� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: IBM Research Europe, Hartree Centre, Daresbury
Laboratory, Keckwick Lane, WarringtonWA4 4AD, Cheshire, UK.

1 Authors made equal contributions.
Vadim Elisseev a,b,⇑,1, Laura-Jayne Gardiner a,1, Ritesh Krishna a

a IBM Research Europe, Hartree Centre, Daresbury Laboratory, Keckwick Lane, WarringtonWA4 4AD, Cheshire, UK
bWrexham Glyndwr University, Mold Rd, Wrexham LL11 2AW, Wales, UK
a r t i c l e i n f o

Article history:
Received 10 March 2022
Received in revised form 11 April 2022
Accepted 11 April 2022
Available online 20 April 2022

Keyword:
Bioinformatics
HPC
Key-value store
Machine learning
Cloud
Metagenomics
a b s t r a c t

We present a proof of concept implementation of the in-memory computing paradigm that we use to
facilitate the analysis of metagenomic sequencing reads. In doing so we compare the performance of
POSIXTMfile systems and key-value storage for omics data, and we show the potential for integrating
high-performance computing (HPC) and cloud native technologies. We show that in-memory key-
value storage offers possibilities for improved handling of omics data through more flexible and faster
data processing. We envision fully containerized workflows and their deployment in portable micro-
pipelines with multiple instances working concurrently with the same distributed in-memory storage.
To highlight the potential usage of this technology for event driven and real-time data processing, we
use a biological case study focused on the growing threat of antimicrobial resistance (AMR). We develop
a workflow encompassing bioinformatics and explainable machine learning (ML) to predict life expec-
tancy of a population based on the microbiome of its sewage while providing a description of AMR con-
tribution to the prediction. We propose that in future, performing such analyses in ’real-time’ would
allow us to assess the potential risk to the population based on changes in the AMR profile of the
community.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Genomics, powered by Next Generation Sequencing (NGS) tech-
nologies, is fast emerging as an important pillar in the modern life
sciences industry. Genomics is a data-intensive discipline, where
each experiment can produce hundreds of gigabytes of data that
needs to be computationally processed in order to derive any
actionable insight. There is a substantial delay, known as compute
bottleneck, involved in processing genomics datasets. Compute bot-
tleneck in genomics can be due to a combination of number of fac-
tors including, vast data volume, standardized data representation,
algorithmic designs, and inefficient utilization of compute
resources, often available through traditional standalone, non-
distributed environments. Tools are often stitched in a sequential
manner, to createworkflows that are the workhorses of the modern
bioinformatics world. The bioinformatics developer community
has been quick in adopting cloud-native technologies like Contain-
ers, elasticity etc. to develop cloud-enabled workflows that can not
only run on the traditional standalone and HPC infrastructures, but
can also be executed on clouds [1–4].
We are gradually seeing an acceptance of cloud enabled infras-
tructure to meet the growing demands of genomics data. New
workflows are being developed, and old ones ported in a cloud
native manner to take advantage of the elastic nature of cloud,
where infrastructure can be provisioned and released as per the
requirement needed for an analysis. This approach is helpful in
tackling the growing volume of data, as it allows us to run multiple
instances of a workflow, allowing embarrassingly parallel process-
ing of multiple datasets. However, at each workflow sub-level,
there is little change in the compute bottleneck problem. Most
workflows are based on the assumption that computational pro-
cessing of datasets would start only after the process of data acqui-
sition is complete. Once the entire dataset is available in a
persistent manner, often on a large hard disk, it is then processed
through a series of tools present in the workflow. The output from
one tool is the input for the next tool in the workflow and at every
instance, a secondary device based I/O is performed. This sitting
nature of data, at each step in the workflow, poses a fundamental
problem towards resolving the compute bottleneck, as not only
the I/O operations can be a major time sink, but intermediate data
can also be too large to move for shareability and reusability. The
I/O based design also dictates the sequential nature of information
flow in workflows, leading the compute to be process driven,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.04.014&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2022.04.014
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2022.04.014
http://www.elsevier.com/locate/csbj


V. Elisseev, Laura-Jayne Gardiner and R. Krishna Computational and Structural Biotechnology Journal 20 (2022) 1914–1924
compared to data driven. As we move towards increased adapta-
tion of genomics in fields wider than healthcare, like pathogen
surveillance, time is of the essence, and there is an acute need to
accelerate the data processing problem in genomics.

Over the past few years, we have seen exciting technologies like
Graphical Processing Units (GPUs), accelerators, distributed frame-
works like SPARK etc. offering solutions to accelerate genomics
data processing [5–7]. Much of the promise by these technologies
is centred on the principle of increasing the number of compute
cores and thus allowing large-scale data and compute paralleliza-
tion. However, there is still the problem of massive and iterative
data movement between primary and secondary storage devices
and on-chip memory. Among recent cloud technologies, in-
memory databases, based on key-value relationships, have gained
traction as purpose built databases that reside in memory, com-
pared to secondary devices. The elastic nature of cloud enables
provisioning of large memory pools that can hold massive amounts
of genomics data and enable minimal response time for data access
and reduction in disk usage. In this study, we investigate if it is
possible to utilize in-memory databases for real-life genomics data
processing. We also investigate as to what are the trade-offs
between using in-memory databases with respect to complemen-
tary POSIX file systems based key-value object storage technology
[8]. We want to exploit the key-value representation of sequencing
data to understand performance benefits, as well as possibilities of
developing event-driven omics workflows.

In order to demonstrate the application of in-memory data-
bases for genomics, we developed a complete bioinformatics work-
flow to process metagenomic sequencing reads that were derived
from untreated sewage samples from sites across 60 countries
(3.2 TB of uncompressed FASTQ files) to understand the key com-
ponents of antimicrobial resistome in sewage with potential for
indicating or even influencing lower and higher life expectancy
in the population. Our analysis shows that the in-memory database
driven paradigm is not only beneficial for real-time data process-
ing, but also allows us provisions to think about alternate algo-
rithm designs, data representation and exploitation techniques. A
key advantage of using in-memory databases includes breaking
the sequential nature of workflows, and allowing diverse,
mutually-independent operations to be performed in parallel
(e.g., functional profiling through sequence alignment could be
done in parallel to k-mer based taxonomic assignment). Resultant
databases can be updated with results in real-time while opera-
tions are ongoing, allowing for external tools to consume the
results in real-time, as soon as they appear in the database. Archi-
tecture of this kind, allows us to envision event-driven, server-less
compute paradigms that have so far, to the best of our knowledge,
not been exploited in bioinformatics. We also present an extensive
performance based comparison of POSIX files systems using paral-
lel I/O with in-memory key-value storage.
2. In-memory paradigm in genomics

