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ABSTRACT Gaze estimation, as a technique that reflects individual attention, can be used for disability
assistance and assisting physicians in diagnosing diseases such as autism spectrum disorder (ASD), Parkin-
son’s disease, and attention deficit hyperactivity disorder (ADHD). Various techniques have been proposed
for gaze estimation and achieved high resolution. Among these approaches, electrooculography (EOG)-based
gaze estimation, as an economical and effective method, offers a promising solution for practical applications.
Objective: In this paper, we systematically investigated the possible EOG electrode locations which are
spatially distributed around the orbital cavity. Afterward, quantities of informative features to characterize
physiological information of eye movement from the temporal-spectral domain are extracted from the seven
differential channels. Methods and procedures: To select the optimum channels and relevant features, and
eliminate irrelevant information, a heuristical search algorithm (i.e., forward stepwise strategy) is applied.
Subsequently, a comparative analysis of the impacts of electrode placement and feature contributions on gaze
estimation is evaluated via 6 classic models with 18 subjects. Results: Experimental results showed that the
promising performance was achieved both in the Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) within a wide gaze that ranges from −50◦ to +50◦. The MAE and RMSE can be improved to 2.80◦

and 3.74◦ ultimately, while only using 10 features extracted from 2 channels. Compared with the prevailing
EOG-based techniques, the performance improvement of MAE and RMSE range from 0.70◦ to 5.48◦ and
0.66◦ to 5.42◦, respectively. Conclusion: We proposed a robust EOG-based gaze estimation approach by
systematically investigating the optimal channel/feature combination. The experimental results indicated not
only the superiority of the proposed approach but also its potential for clinical application. Clinical and
translational impact statement: Accurate gaze estimation is a key step for assisting disabilities and accurate
diagnosis of various diseases including ASD, Parkinson’s disease, and ADHD. The proposed approach can
accurately estimate the points of gaze via EOG signals, and thus has the potential for various related medical
applications.

INDEX TERMS Channel selection, electrooculography (EOG), feature selection, gaze estimation, saccade.
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I. INTRODUCTION
Gaze estimation, as a technique to estimate the points of
gaze, can be used in a large variety of medical applica-
tions. Since it can reflect individual attention and abundant
physiological information of the subjects, gaze estimation is
of great potential for disability assistance [1], Parkinson’s
disease diagnosis [2], ASD diagnosis [3], [4], and ADHD
diagnosis [5], [6], [7] So far, varieties of gaze estimation
methods have been proposed, ranging from scleral search
coils, video-oculography (VOG) to EOG. The VOG-based
technique is themost popular approach to estimating gaze due
to its high performance in terms of accuracy. The VOG-based
technique can obtain the 2-D image of the eyes to compute the
gaze point by employing the image processing algorithms [8].
However, it also faces several intrinsic limits. Firstly, redun-
dant computing resources and storage are required. Secondly,
a VOG-based system needs to be equipped with an external
stable infrared lighting source, and it is sensitive to light and
motion artifacts. Last, for severely nearsighted subjects, the
reflection of the glasses can make the ocular pose unable to
be tracked.

In contrast, the EOG-based technique can overcome the
aforementioned flaws. Conventional EOG-based approaches
can be roughly divided into polynomial methods, elec-
tric methods, and machine learning methods. All these
methods mainly employed the standard 4-channel electrode
placement to capture the eye movements and estimate the
gaze points, accordingly [9], [10]. The polynomial-based
method is mainly to find the regression relationship between
EOG voltage and saccadic angle, including linear regres-
sion and nonlinear regression. Specifically, Kumar et al. [11]
employed a linear regression to estimate gaze in a range of
±45◦ (R2 = 0.9921) via the standard 4-channel placement.
Barea et al. [12] proposed the derivative-based linear regres-
sion model, in which the error was around 2◦. Favre et al. [13]
exploited a nonlinear model for gaze estimation. The mean
estimation error was 4.67◦. Manabe et al. [14] employed
different order polynomials for estimation, and the absolute
angle error was less than 4◦. The second method, electric
models, estimated the gaze points from the perspectives
of electrode position and eyeball physiological information.
To illustrate, Barbara et al. [15] adopted the battery model
(one of the electric models) to estimate gaze points via the
standard 4-channel placement. The mean absolute error was
about 2.42◦ across 6 subjects. Further, an extended Kalman
filter has been applied in [16] to improve the accuracy. The
third method, machine learning models, has shown great
potential in eye movement detection. Bulling et al. [17] used
a support vector machine (SVM) to detect repetitive pat-
terns of eye movements. The EOG signals were acquired via
the standard 4-channel electrode placement. Latifoglu et al.
[18] employed random forests to detect the reading eye
movements. Yan et al. [19] used the backpropagation net-
work to distinguish the eye movements with an accuracy
of 96%.

However, existing studies have not fully investigated the
potential optimal electrodes around the eyes. Since multiple
channels can provide relevant and irrelevant spatial informa-
tion [20], [21], it is of great importance to further refine the
optimal channels for performance improvement. In addition,
excessive features may also bring the risk of overfitting,
leading to model degradation. To provide a more compact
and accurate EOG-based gaze estimation model, it requires
a comprehensive investigation of discriminative features
to exclude harmful features. To this end, several general
solutions, including wrapper, filter, and embedded meth-
ods, have been widely applied for channel/feature selection
[22]. The filter method mainly employs manual evaluations
(i.e., dependencymeasure, distance measure, and consistency
measure) to generate the candidate subset [23]. However,
the manual evaluations following prior knowledge are often
suboptimal, and difficult to capture the complementary infor-
mation. By contrast, the wrapper method, which generates
the candidate subset according to the model assessment, can
directly search for an optimized candidate subset for the given
model. Since the performance of the model is used as the
evaluation criterion, impressive results can be obtained via
the wrapper methods [22].

In this study, a robust gaze estimation approach was
proposed by exploring relevant EOG features and optimal
electrode placements. We investigated the performance of
7 pairs of differential channels around the orbital cavity
instead of using the standard 4-channel electrode placement.
Meanwhile, 13 widely used features in EOG fields were
evaluated. We employed the wrapper method to further refine
the channels and features. Specifically, a forward greedy
strategy was applied to screen discriminative channels and
features. The selected optimal channels/features were also
evaluated on 6 classical models to indicate the superiority.
The contributions of our work can be summarized as follows:

1) We systematically investigated the possible elec-
trode locations around the orbital cavity to enhance the
performance of EOG-based gaze estimation. Specifically,
we employed the wrapper method combined with a forward
stepwise strategy to eliminate the irrelevant channels, thus
further boosting the performance.

2) Quantities of informative features to characterize
physiological information of gaze estimation from the
temporal-spectral domain are extracted. We further refine the
feature via the wrapper method to propose a compact model
which can take full advantage of the discriminative features.

3) We also compared the performance with prevailing
EOG-based gaze estimation approaches. Our results demon-
strated that favorable performance can be achieved by using
the optimal channel/feature combination.

The rest of this paper is organized as follows. In Section II,
we introduce the data collection and data preprocessing.
In Section III, the extracted features and validation meth-
ods are described. The results are presented in Section IV.
In SectionV, we discuss the results and compare the proposed
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FIGURE 1. The overall framework of the proposed method includes feature extraction, channel selection, and feature selection. Feature extraction:
temporal-spectra feature extraction. Channel selection: refining channel combinations via the wrapper technique. Feature selection: refining feature
combinations via the wrapper technique.

method with other works. In the last section, we conclude the
paper and present the future work of this study.

II. METHODOLOGY
A. OVERALL FRAMEWORK OF THE PROPOSED METHOD
The overall framework of the proposed method is shown
in Fig. 1. Firstly, each channel extracted 13 hand-crafted
features to represent one saccadic eye movement. Secondly,
we applied the wrapper technique to refine the channel com-
binations. Finally, we also employed the wrapper technique
to further reduce the computational burden and ineffective
alternative features. The robustness of the selected channels
and features was also evaluated on 6 classic models.

B. PARTICIPANTS AND DATA ACQUISITION
Experiments were conducted with 19 healthy subjects aged
25±4 years (9 males and 10 females). Before the experiment,
all subjects were informed about the experiment’s purpose
and signed an informed consent.

Subjects sat approximately 70cm away from the gazing
targets, with their head held immobile using a support frame.
During the experiments, subjects were asked not tomove their
head. A Polysomnography (PSG) device with a sampling fre-
quency of 256 Hz was applied for EOG data acquisition [24].

Fifteen Ag/AgCl electrodes are attached around the orbital
cavity. The grounding electrode is placed at the mastoid
process. Different channels yield seven pairs of differential
EOGs in the horizontal (channel 1: 1-2, channel 4: 7-8,
channel 5: 9-10), vertical (channel 6: 11-12, channel 7: 13-14)
and cross (channel 2: 3-4, channel 3: 5-6) axes as shown
in Fig. 2. Twenty-three targets are placed horizontally on
a straight line from −50◦ to 50◦, as shown in Fig. 3. The

FIGURE 2. The 7 differential EOG channels. channel 1: 1-2, channel 2: 3-4,
channel 3: 5-6, channel 4: 7-8, channel 5: 9-10, channel 6: 11-12, channel
7:13-14.

specific target angle sequence from left to right is: −50◦,
−48◦, −46◦, −44◦, −42◦, −40◦, −38◦, −35◦, −30◦, −20◦,
−10◦, 0◦, 10◦, 20◦, 30◦, 35◦, 38◦, 40◦, 42◦, 44◦, 46◦, 48◦,
50◦. A graphical user interface (GUI) program was designed
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FIGURE 3. Arrangement of targets in the experiments. The electrical
potential is captured by the electrodes around the orbital cavity. For a
subject, the complete experiment includes 44 trials.

to control the experiment process and to mark the saccade
signal for subsequent signal processing.