Disk storage and access incur huge latency in the processing of
genomics datasets. In order to accelerate downstream data pro-
cessing, the data needs to be closer to the processor and available
in fast access memory devices. Historically, it was difficult to
achieve this at larger scale due to cost and architectural constrains
around dynamic random-access memory DRAM [9] technology.
However, there have been rapid improvements in memory tech-
nologies and compute architectures that allow cost effective solu-
tions for processing large amounts of data in significantly less time.
Emergence of large, streaming data sets in various fields, coupled
with rises in AI based applications, have helped large memory
compute infrastructures to become mainstream. The in-memory
1915
paradigm takes advantage of the new architectural designs, where
within a compute cluster, computers pool their RAM together to
create a large virtual RAM that can be used to process a large vol-
ume of data in a much faster manner. An in-memory paradigm can
minimize the slow secondary disk access and reduce latency,
which is particularly important for addressing the I/O related con-
cerns in a traditional bioinformatics workflow. The in-memory
paradigm also offers an opportunity to reconsider the design of
existing HPC and cloud-enabled traditional workflows that were
designed to run on traditional low memory, secondary I/O based
architectures.

The key-value paradigm and platforms: In-memory databases
are specialized technology based on the in-memory paradigm that
utilize local and distributed RAM for storing and retrieving data
records. The availability of pooled RAM provides more space to
hold larger volumes of data, and also reduces data access latency.
Some In-memory databases work on the principles of key-value
store, and are also known as key-value databases. Key-value data-
bases are basically a form of non-relational database where data is
stored in simple representation of key-value pairs. For this paper,
we consider our in-memory database to be a key-value database.
We take advantage of the fact that each FASTQ record, within an
input FASTQ file, is an atomic unit of information, where the
sequence identifier can act as key, and the sequence itself can act
as value. Traditional bioinformatics tools for mapping, filtering
etc produce outputs that are matched using sequence-identifiers
for each input FASTQ record. Since key-value databases allow both
partitioning and horizontal scaling that is not possible with rela-
tional databases, these are suitable technologies for storing inter-
mediate data produced by different tools in a bioinformatics
workflow where the output from each tool can be mapped to
sequence identifiers in the input data, and be stored against the
correct key in the database. As the number of tools in the workflow
increase, so will the value field for each key from the input data.
The in-memory database can be configured to take advantage of
the elastic nature of cloud to grow as per the requirement.

State of the art: In-memory processing of genomics data has
been attempted by various research groups using several technolo-
gies. The work by [10] presents the commonly used genomics data
format, the Sequence Alignment Map (SAM) file, as ArrowSAM, an
in-memory SAM format that uses the Apache Arrow framework.
The authors integrate their ArrowSAM format into genome pre-
processing pipelines yielding 15x and 2.4x speedups as compared
to Picard and Sambamba, respectively. Gupta et. al. [5] proposed
an accelerator, RAPID, which exploited in-memory processing
solutions to enable a highly scalable, accurate and energy-
efficient solution for DNA alignment. They revised a state-of-the-
art alignment algorithm to make it compatible with in-memory
parallel computations, and processed DNA data completely inside
memory without requiring additional processing units. The
authors showed that RAPID was at least 2x faster and 7x more
power efficient than their benchmark accelerator BioSEAL. Castro
et. al. [6] developed SparkBLAST, a parallelization of the sequence
alignment application BLAST that employed cloud computing for
provisioning of computational resources and used Apache Spark
as the coordination framework. They proposed that the in-
memory operations available through the Spark framework reduce
the number of local I/O operations required for distributed BLAST
processing resulting. ADAM [11] is another tool, providing a set
of formats, APIs, and support for processing genomic data based
on the combination of SPARK and cloud computing. Finally, the
recent work presented by Becker et. al. [12] is highly relevant as
the authors look beyond single steps of processing e.g., DNA
sequence alignment, and demonstrate how a novel architecture,
named Memory-Driven Computing (MDC), can be used for pro-
cessing genomics sequencing data. They effectively have proposed



V. Elisseev, Laura-Jayne Gardiner and R. Krishna Computational and Structural Biotechnology Journal 20 (2022) 1914–1924
ways to eliminate I/O usage from several steps of standard geno-
mics workflows including the Samtools commands View, Sort,
Markdup and Fixmate. However, this particular work uses a propri-
etary HPE system architecture for MDC which limits its usage for
the bioinformatics community.

Goals of this study: It is early days for the mainstream adoption
of the in-memory paradigm for genomics. As such, we designed
our study to understand and evaluate the paradigm by setting
the following goals:

1. to develop a proof of concept implementation of the in-memory
computing paradigm using generally available components and
frameworks which are available in the current technical ecosys-
tem, as opposed to specialized hardware/software combina-
tions. See Fig. 1 for a conceptual diagram of the proposed in-
memory architecture.

2. to highlight the benefits and opportunities for event driven and
real-time data processing,

3. to show the potential for integrating existing and widely used
HPC and cloud native technologies, and

4. to help evaluate in-memory technologies with respect to the
traditional POSIX file interfaces.

Through our use case of processing metagenomics sewage data, we
demonstrate the possibility of implementing an entire workflow
using the in-memory databases and generally available compute
components. We delved deeper at the key stage of duplicate
removal in the workflow to show how the use of in-memory data-
bases can enable novel and faster ways of handling the data.
Importantly, we demonstrate how massive parallelization can be
achieved for processing of data, tools can be run in an asyn-
chronous manner and intermediate data can be made available
as soon as it is produced; eventually paving way for data and
event-driven instructions. Our demonstration makes use of tradi-
tional HPC and cloud components including an in-memory data-
base, and implements an entire workflow, showing how it is
possible to port a traditional HPC bioinformatics workflow to the
proposed in-memory architecture without requiring any special
arrangements. We also acknowledge that there are various flavours
of in-memory databases and traditional MPI based distributed
computing approaches; we have provided an extensive evaluation
of comparative technologies to help understand which in-memory
approach may be suitable over other in different circumstances.
3. Methods

3.1. Biological case study and the bioinformatics workflow

To showcase our proposed capability, we performed an end-to-
end bioinformatic analysis of metagenomic sequencing reads using
our in-memory architecture. We used this example to demonstrate
how to convert a traditional bioinformatics workflow to its in-
memory counterpart and gain scientific insights. The samples that
we used as part of our biological case study included paired end
metagenomic sequencing reads that were derived from untreated
sewage from 79 sites across 60 countries [13]. We then identified
sets of antimicrobial resistance (AMR) genes plus their coverage
statistics to enable downstream Machine Learning (ML) analytics
to predict key biological endpoints of interest from the microbiome
of the sewage. In this case we primarily focused on the prediction
of the life expectancy in years for that population. Using ML model
explanation we were able to identify the key components of the
antimicrobial resistome present in the sewage that are candidates
for driving lower and higher life expectancy in the population. We
1916
aimed to perform the entire analytics, starting from raw data to ML
prediction, using our in-memory architecture.