C. EXPERIMENT PROCEDURE
The protocol startedwith the subject gazing at the center point
(0◦ points). During each trial, auditory instruction was used to
cue the subjects when to perform saccades andwhen to finish.
Specifically, subjects perform a three-second fixation at the
center point (0◦ points). Then subjects execute a saccade from
the center point to the target point, followed by another three
seconds of fixation. Last, a saccade back to the center point
is performed. All the subjects were required to inform the
experiment assistant if they missed any targets or performed
a wrong saccade. After the data were captured, the EOG
signals were manually examined, and the corrupted signal
that clearly included large noise components such as blinking,
head moving, or gazing at the wrong target was eliminated
from the analysis. We recorded 19 subjects but one was
withdrawn due to poor signal quality. For this subject, the
EOG signal was completely distorted due to bad electrode
placements. Finally, a total of 715 saccades were recorded.

D. DATA PREPROCESSING
EOG signals can be interfered with by diverse noise, such
as power-line interference and high-frequency electromyo-
graphic noise. In this work, the raw EOG signals were
lowpass filtered below 20Hz [25]. Also, a notch filter was
applied to remove the 50Hz power line interference. Another
noise factor is the baseline warder, which is caused by back-
ground signal interference or electrode polarization [26].
Here, a 0.1Hz high-pass filter was applied to lower the impact
of the baseline wander. Further, we used the Continuous
Wavelet Transform algorithm (CWT) for saccade detection
[17]. The formula of continuous wavelet transform can be
expressed as follows:

Ca
b =

∫
S(t)

1
√
a
γ (
t − b
a

)dt

where S(t) is the EOG signal andCa
b is the wavelet coefficient

at scale a and position b. Based on the Haar wavelet, the
coefficient can be used to detect the start point of saccades

FIGURE 4. Saccade Detection algorithm. (a) Denoised and baseline drift
removed EOG signals (b) The sequence of wavelet coefficients at scale
20 using a Haar mother wavelet.

(as shown in Fig. 4). Then, saccades were segmented into
the 1s window for further analysis. The typical duration of
a saccade is between 10ms to 100ms [17], so the 1s window
can effectively include the saccadic eye movement [21].

E. FEATURE EXTRACTION
Temporal-spectral domain features (as shown in Table 1)
were extracted from each 1-s task from each EOG channel.
These features were: Variance, Amplitude [19], Power spec-
tra density (PSD) of δ (0.5-4Hz), θ (4-8Hz) and α (8-14Hz)
frequency band, Nonlinear energy [27], Energy, Kurtosis,
Sample entropy [28], Area under the curve (AUC) [29], Root
mean square (RMS), Form factor (FF), Crest factor (CF). For
a specific saccade, features were computed using the full 1-s
task. Let x ji (t) be the t

th sample (a 1s window contains N=256
samples) from the jth saccade of channel i.

1) Variance: The variance of the EOG signal [30] is calcu-
lated as:

Var =
1
N

N∑
t=1

(x ji (t) − x)2

where Var is the Variance of the jth saccade signal of channel i
and x is the mean value of the 1s window.

2) Root mean square (RMS): RMS reflects the average
power of the EOG signal which is given by the following
formula:

RMS =

√∑N
t=1 x

j
i (t)

2

N

3) Amplitude: Previous study [31] has shown the correla-
tion between amplitude and eye movement angle. Amplitude
is given by the following formula:

Amplitude = max(|EOGcrest − EOGtrough|)

where the Amplitude is the difference between crest and
trough.
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4) Power spectra density (PSD) of δ (0.5-4Hz), θ (4-8Hz),
and α (8-14Hz): The power spectral density was obtained by
Welch’s overlapped segment averaging estimator (Parameter:
50% segment overlap and 8 overlapped segments). If the
length of the signal cannot be divided into an integer num-
ber of segments with 50% overlap, the signal is truncated
accordingly.

5) Nonlinear energy: Nonlinear energy is designed to
reflect the saccadic property. The detailed formula is shown
as follows:

Nonlinear_energyji =

256∑
t=2

(x ji (t)
2
− x ji (t − 1) ∗ x ji (t + 1))

6) Energy: Energy can be used to distinguish different
saccade angles. The detailed formula is shown as follows:

Energyji =

256∑
t=2

x ji (t)
2

7) Kurtosis: Kurtosis is a parameter reflecting the sharp-
ness of the peak. The kurtosis value was computed using the
following form:

Kurtosisji =

1
N

∑N
t=1(x

j
i (t) − x)4

( 1N
∑N

t=1(x
j
i (t) − x)2)2

8) Sample entropy: Entropy reflects the degree of the chaos
of the signal. For a full 1-s trial with 256 points, Sample
entropy was calculated using the Chebyshev distance type as
follows:

SmapEn(m, r) = −ln(
Km+1(r)
Km(r)

)

wherem represents the embedding dimension and r is the tol-
erance.Km(r) is the probability of two sequences matchingm
points under tolerance r . Similarly,Km+1(r) is the probability
of two sequences matching m+1 points under tolerance r .
Here, we set m = 1 and r = 0.25 [28].
9) Area under the curve (AUC): For a valid extracted

EOG signal segment, we used the trapezoidal rule to find the
approximate value of the AUC [29].

10) Form factor (FF), Crest factor (CF): Form factor (FF)
and Crest factor (CF) were extracted to quantify the distor-
tion and extreme of the waveform. These two features were
calculated as follows:

FF =
RMS
ARV

, CF =
xpeak
RMS

where ARV is the rectified mean value and xpeak is the peak
value of the EOG signal.

F. SELECTION STRATEGIES OF CHANNELS AND FEATURES
1) CHANNEL SELECTION AND FEATURE SELECTION
The computational efficiency depends on the number of
alternative channels and features. Thus, due to the high com-
putational burden and time-consuming solution, the global
optimum solution may not be feasible for practical use.

TABLE 1. The 13 hand-crafted features.

Regarding channel selection, we employed the wrapper
method combined with the forward stepwise strategy to select
the optimal channels [32]. First, we initially performed the
model evaluation with each channel and fixed the channel
satisfying the selecting criterion as the first selected channel.
Second, we combined each of the rest channels with the first
selected channel for model evaluation. The channel, together
with the first selected channel, meeting the selecting criterion
was fixed as the second selected channel. Finally, we repeated
the above steps until all channels were selected. The optimal
channel set was then determined based on the 7-round (7 pairs
of differential channels) forward stepwise selection results.

Excessive ineffective features may induce computational
burden or even dimension disaster. Thus, it may be not fea-
sible to directly optimize all features from all the channels.
Besides, excessive alternative also increases the difficulty in
refining features, leading to subnormal feature combinations.
Thus, we also conducted the forward stepwise strategy to
further refine the features from the previously selected opti-
mal channels. Specifically, to achieve Nf optimal features,
we conducted 26 rounds (corresponding to 2 channels×13
features) of feature selection. The Nf optimal features were
determined if the performance no longer increased.

2) EVALUATION OF THE RECOMMENDED CHANNELS
AND FEATURES
We refined the channels and features by employing the for-
ward stepwise strategy combined with the random forest
baseline model. To further evaluate the robustness, 6 regres-
sion models (i.e., support vector regression (SVR), random
forest (RF), BP network (BP), ensemble model (ENS), gen-
eralized linear model (GLM), and decision trees (DT)) were
also applied to the recommended channels and features.
The corresponding parameter setting was shown in Table 2.
Specifically, we compared the model performance before
and after selection. MAE and RMSE were used as the
metrics.
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TABLE 2. Parameter setting for the regression models.

G. VALIDATION PROTOCOL
Leave-One-subject-Out Cross-Validation technique [33] was
used to evaluate the performance. The evaluation indicators
including MAE and RMSE were calculated by the following
formula:

MAE =
1
N

N∑
i=1

|θ̂i − θi|

RMSE =

√√√√ 1
N

N∑
i=1

(θ̂i − θi)2

whereN is the total saccades of a subject, θi is the true value of
the ith saccade and θ̂i is the estimated value of the ith saccade.
The experiments were performed on a hardware specification
with an Intel core i5-10400F and GTX 1660 GPU.

H. STATISTICAL ANALYSIS
Statistical analyses on two factors (i.e., channels and fea-
tures.) were explored in this study. A non-parametric test
was applied when the obtained results with the same factor
did not follow a Gaussian distribution. Otherwise, a one-
way repeated-measures (RM) analysis of variance (ANOVA)
was applied. For the non-parametric test, the Friedman test
was performed to detect whether there was an overall sig-
nificant difference. Suppose an overall significant difference
was found, the Wilcoxon signed-rank test was further con-
ducted to perform the pair-wise comparison. For the p values
obtained with either parametric or non-parametric tests, the
Holm-Bonferroni correction was adopted to avoid errors
caused by multiple comparisons. The significance level was
set to 0.05.