We developed an integrated bioinformatics and ML workflow
that takes as input raw paired-end metagenomic sequencing reads
and proceeds through read QC (Trimmomatic, v0.39 [14]), dupli-
cate removal (using in-memory architecture) and read alignment
(BWA-MEM, v0.7.17 [15]) against the MEGARes [16] database of
8,000 hand-curated antimicrobial resistance genes (AMRs). This
read alignment is followed by alignment filtering (SAMtools, ver-
sion [17]), coverage quantification (read count per AMR gene)
and normalisation (to account for differing sequencing depths
between samples). Fig. 2 provides a schematic of the bioinformat-
ics workflow used for the genomics data processing and the soft-
ware parameters selected where appropriate.
3.2. In-memory bioinformatics workflow implementation

The bioinformatics workflow was implemented using our pro-
posed distributed in-memory architecture (Fig. 1). We have mostly
used an in–house HPC cluster consisting of twenty IBM POWERTM-
compute nodes connected with 10 Gb Ethernet and 100 Gb Infini-
band networks. Each node has two CPUs running at 3.69 GHz, 10
cores per CPU and 1 Tb of RAM. IBM Spectrum Scale TM[18] parallel
file system was used as a 50 Tb shared storage over 10 Gb network.
The cluster had IBM Spectrum LSF [19] as a resource management
system and OpenMPI [20] implementation of MPI. We chosen
Redis TM[21] for an in-memory store as one of the highest perform-
ing key-value storage solutions. We deployed Redis in cluster con-
figuration [22] across all twenty servers with ten instances acting
as masters. Such configuration allowed us to maximise number
of local per node connections between Redis servers and clients,
thus minimizing data movement over network.

We investigated several options of bringing in-memory storage
into a workflow. We developed a number of clients using Data Bro-
ker(DBR) [23] and Hiredis [24] APIs and different Redis data types
[25]. DBR provides a set of APIs, which can work with various back-
ends including Redis, and as such provides a more general
approach to building in-memory storage solutions. It supports
both synchronous and asynchronous communications and cluster-
ing. DBR uses LIST data type for integration with Redis, which
implies using of the LRANGE directive for retrieving values from
a server. In contrast, Hiredis supports a wide range of Redis data
types and data insertion and retrieval protocols. We also investi-
gated applicability of HPC technologies, MPI in particular, to the
in-memory processing of omics data.

Fig. 3 provides a schematic for the implemented in-memory
workflow. The third-party bioinformatics tools (Green spheres) like
Trimmomatic, BWA etc. were unmodified and simply used in their
standard form. We developed some bespoke tools (Orange
spheres) to distribute and maintain data flow in the workflow to
make it compatible with the in-memory architecture. We also
developed a specific example for duplicate removal using our in-
memory approach to showcase how this architecture enables us
to take a fresh look on an age-old problem. The bespoke tools
include Splitter, an MPI based tool for splitting FASTQ files inspired
by the algorithm proposed in [26]; Filter, an MPI based tool for
duplicate removal, which implemented two flavours of duplicate
removal algorithm using external in-memory key-value storage
or local in-memory key-value based approach. Watcher is a tool
for monitoring key-value store and data retrieval, and ML model a
Machine-learning model for predictive analysis on microbiome
(metagenomic) data. Furthermore, Splitter and Filter tools are cap-
able of working with both file systems and external in-memory
key-value storage. Overall our workflow was flexible enough to
allow experimentation with different algorithms, types of storage



Fig. 1. Architecture stack of the environment used to study in-memory workflows processing.

Fig. 2. Example bioinformatic workflow to enable analysis of metagenomic samples from untreated sewage.

V. Elisseev, Laura-Jayne Gardiner and R. Krishna Computational and Structural Biotechnology Journal 20 (2022) 1914–1924
and workflowmanagement techniques, while being robust enough
to produce tangible scientifically meaningful results.
3.3. Improving performance through parallelization

Firstly, we analysed performance of the base line version of the
workflow, which consists of standard tools only without our addi-
tional components in order to understand what improvements can
be made without modifications to existing tools. Fig. 4 shows per-
formance profile of the base line pipeline for 2 Gb and 20 Gb input
FASTQ data sizes. It is clear that most of the workflow’s time is
spent in the Trimmomatic step, hence reducing its elapsed time
will provide the most benefit to improving the overall performance
of the pipeline.
1917
We observed that when running Trimmomatic, elapsed time
scales linearly with the input data size (Fig. S1). Consequently, if
we can split input data into multiple files and run several Trimmo-
matic instances concurrently, we will achieve linear speedup. We
achieved splitting with our Splitter tool that takes a FASTQ file
and divides it into several smaller FASTQ files - one per MPI rank,
which can then be fed either directly to multiple instances of
BWA and Samtools, or, to a Filter tool for additional preprocessing.

Note that Splitter has an option to stream FASTQ records directly
to a Redis cluster instead of writing them into files. Figs. S2 and S3
show the performance of concurrent writes and reads to and from
Redis server by clients using DBR or Hiredis APIs as functions of a
number of MPI ranks. From these figures it can be seen that we can
get linear speedup for up to 4 concurrent client–server sessions. To



Fig. 3. Workflow Implementation - Handling of a paired read sample in the proposed architecture. File I/O denotes reads and writes from/to a parallel file system. Socket I/O
denotes reads and writes to an external in-memory key-value store.

Fig. 4. Performance profile of the base line pipeline for different input FASTQ file sizes.

V. Elisseev, Laura-Jayne Gardiner and R. Krishna Computational and Structural Biotechnology Journal 20 (2022) 1914–1924
put this into prospective, our experimental cluster with 20 nodes,
20 cores each, can run up to 20 instances of Redis server per node
processing up to 80 FASTQ files concurrently per node or 1600
FASTQ files per cluster as long as we have enough memory on each
host.

3.4. Duplicate removal through in-memory facilities

Sequencing read duplicate removal is a critical step in a work-
flow, which can lead to a significant reduction in the data volume
to be processed downstream and therefore an associated reduction
in processing time. The earlier the duplicates can be removed the
bigger gains in performance can be obtained. Therefore, we devel-
oped a duplicate removal algorithm that can be applied at any
stage of the pipeline. Our in-memory architecture allowed us to
develop alternate ways to perform the duplicate removal opera-
tion. Similar to [27] our algorithm explores the keys collisions
property of key-value store. We experimented with two imple-
mentations of the algorithm: one using keys collision properties
1918
of Redis and another using local in-memory hash tables. Both
implementations utilized MPI to take advantage of parallel pro-
cessing of sequencing data. Further details of the implementation
and performance results are outlined below.

3.4.1. Duplicate removal using key-value store
Fig. 5 provides details of the external key-value storage dupli-

cates removal algorithm, where our Filter tool reads data from a file
system. For each pair of FASTQ files coming from Trimmomatic two
instances of Filter are launched to write records to Redis using
sequences as keys and record titles as values. What happens on
the server side depends on the data type used. When LIST data type
is used, each key corresponds to a unique sequence, while titles
corresponding to duplicate sequences are grouped together under
the same key. When SET data type is used, duplicate records are
just dropped by a server. As the next step Filter reads records back
from Redis via combination of SCAN directive to retrieve all known
unique keys and either LRANGE directive for LIST data type or GET
for SET data type to retrieve all or some values for each key. To



Fig. 5. Schematic for in-memory duplicate removal using external key-value store.

V. Elisseev, Laura-Jayne Gardiner and R. Krishna Computational and Structural Biotechnology Journal 20 (2022) 1914–1924
make such mechanism to work as a duplicate removal filter and to
keep track of duplicates, the Filter tool uses local in-memory algo-
rithm to identify duplicates during theWRITE step and stores them
in Redis under a separate namespace alongside the original data. So
at the end of the WRITE step we have four namespaces containing
data and duplicates from each input file. When reading back from
Redis in a second part of the algorithm, each instance of the Filter
tool retrieves original data from one of the data namespaces and
duplicate from both namespaces from Redis and checks FASTQ
records against two sets of duplicates.

Fig. 6 shows representative performance profiles of a duplicate
removal filter implemented with DBR APIs (blue) and Hiredis APIs
(orange). Times are averaged across two instances of the Filter tool
- one for each 1P/2P input file. Description of stages of the dupli-
cates removal is as follows:

read_file - reading of FASTQ records from a file,
processing_keys - checking for duplicates locally, sending origi-
nal data and duplicates to a server,
scan_namespace - reading data from a server,
merge_duplicates - reading two sets duplicates from a server and
merging them together in a single hash table,
remove_duplicates - removing duplicates,
write_file - writing resulting FASTQ records into a file.

The performance of the Filter is defined by the performance of the
client–server communications, with Hiredis implementation offer-
ing much higher throughput compared to the DBR as we will con-
firm in Section 4.

Note that Filter throughput performance in this case can be fur-
ther improved by using MPI task-based or OpenMP [28] thread-
based concurrent communication between client and server com-
ponents of the Filter tool, but this approach will also bring addi-
tional complexity in managing additional MPI tasks or OpenMP
threads.

We looked at performance of communications with external
key-value store, which uses TCP/UNIX sockets and compared it
with performance of file based I/O. According to our experiments,
writing to Redis using DBR API yielded throughput of 10 Mb/s com-
pared to 400 Mb/s throughput on writes to a parallel file system
using a single MPI task. Under the same conditions, we have
obtained a throughput of 500 Mb/s for reads from a file system
and 3–10 MB/s when reading (SCAN + LRANGE) from a server using
1919
DBR APIs. We have tested with 7 M keys, with each key-value pair
being 220 bytes long. Our conclusion was that DBR-based imple-
mentation is too slow for dealing with massive data sets. We then
looked at the Hiredis-based implementation. We experimented
with the memtier-benchmark[29], which uses SET data type and
SET + GET directives for writing and reading. Memtier-benchmark
achieved 350 Mb/s throughput with pipelining [30] enabled. This
was encouraging, so we have looked at using SCAN + LRANGE using
version of the Filter client implemented with Hiredis APIs. We
achieved approximately 200 Mb/s throughput on SCAN and
50 Mb/s throughput on LRANGE with pipelining with 7 M keys
and 220 bytes long key-value pairs. This is a 10 times improvement
over DBR APIs. We also tested using the same data sets and
SCAN + GET directives and measured similar throughput of approx-
imately 90 Mb/s.

3.4.2. Duplicate removal using local memory
We also implemented another version of the Filter using only

local memory for a duplicate removal algorithm, similar to the
one described in [27]. Fig. 7 illustrates the main steps in the algo-
rithm. Filter reads both fastq-trim-1/2P files created by Trimmo-
matic concurrently using MPI I/O library. Once each MPI rank has
its portion of FASTQ records, it creates a local hash table and pop-
ulates it using sequence line as a key. During insertion each subse-
quent key is checked against keys, which are already in the table
and if unique, corresponding record is added to the array of unique
records, if matched, a record added to the array of duplicate
records. Once the process is complete, each rank has an array of
unique records and an array of duplicates. Each MPI rank then
broadcasts array of duplicates to all other ranks using MPI all-to-
all communication. Finally each MPI ranks checks its local array
of unique records against duplicates from all other ranks using
the same technique as above. Once the checks are completed, final
arrays of unique records from each MPI rank are written into two
output files fastq-trim-1/2P.filter using MPI I/O. Fig. 8 shows perfor-
mance profile of the MPI with local memory duplicates removal
algorithm for 2, 32 and 64 MPI ranks for the same input files size
(20.5 GB compressed FASTQ). Description of stages of the dupli-
cates removal is as follows:

read_file - reading of FASTQ records from a file,
create_kvals - create key-value arrays and local duplicate arrays
from input data,



Fig. 6. Performance profile of the external key-value store duplicate removal filter using DBR APIs (blue) and Hiredis APIs (orange). 1563892 FASTQ records, 220 bytes each
have been used.