III. RESULTS
A. CHANNEL SELECTION PERFORMANCE
To investigate the available channel combinations, 7 rounds
of channel selection processes were conducted to refine
the channels. Fig. 5 shows the optimal channels for each
round and corresponding performance. The optimal channel
selection process is channel 1-3-2-6-7-5-4. One interesting
observation is that the combination of channel 1 and channel
3 contributed to the highest performance of gaze estima-
tion. Channel 1 was selected first and achieved an accuracy
(MAE:3.06◦ and RMSE:4.02◦). Then, in the second round,
the performance was improved by adding channel 3. Sub-
sequent channels failed to enhance performance after the
second round. Based on the channel selection results, the

FIGURE 5. The optimal channels selected for each round and the
performance achieved using these optimal channels. The optimal channel
selection process is channel 1-3-2-6-7-5-4.

FIGURE 6. Feature selection results based on the random forest.

optimal performance was achieved using channel 1 and chan-
nel 3 (MAE:2.95◦ and RMSE:3.89◦)

B. FEATURE SELECTION PERFORMANCE
Regarding the feature selection, here, two 13×1 feature vec-
tors were extracted separately from channel 1 and channe 3
to concatenate a 26×1 feature vector. Overall, 26 rounds
of feature selection processes were conducted as shown in
Fig. 6.

In the first 10 rounds of feature selection, the MAE
and RMSE both reduced to the lowest. For the subse-
quent selection rounds, the accuracy gradually decreased.
The newly selected features failed to provide more dis-
criminative information. Thus, the feature combination was
determined.

By adopting the cross-subject validation technique, a group
of feature combinations was recommended for EOG-based
cross-subject gaze estimation (as shown in Table 3.) The
selected feature combinations were: PSD of θ , Amplitude,
Nonlinear energy, Var, Energy, PSD of α and CF (channel
1); CF, Amplitude, Var (channel 3). Ultimately, the accuracy
(MAE:2.80◦ and RMSE: 3.74◦) can be achieved. Among
the selected features, CF, Amplitude, and Var were selected
most, indicating their superiority in cross-subject gaze
estimation.
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TABLE 3. The optimal feature combination selected by the forward
stepwise strategy.

C. STATISTICAL ANALYSIS FOR CHANNEL SELECTION AND
FEATURE SELECTION
After channel selection, no significant differences were found
on the MAE and RMSE (pMAE = 0.118 and pRMSE =

0.130). Thus, the utilization of fewer channels can achieve
similar performance with the multichannel EOGs, which is
conducive to both computational efficiency and convenient
setup. Further, significant performance improvements were
found after the feature selection (pMAE = 0.0006 and
pRMSE = 0.12). Hence, screening out discriminating features
can enhance not only the model compactness but also the
model performance.

D. EVALUATION OF THE RECOMMENDED CHANNELS
AND FEATURES
We evaluated the robustness of the selected channels and
features. Here, 6 classic models were employed for the eval-
uation. Specifically, the feature vectors were concatenated
by using: (1) all features from all channels (Before selec-
tion). (2) selected features from the selected channels (After
selection). The evaluation results were shown in Fig. 7. The
performance improvement was observed in all 6 regression
models (i.e., support vector regression (SVR), random forest
(RF), BP network, ensemble model (ENS), generalized linear
model (GLM), and decision trees (DT), indicating the robust-
ness of the recommended channel and feature combination.

IV. DISCUSSION
In this study, we evaluated the robustness of the EOG-
based cross-subject gaze estimation approach. Specifically,
electrode placements and feature combinations were inves-
tigated, which had several merits including model com-
pactness, computational effectiveness, and novel electrode
placement design. Finally, impressive accuracy (MAE: 2.80◦

and RMSE: 3.74◦) was achieved, indicating the robustness in
cross-subject gaze estimation.

A. PERFORMANCE OF CHANNEL SELECTION AND
FEATURE SELECTION
Regarding the channel selection performance, selecting all
the channels for gaze estimationmay involve useless informa-
tion, which is regarded as the noise for the estimation. Hence,
it is of great importance to refine the optimal channel with the

most contribution and exclude the irrelevant channels. One
interesting observation is that the combination of channel 1
and channel 3 contributed to the highest performance of
gaze estimation. Previous studies [21], [26] have reported
thatmulti-channel information improves estimation accuracy.
Thus, one possible explanation may fall into that the cross
channels may provide supplemental spatial information to
generate discriminative features since the cross channels can
also capture the horizontal eye movement in the cross axis.
As the number of channels further increased, the perfor-
mance tended to degrade, which indicated that the spatial
information from the subsequent channels may be redundant.
Excessive channels may induce the computational burden or
even dimension disaster. Also, the utilization of excessive
channels may increase the risk of long time-consuming setup
and acquisition costs. Hence, performance and practicability
were required to trade off in the exploration of novel electrode
placement.