Fig. 7. Schematic for in-memory duplicate removal using MPI and a local memory approach.

V. Elisseev, Laura-Jayne Gardiner and R. Krishna Computational and Structural Biotechnology Journal 20 (2022) 1914–1924
MPI communications - exchanging duplicates among MPI tasks,
remove_duplicates - each MPI task removes all duplicates from
its local FASTQ records,
write_records_file - writing resulting FASTQ records into a file.
We can see that the majority of the processing time is spent
in actual duplicate removal and that parallelization helps to
improve performance. Inter-rank communication overhead
increases with the number of ranks indicating that 32 ranks is
the optimum parallelization strategy in this particular use case.

3.5. Event-driven data processing

The in-memory database can be accessed at any stage in the
workflow using the Watcher tool that performs LRANGE (for LIST
Redis data type) or GET (for SET Redis data type) based read oper-
ations to retrieve data from given namespaces. One can trigger
Watcher using multiple criteria, be it arrival of new data in the
database, lookup for a particular key, or increase in the database
size by a predetermined threshold. Since the in-memory database
allows availability to all the data produced at the intermediate
1920
stages in our workflow, tools like Watcher can be used to collate
information from various stage as soon as any tool processes a
FASTQ record. For our ML case study, we used Watcher to retrieve
data after the completion of SAMtools due to the nature of our sci-
entific enquiry. However, for cases where real-time prediction is
required through the application of online learning algorithms,
Watcher can act as a streaming interface between the in-memory
database and the ML module to facilitate immediate consumption
of any intermediate data available in the database.
3.6. Machine Learning

Following the development of the bioinformatics workflow
shown in Section 3.1, we developed, trained and tested ML models
that take the normalised coverage of the AMR genes as input in
order to predict the life expectancy in years for the population
from which the sewage sample was derived (regression task).
Firstly we developed the ML models using our full dataset that
encompassed 223 individual metagenomic sequencing samples



Fig. 8. Performance profile of the local memory duplicate removal filter.

V. Elisseev, Laura-Jayne Gardiner and R. Krishna Computational and Structural Biotechnology Journal 20 (2022) 1914–1924
for which there was normalised sequencing coverage across a total
of 7126 AMRs (features for ML). We used Scikit Learn (v3.7) [31] to
build and tune the ML models. The approach used was as follows:
the MinMaxScaler was used to scale the features from 0 to 1, 80% of
the data was used for training and the remaining 20% was held out
for testing, 5-fold cross validation was also performed on the train-
ing data using K-folds. The methods’ hyperparameters were opti-
mized using a grid search to test a range of parameters
(Table S1) for the following regressors: Logistic Regression, Ran-
dom Forest, XGBoost, LightGBM, Support Vector Machine (SVM),
Gaussian process, Gradient Boosting and K nearest neighbours
(KNN). We then compared the different regressors to select the
‘‘best” ML model (using best parameters after fine tuning). We
defined the ‘‘best” ML model for our purposes according to the
lowest MAE after cross validation, balanced with the least over-
fitting between training and test data.

We next used f_regression univariate linear regression tests
(implemented via the Scikit Learn’s SelectKBest function) to
sequentially reduce the number of AMR gene features, removing
10 each time, by choosing the most positively correlated features
with the target for each subset size. Each time we reduced the fea-
ture number we re-trained and tested our ‘‘best” ML model using
cross validation. This allowed us to identify a set of highly predic-
tive subset of AMRmarker genes. Finally with our defined subset of
AMR marker genes we used the same approach as previously used
to re-train, test and re-hyper-tune all of the ML regressors. In addi-
tion we compared the usage of the MinMaxScaler and the Stan-
dardScaler, we also compared the performance of these
regressors with a neural network developed in Tensorflow with
otherwise the same training and testing protocol.
4. Results and discussion

4.1. Workflow performance

This section provides statistics of processing the whole data set
using our newly developed workflow. Total size of input FASTQ
files was 843 GB compressed (3.2 TB uncompressed). We have used
a local memory duplicate removal algorithm, so only SAM records
from the final step of the pipelene were written to Redis cluster.
Processing of the whole data set resulted in 42.68 GB of used Redis
cluster memory with 21.34 GB of unique keys across 10 Redis mas-
ters, with 1400695 SAM records. Total elapsed time for the classi-
1921
cal pipeline was 11.48 h. Total elapsed time for the paralellized
pipeline with local memory duplicates removal was 14.7 h with
1 MPI rank and 4.9 h with 32 MPI ranks. One can see that while
sequential version of our pipeline is 20% slower than a classical
one due to overhead from extra steps, it outperforms the classical
one by a factor of at least two with sufficient degree of paralleliza-
tion. We also noted that 9.2 TB of intermediate data was generated
during execution of the pipeline. Such x15 times increase in stor-
age requirements must be planned for and indicates a need for
trade-offs between using slower, but cheaper disk storage versus
faster, but more expensive in-memory storage.
4.2. Using ML to predict life expectancy for metagenomic sewage
samples

Our first ML analysis compared a range of regressors to predict
the life expectancy in years for the population using our full data-
set of 223 metagenomic sewage sequencing samples for which
there was normalised sequencing coverage across a total of 7126
AMRs. The resultant best or most predictive models for each
regressor (using best parameters after fine tuning) were compared
based on the observed lowest Mean Absolute Error (MAE) after
cross validation Fig. 9a. We observed a high degree of overfitting
in our models, potentially due to the high dimensionality of our
input dataset, so we prioritised the least overfitting between train-
ing and test data, which was produced using Random Forest. This
we defined as our ‘‘best” model (Table S2) and it showed a MAE
on the test data of 3.354, training data of 1.151 and a mean value
after cross-validation of 2.841 (standard deviation 0.443), it also
explained 0.404 of the variance of the test dataset (r2 0.397).

We hypothesised that reducing the number of input features
into the ML (dimensionality reduction) could improve the perfor-
mance of our models on the test data. As such, we sequentially
reduced the number of AMR gene features by choosing the most
positively correlated features with the target for each subset size
(see Methods). Each time we reduced the feature number we re-
trained and tested our Random Forest ML model using cross vali-
dation. Fig. 9b highlights that a reduction to only 30 AMR gene fea-
tures was possible while increasing the explained variance of the
test dataset to 0.486. This allowed us to identify a set of 30 highly
predictive subset of AMR marker genes (Table S3). These genes fell
into high-level functional MEGARes categories including ‘‘Drug and
biocide resistance”, ‘‘Aminoglycosides”, ‘‘betalactams”, ‘‘Phenicol”,



Fig. 9. Comparison of performance of ML regression analyses. Comparing ML model performance: (a) using the full dataset 223 samples x 7126 AMRs, (b) for the best model
from (a) Random Forest with sequentially reduced numbers of features, (c) using the 223 samples x 30 selected AMRs from (b), (d) showing the true versus predicted values
for the test dataset when processed through the Neural Network from (c).

V. Elisseev, Laura-Jayne Gardiner and R. Krishna Computational and Structural Biotechnology Journal 20 (2022) 1914–1924
‘‘Trimethoprim”, ‘‘Metronidazole”, ‘‘Sulfonamides” and
‘‘Tetracyclines”.

Finally with our defined subset of 30 AMR marker genes we
used the same approach as previously used to re-train, test and
re-hyper-tune all of the ML regressors plus a neural network (see
Methods). The resultant best models were compared as previously
Fig. 9c and the ‘‘best” model was produced using a Neural Network
that comprised six layers with ReLU activation functions (see
Table S2 for details). The Bayesian Optimization package from
bayes_opt was used to determine the optimal layer number and
neuron numbers for each layer plus their levels of dropout. The
learning rate was set at 0.01, number of training epochs at 500
and the batch size at 5 to minimize loss for the validation set. This
neural network showed a MAE on the test data of 2.772, training
data of 1.940 and a mean value after cross-validation of 3.071 (s-
tandard deviation 0.784), it also explained 0.832 of the variance
of the test dataset (r2 0.831). This amounts to a significant decrease
in MAE on the test data alongside a reduction in overfitting and a
marked increase in the explained variance across the test dataset.
Fig. 9d highlights the high degree of correlation between true and
predicted values across the test set (Pearson correlation statis-
tic = 0.93). This trained Neural Network was then used in the last
stage of our workflow in order to predict the life expectancy of
new metagenomic sewage samples as they are processed by our
bioinformatic workflow.

4.3. Using ML to gain biological insight into life expectancy

It is known that the threat of antimicrobial resistance (AMR) is
growing at an alarming rate and that the situation is perhaps
aggravated in developing countries due to gross abuse of the use
of antimicrobial treatments [32]. When we focus on the samples
that we have in our biological case study that were derived from
the 3 countries with the lowest life expectancy, they are all from
African countries including Cote d’Ivoire (CIV, Africa, 52 years),
1922
Nigeria (NGA, Africa, 53 years) and South Africa (ZAF, Africa,
57 years). By comparison at the other end of the scale, focusing
on the samples that were derived from the 3 countries with the
highest life expectancy, these were all from European countries
including Italy (ITA, Europe, 83 years), Spain (ESP, Europe, 83 years)
and Switzerland (CHE, Europe, 83 years). We inspected both the
accuracy of the life expectancy predictions by our ML model for
each of these samples alongside the local model explanations for
these predictions i.e., to ascertain which AMR genes the model pri-
oritised in order to predict the lower or higher life expectancy’s for
each of these countries (Fig. 10). These AMRs could give insight
into the biological mechanism driving lower life expectancy.

All of the predictions for life expectancy for the countries were
within 7 years of the real values (average within 4 years), this
amounts to an average error rate of 13% for even those countries
samples at the very edge (minimum and maximum) of the scale
that we encountered in this study. Furthermore, in Fig. 10 when
we focus on the ranked top 10 AMR genes that the model priori-
tised in order to predict the life expectancy for each country
(ranked local explanation) we see 8 AMR genes conserved across
the majority of the 3 countries with the lowest life expectancy
(Fig. 10a-c) (MEG_1043: APH3-DPRIME, MEG_5829: QACEDELTA1,
MEG_919: ANT3-DPRIME, MEG_2912: FLOR, MEG_1546: CARB,
MEG_4533: OXA, MEG_6970: TET32, MEG_1019: APH3-DPRIME).
These AMRs include beta-lactamases (CARB, OXA), aminoglycoside
resistance genes that induce drug modification (APH3-DPRIME,
ANT3-DPRIME), drug exporters such as drug/biocide SMR and flor-
fenicol efflux pumps (QACEDELTA1, FLOR) and tetracycline riboso-
mal protection proteins (TET32). The AMRs, when seen at higher
abundances, are key drivers of lower predictions of life expectancy
and they span a broad range of antibiotic classes and resistance
mechanisms, which could explain why various combinations of
them associate with such a detrimental life expectancy phenotype.
Interestingly, 3 of these AMRs (MEG_1043: APH3-DPRIME,
MEG_5829: QACEDELTA1, MEG_1019: APH3-DPRIME) are seen



Fig. 10. Local ML model explanation for 3 countries with the lowest life expectancy (a-c) and 3 countries with the highest life expectancy (d-f). Rows denote the AMR genes in
ranked order from top to bottom according to the feature importance or impact on the models predictions. The values on the x-axis denote the SHAP calculated impact value
of the related AMR gene on the models prediction of life expactancy in years for that sample.

V. Elisseev, Laura-Jayne Gardiner and R. Krishna Computational and Structural Biotechnology Journal 20 (2022) 1914–1924
amongst the most predictive AMRs from the 3 countries with the
highest life expectancy (Fig. 10d-f). However, in this instance we
noted that the presence of these AMRs has an opposite effect on
the prediction i.e., they change from lowering to increasing the
predicted life expectancy value respectively between the low and
high life expectancy countries, this is driven by the underlying dif-
ferences in AMR abundance between these groups (higher abun-
dance generally associated with a lower life expectancy).