Regarding the feature selection, an optimal feature combi-
nationwas recommended for the EOG-based gaze estimation.
By traversing the feature set, theMAE andRMSE both gradu-
ally reduced, which achieved a higher performance compared
with using all the features. Besides, the elimination of ineffec-
tive features was also conducive to the model compactness.
Thus, the utilization of the feature optimization techniquewas
essential to further reduce redundancy.

For the features optimization techniques, different optimal
feature combinations can be obtained due to the different
selection strategies. Also, based on different models, the
wrapper selection method can generate different optimal
feature subsets. Here, we mainly investigated the feature
combinations by employing the random forests, which had
the highest performance in comparison. Thus, we progres-
sively traverse all the features to search for a set of feature
subsets.

Our results demonstrated that the 10 features from chan-
nel 1 and channel 3 can provide sufficient spatial information.
Specifically, the amplitude-related features (amplitude and
crest factor) both had high priority during the selection. Pre-
vious studies have reported that the saccadic angles were
considered linear or nonlinear with the EOG amplitude. Thus,
the amplitude-related features implicitly reflect the spatial
information of eye movements. However, due to the individ-
ual differences, amplitude-related features can vary from each
subject [9], leading to the degeneration in the cross-subject
evaluation. Accordingly, amplitude-related features were not
considered as the top-1 ranking during the selection.

In addition, the saccadic angles were also associated with
the EOG energy (energy, nonlinear energy, and var), because
the energy-related features implicitly reflected the intensity of
eye movements. Hence, these features can provide discrim-
inative information to further distinguish different saccadic
angles. Among the energy-related features, nonlinear energy
achieved the highest ranking during the selection, which
is mainly because the nonlinear energy can be utilized to
characterize the peak velocity. Traditionally, the EOG peak
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FIGURE 7. Performance of different models based on the recommended channels and feature combination.

TABLE 4. The performance comparison with the prevailing methods.

velocity was significantly different between large angles and
small angles [35]. Thus, our results also demonstrated that
different energy-related features that can distinguish the EOG
waveforms were needed for further exploration. Regarding
the frequency-related features (PSD of θ frequency band and
PSD of α frequency band), our results also show consistency
with the previous study [36]. Different directional eye move-
ments contain different energy distributions on frequency
bands, which can be integrated for gaze estimation. Specif-
ically, the domain energy is 8-16Hz for left eye movements
and 2-4Hz for right eye movements [37], implicitly repre-
senting the direction information of eye movement. Thus,
the frequency-related features were also worth further inves-
tigation in cross-subject estimation. Besides, we tentatively
attempted transfer learning for data alignment to further map
the feature space by employing the recommended features.

The results demonstrated that improved accuracy by 8% can
be achieved.

Besides, we also investigated the performance of the
selected channel and feature combination onmultiplemodels.
As described in the prior paragraph, searching for global
optimization may require redundant time and computing
resources. In addition, for the wrapper method, the global
optimal parameters may highly depend on the specific model,
lacking generalization. Here, we further assessed the selected
features and channels on 6 widely-used models. The results
demonstrated that the performance was improved compared
with employing all features from all channels, indicating
the necessity of the selection process. Besides, the selected
channel and feature combination was available for multiple
models, which is recommended for cross-subject gaze esti-
mation.
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B. COMPARISON WITH THE PREVAILING TECHNIQUES
In addition, we further compared several classic polynomial
and electric models to evaluate the cross-subject robust-
ness. Specifically, we selected the two polynomial methods
(i.e., third-order and fourth-order polynomials) in [14] for
comparison. For the electric methods, we selected the bat-
tery model and employed the two-stage optimization with
the Levenberg-Marquardt algorithm as described in [15].
To ensure fairness, we re-implemented all these models in our
dataset.

Our work achieved the highest performance comparedwith
the polynomial and electric models (as shown in Table 4).
To illustrate, for the polynomial models, polynomial coeffi-
cients were required as a prerequisite for the specific subject,
which can be regarded as a calibration to construct the
subject-dependent model. Due to the existence of individual
variabilities, the lack of subject-dependent calibration may
cause the degeneration of the model. Hence, it may be not
feasible to directly apply cross-subject pre-training coeffi-
cients which are unable to characterize the individual’s EOG
signals effectively. Similarly, the electric method suffers from
the same problem. During the optimization, electric methods
implicitly required individual information to derive the spa-
tial distribution of electrodes, which may significantly affect
the accuracy of gaze estimation. Besides, the electric method
also suffers from several natural flaws: 1) Electric model
assumes the eyeball is a standard sphere, which is inconsis-
tent with the fact that the eyeball is an ellipsoid. 2) Model
parameters such as eye radius and inter-pupillary distance
are difficult to measure directly. The utilization of empirical
value may reduce performance. Thus, the evaluation of the
electric model is not ideal.

C. FUTURE WORK
In this study, we enhanced the performance of EOG-based
gaze estimation by comprehensively investigating the poten-
tial optimal channel/feature combination. Moreover, the
robustness of the optimal channel/feature combination was
further evaluated on 6 classic models. However, the works
still can be enhanced by involving the following issues in our
future work:

Although the number of recruited subjects is relatively
large compared with related studies, the selected channels
(features) may be limited to specific datasets. In the future,
we also plan to construct a large-scale population estimation
dataset to further evaluate the effectiveness of the selected
channels (features). In this context, deep learning-based
techniques, such as multi-scale CNN networks, transformer
models, and deep transfer learning strategies, can also be
applied to extract discriminative features. Besides, as a pre-
liminary study to fully investigate the feasibility of the
proposed method in electrode placement and feature selec-
tion, we mainly focus on horizontal gaze estimation. In the
future, gaze estimation in all directions will be analyzed.
Finally, in this paper, only healthy subjects are involved,

while subjects with neurological diseases may have different
characteristics in EOG signals. Consequently, it may be more
challenging to estimate the gaze angle for these patients.
More attention can be paid to establishing models with strong
generalization abilities in the future.

V. CONCLUSION
In this study, a robust gaze estimation approach was proposed
by exploring relevant EOG features and optimal electrode
placements. The evaluation was conducted on 715 saccades
from 18 healthy subjects in a wide range of saccadic angles
from −50◦ to 50◦. By employing the forward stepwise
selection strategy, we investigated the effect of electrode
placements around the orbital cavity. Experimental results
demonstrated that the novel electrode placements with the
highest performance were recommended for gaze estimation
compared with the standard 4-channel electrode placement.
Besides, we further reduced the feature dimension to search
for the feature combination, which was also recommended
and conducive for cross-subject gaze estimation. Ultimately,
by using the 10 features from the novel electrode placements,
a promising accuracy (MAE:2.80◦ and RMSE:3.74◦) was
obtained. The recommended combinations also contributed
to higher performance on 6 widely-used regression models,
indicating their robustness. Compared with the prevailing
approaches, our proposed method achieved the highest per-
formance, indicating its superiority. Ultimately, our work can
not only serve as screening guidance for EOG-based gaze
estimation but also contribute to EOG-based applications.

REFERENCES
[1] S. He and Y. Li, ‘‘A single-channel EOG-based speller,’’ IEEE Trans.

Neural Syst. Rehabil. Eng., vol. 25, no. 11, pp. 1978–1987, Nov. 2017.
[2] S. K. B. Sangeetha, ‘‘A survey on deep learning based eye gaze estimation

methods,’’ J. Innov. Image Process., vol. 3, no. 3, pp. 190–207, Sep. 2021.
[3] J. Li et al., ‘‘Appearance-based gaze estimation for ASD diagnosis,’’ IEEE

Trans. Cybern., vol. 52, no. 7, pp. 6504–6517, Jul. 2022.
[4] H. Cai et al., ‘‘Sensing-enhanced therapy system for assessing children

with autism spectrum disorders: A feasibility study,’’ IEEE Sensors J.,
vol. 19, no. 4, pp. 1508–1518, Feb. 2019.

[5] C. Mauriello et al., ‘‘Dysfunctional temporal stages of eye-gaze perception
in adults with ADHD: A high-density EEG study,’’Biol. Psychol., vol. 171,
May 2022, Art. no. 108351.

[6] A. M. Michalek, G. Jayawardena, and S. Jayarathna, ‘‘Predicting ADHD
using eye gaze metrics indexing working memory capacity,’’ in Com-
putational Models for Biomedical Reasoning and Problem Solving.
Pennsylvania, PA, USA: IGI Global, 2019, pp. 66–88.

[7] S. De Silva et al., ‘‘A rule-based system for ADHD identification using eye
movement data,’’ inProc.Moratuwa Eng. Res. Conf. (MERCon), Jul. 2019,
pp. 538–543.

[8] N. Kumar, S. Kohlbecher, and E. Schneider, ‘‘A novel approach to video-
based pupil tracking,’’ in Proc. IEEE Int. Conf. Syst., Man Cybern.,
Oct. 2009, pp. 1255–1262.

[9] S. Milanizadeh and J. Safaie, ‘‘EOG-based HCI system for quadcopter
navigation,’’ IEEE Trans. Instrum. Meas., vol. 69, no. 11, pp. 8992–8999,
Nov. 2020.