When we focus on the 3 countries with the highest life expec-
tancy, we see 8 AMR genes conserved across the majority of them
(Fig. 10d-f) (MEG_1019: APH3-DPRIME, MEG_5829: QACEDELTA1,
MEG_7150: TETO, MEG_7183: TETQ, MEG_1775: CMLB, MEG_900:
ANT3-DPRIME, MEG_1691: CFX, MEG_7178: TETQ). These AMRs
are therefore likely to be key drivers of higher predictions of life
expectancy, and this is driven by lower abundances of these AMR
genes. Notably, all 8 of these AMRs are also seen amongst the most
predictive AMRs from the 3 countries with the lowest life expec-
tancy (Fig. 10a-c). The presence of these AMRs has an opposite
effect on the prediction i.e., they change from increasing to lower-
ing the predicted life expectancy value respectively between the
high and low life expectancy countries, this is driven by the under-
lying differences in AMR abundance between these groups (lower
abundance generally associated with a higher life expectancy).
5. Conclusions

We proposed design and development of a proof of concept in-
memory computing paradigm for bioinformatics workflows using
generally available components and frameworks including MPI
and distributed in-memory key-value storage. In doing so, we
found that in-memory key-value storage offers significant new
opportunities for improving handling of omics by virtue of treating
a sequencing record as an atomic unit of information, where
results from each tool in a workflow are available immediately
and concurrently. Availability of information at various ongoing
stages in a workflow opens opportunities for more flexible and fas-
ter data processing.
1923
Using our proposed architecture, we developed two variations
of scalable duplicate removal algorithms, using local memory
and external in-memory approaches, demonstrating how various
components in the architecture can be utilized to achieve more
than 100% speedups of an overall pipeline execution. We also com-
pared performance of POSIX parallel files systems with in-memory
key-value storage for omics data processing. We demonstrated
that it is possible to achieve comparable performance between file
I/O and socket I/O, when implementing distributed in-memory
processing solutions. Our conclusions have broader implications,
because key-value storage is the basis of the object storage archi-
tectures, which are widely used in cloud environments. While
external in-memory solutions like Redis clusters combined with
MPI based parallelization can provide a viable alternative to a tra-
ditional file systems based approach, it does increase complexity of
the implementation. The latter can be alleviated to a large extent
by using so-called cloud native technologies [33]. In the cloud
native world Redis clusters can be easily managed as services with
improved accessibility, reliability and availability. We can envision
creating fully containerized workflows, using Docker [34] or other
virtualization engines and deploying them in a form of micro-
pipelines, where multiple instances can communicate concurrently
with the distributed in-memory storage deployed on hybrid cloud-
HPC architectures [35],36,37. Using such building blocks we can
implement extremely scalable and portable bioinformatics and
cognitive analytics workflows delivered as-a-service [38].

To highlight the ‘‘real world” benefits of such an approach for
event driven and real-time data processing, we presented a test
biological case study that included the analysis of metagenomic
sequencing reads derived from untreated sewage samples from
sites across the world. Using the sewage samples, we demonstrate
the potential for monitoring and gaining insight into global health
threats at the population level, where we focus on the growing
threat of antimicrobial resistance. Such analysis necessitated a
metagenomics bioinformatics workflow for data processing com-
bined with the downstream usage of explainable ML. We identified
a small subset of key predictive AMR genes that were used to train
a Neural Network to predict the life expectancy of a population
based on the microbiome of its sewage, while providing a descrip-



V. Elisseev, Laura-Jayne Gardiner and R. Krishna Computational and Structural Biotechnology Journal 20 (2022) 1914–1924
tion of which AMRs contributed to this prediction and how. We
propose that in future, the abundances of our defined subset of
30 AMR genes could be monitored in ’real-time’ via our bioinfor-
matic and ML workflow as routine sequencing of the sewage
microbiome is carried out. This would allow assessment of the
potential risk to the population, in this case using changes in pre-
dicted life expectancy as a proxy for risk, as the AMR profile of the
community changes over time. Moreover, other applications of
such a workflow are possible if, for example, our ML workflow
was re-trained with different genes or to predict other attributes.

Declarations

Availability of data and materials

The experimental datasets that were used in this study are
available from the ENA Sequence Read archive study PRJEB13831.

CRediT authorship contribution statement

Vadim Elisseev: Conceptualization, Methodology, Software,
Resources, Visualization, Writing - original draft, Writing - review
& editing. Laura-Jayne Gardiner: Conceptualization, Methodology,
Data curation, Formal analysis, Visualization, Writing - original
draft, Writing - review & editing. Ritesh Krishna: Conceptualiza-
tion, Methodology, Writing - original draft, Writing - review &
editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

Authors would like to acknowledge contributions from Lars
Schneidenbach (IBM) to the development of the Data Broker com-
munication layer used in our tools, Frank Lee (IBM) and Bruce
D’Amora (IBM) for useful discussions. This work was supported
by the Hartree National Centre for Digital Innovation, a collabora-
tion between UKRI-STFC and IBM.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, athttps://doi.org/10.1016/j.csbj.2022.04.014.

References

[1] Novella JA, Emami Khoonsari P, Herman S, Whitenack D, Capuccini M, Burman
J, Kultima K, Spjuth O. Container-based bioinformatics with Pachyderm.
Bioinformatics 2018;35(5):839–46.

[2] Jackman SD, Mozgacheva T, Chen S, O’Huiginn B, Bailey L, Birol I, Jones SJM.
ORCA: a comprehensive bioinformatics container environment for education
and research. Bioinformatics 2019;35(21):4448–50.

[3] Kintsakis AM, Psomopoulos FE, Symeonidis AL, Mitkas PA. Hermes: Seamless
delivery of containerized bioinformatics workflows in hybrid cloud (htc)
environments. SoftwareX 2017;6:217–24. https://doi.org/10.1016/
j.softx.2017.07.007. https://www.sciencedirect.com/science/article/pii/
S2352711017300304.

[4] Merchant N, Lyons E, Goff S, Vaughn M, Ware D, Micklos D, Antin P. The iplant
collaborative: Cyberinfrastructure for enabling data to discovery for the life
sciences. PLOS Biology 2016;14:1–9. https://doi.org/10.1371/journal.
pbio.1002342.

[5] Gupta S, Imani M, Khaleghi B, Kumar V, Rosing T. Rapid: A reram processing in-
memory architecture for dna sequence alignment. In: 2019 IEEE/ACM
1924
International Symposium on Low Power Electronics and Design (ISLPED). p.
1–6. https://doi.org/10.1109/ISLPED.2019.8824830.

[6] M.R. de Castro, C. dos Santos Tostes, A.M.R. Dávila, H. Senger, F.A.B. Silva,
Sparkblast: scalable blast processing using in-memory operations, BMC
Bioinformatics 18..

[7] Taylor-Weiner A, Aguet F, Haradhvala NJ, Gosai S, Anand S, Kim J, Ardlie K, Van
Allen EM, Getz G. Scaling computational genomics to millions of individuals
with gpus. Genome Biol 2019;20(1):1–5.

[8] Mesnier M, Ganger G, Riedel E. Object-based storage. IEEE Commun Magazine
2003;41(8):84–90. https://doi.org/10.1109/MCOM.2003.1222722.

[9] Wikipedia, Dynamic random-access memory. https://en.wikipedia.org/wiki/
Dynamic_random-access_memory..

[10] T. Ahmad, N. Ahmed, J. Peltenburg, Z. Al-Ars, Arrowsam: In-memory genomics
data processing using apache arrow, bioRxiv arXiv:https://www.biorxiv.
org/content/early/2020/04/06/741843.full.pdf, doi:10.1101/741843. https://
www.biorxiv.org/content/early/2020/04/06/741843..

[11] M. Massie, F. Nothaft, C. Hartl, C. Kozanitis, A. Schumacher, A.D. Joseph, D.A.
Patterson, Adam: Genomics formats and processing patterns for cloud scale
computing, Tech. Rep. UCB/EECS-2013-207, EECS Department, University of
California, Berkeley (12 2013). http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2013/EECS-2013-207.html..

[12] Becker M, Worlikar U, Agrawal S, Schultze H, Ulas T, Singhal S, Schultze JL.
Scaling genomics data processing with memory-driven computing to
accelerate computational biology. In: Sadayappan P, Chamberlain BL,
Juckeland G, Ltaief H, editors. High Performance Computing. Cham: Springer
International Publishing; 2020. p. 328–44.

[13] Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O,
Röder T, Nieuwenhuijse D, Pedersen SK, Kjeldgaard J, et al. Global monitoring
of antimicrobial resistance based on metagenomics analyses of urban sewage.
Nature Commun 2019;10(1):1–12.

[14] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina
sequence data. Bioinformatics 2014;30(15):2114–20.

[15] H. Li, Aligning sequence reads, clone sequences and assembly contigs with
bwa-mem, arXiv preprint arXiv:1303.3997..

[16] Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG, Boucher C, Belk KE, Noyes NR,
Morley PS. Megares 2.0: a database for classification of antimicrobial drug,
biocide and metal resistance determinants in metagenomic sequence data.
Nucleic Acids Res 2020;48(D1):D561–9.

[17] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
Durbin R. The sequence alignment/map format and samtools. Bioinformatics
2009;25(16):2078–9.

[18] IBM, IBM Spectrum Scale. https://www.ibm.com/uk-en/products/spectrum-
scale..

[19] IBM, IBM Spectrum LSF. https://www.ibm.com/products/hpc-workload-
management..

[20] OpenMPI, OpenMPI. https://www.open-mpi.org/..
[21] Redis Labs, Redis. https://redis.io/..
[22] Redis, Redis cluster tutorial. https://redis.io/topics/cluster-tutorial..
[23] IBM Research, Data Broker. https://github.com/IBM/data-broker..
[24] Redis, Hiredis. https://github.com/redis/hiredis..
[25] Redis, Data Types. https://redis.io/topics/data-types..
[26] S. Vargas-Pérez, F. Saeed, A hybrid mpi-openmp strategy to speedup the

compression of big next-generation sequencing datasets, IEEE Transactions on
Parallel and Distributed Systems PP (2017) 1–1. doi:10.1109/
TPDS.2017.2692782..

[27] R. T, F. T, N. B, Q. C, M.F., Vsearch: a versatile open source tool for
metagenomics, PeerJ 18 (4). doi:doi: 10.7717/peerj.2584..

[28] OpenMP, The OpenMP API specification for parallel programming. https://
www.openmp.org/..

[29] Redis, Memtier benchmark. https://github.com/RedisLabs/
memtier_benchmark..

[30] Redis, Using pipelining to speedup Redis queries. https://redis.io/topics/
pipelining..

[31] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: Machine learning in
python. J Mach Learning Res 2011;12:2825–30.

[32] Byarugaba D. Antimicrobial resistance in developing countries and responsible
risk factors. Int J Antimicrobial Agents 2004;24(2):105–10.

[33] Cloud Native Computing Foundation, Cloud Native Computing. https://www.
cncf.io/about/who-we-are/..

[34] Docker, Docker. https://www.docker.com/..
[35] HPCWire, Hybrid HPC: The time to embrace the cloud is now. https://www.

hpcwire.com/2020/08/31/hybrid-hpc-the-time-to-embrace-the-cloud-is-
now/..

[36] Curtis Elgin, Is Composable Infrastructure the Natural Successor to Cloud
Computing? https://www.hpcwire.com/2021/04/19/is-composable-
infrastructure-the-natural-successor-to-cloud-computing/..

[37] R. Krishna, V. Elisseev, User-centric genomics infrastructure: trends and
technologies, Genome 64 (4). doi: 10.1139/gen-2020-0096..

[38] Krishna R, Elisseev V, Antão S. Baas - bioinformatics as a service. Euro-Par
Workshops 2018:601–12.

https://doi.org/10.1016/j.csbj.2022.04.014
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0005
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0005
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0005
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0010
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0010
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0010
https://doi.org/10.1016/j.softx.2017.07.007
https://doi.org/10.1016/j.softx.2017.07.007
https://doi.org/10.1371/journal.pbio.1002342
https://doi.org/10.1371/journal.pbio.1002342
https://doi.org/10.1109/ISLPED.2019.8824830
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0035
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0035
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0035
https://doi.org/10.1109/MCOM.2003.1222722
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0060
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0060
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0060
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0060
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0060
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0065
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0065
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0065
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0065
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0070
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0070
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0080
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0080
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0080
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0080
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0085
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0085
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0085
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0155
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0155
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0155
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0160
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0160
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0190
http://refhub.elsevier.com/S2001-0370(22)00133-7/h0190

	Scalable in-memory processing of omics workflows
	1 Introduction
	2 In-memory paradigm in genomics
	3 Methods
	3.1 Biological case study and the bioinformatics workflow
	3.2 In-memory bioinformatics workflow implementation
	3.3 Improving performance through parallelization
	3.4 Duplicate removal through in-memory facilities
	3.4.1 Duplicate removal using key-value store
	3.4.2 Duplicate removal using local memory

	3.5 Event-driven data processing
	3.6 Machine Learning

	4 Results and discussion
	4.1 Workflow performance
	4.2 Using ML to predict life expectancy for metagenomic sewage samples
	4.3 Using ML to gain biological insight into life expectancy

	5 Conclusions
	Declarations
	Availability of data and materials

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Supplementary data
	References