[10] C. Topal, S. Gunal, O. Koçdeviren, A. Dogan, and Ö. N. Gerek, ‘‘A low-
computational approach on gaze estimation with eye touch system,’’ IEEE
Trans. Cybern., vol. 44, no. 2, pp. 228–239, Feb. 2014.

[11] D. Kumar and E. Poole, ‘‘Classification of EOG for human computer
interface,’’ inProc. 2nd Joint 24th Annu. Conf. Annu. Fall Meeting Biomed.
Eng. Soc., Eng. Med. Biol., 2002, pp. 64–67.

64 VOLUME 12, 2024



Z. Zeng et al.: Robust Gaze Estimation Approach

[12] R. Barea, L. Boquete, S. Ortega, E. López, and J. M. Rodríguez-Ascariz,
‘‘EOG-based eye movements codification for human computer interac-
tion,’’ Expert Syst. Appl., vol. 39, no. 3, pp. 2677–2683, Feb. 2012.

[13] A. Favre-Félix, C. Graversen, T. Dau, and T. Lunner, ‘‘Real-time estima-
tion of eye gaze by in-ear electrodes,’’ in Proc. 39th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. (EMBC), Jul. 2017, pp. 4086–4089.

[14] H. Manabe, M. Fukumoto, and T. Yagi, ‘‘Direct gaze estimation based
on nonlinearity of EOG,’’ IEEE Trans. Biomed. Eng., vol. 62, no. 6,
pp. 1553–1562, Jun. 2015.

[15] N. Barbara, T. A. Camilleri, and K. P. Camilleri, ‘‘EOG-based gaze angle
estimation using a battery model of the eye,’’ in Proc. 41st Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2019, pp. 6918–6921.

[16] N. Barbara, T. A. Camilleri, and K. P. Camilleri, ‘‘EOG-based ocular and
gaze angle estimation using an extended Kalman filter,’’ in Proc. ACM
Symp. Eye Tracking Res. Appl., Jun. 2020, pp. 1–5.

[17] A. Bulling, J. A. Ward, H. Gellersen, and G. Tröster, ‘‘Eye movement
analysis for activity recognition using electrooculography,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 33, no. 4, pp. 741–753, Apr. 2011.

[18] F. Latifoglu, R. Ileri, E. Demirci, and Ç. G. Altintop, ‘‘Detection of reading
movement from EOG signals,’’ in Proc. IEEE Int. Symp. Med. Meas. Appl.
(MeMeA), Jun. 2020, pp. 1–5.

[19] Y. Bei, Y. Sichun, L. Mengke, and L. Xiangkun, ‘‘Gaze estimation method
based on EOG signals,’’ in Proc. 6th Int. Conf. Instrum. Meas., Comput.,
Commun. Control (IMCCC), Jul. 2016, pp. 443–446.

[20] A. López, F. J. Ferrero, M. Valledor, J. C. Campo, and O. Postolache,
‘‘A study on electrode placement in EOG systems for medical applica-
tions,’’ in Proc. IEEE Int. Symp. Med. Meas. Appl. (MeMeA), May 2016,
pp. 1–5.

[21] M. Yan, H. Tamura, and K. Tanno, ‘‘A study on gaze estimation system
using cross-channels electrooculogram signals,’’ in Proc. Int. Multiconf.
Eng. Comput. Sci., vol. 1, Jan. 2014, pp. 112–116.

[22] T. Alotaiby, F. E. A. El-Samie, S. A. Alshebeili, and I. Ahmad, ‘‘A review
of channel selection algorithms for EEG signal processing,’’ EURASIP
J. Adv. Signal Process., vol. 2015, no. 1, pp. 1–21, Dec. 2015.

[23] J. W. Li et al., ‘‘Single-channel selection for EEG-based emotion recogni-
tion using brain rhythm sequencing,’’ IEEE J. Biomed. Health Informat.,
vol. 26, no. 6, pp. 2493–2503, Jun. 2022.

[24] M. Liu et al., ‘‘Overview of a sleep monitoring protocol for a large natural
population,’’ Phenomics, vol. 3, pp. 1–18, May 2023.

[25] S. N. Abbas and M. Abo-Zahhad, ‘‘Eye blinking EOG signals as biomet-
rics,’’ in Biometric Security and Privacy. Cham, Switzerland: Springer,
2017, pp. 121–140.

[26] N. Barbara, T. A. Camilleri, and K. P. Camilleri, ‘‘EOG-based eye
movement detection and gaze estimation for an asynchronous virtual
keyboard,’’ Biomed. Signal Process. Control, vol. 47, pp. 159–167,
Jan. 2019.

[27] C. Sun, C. Chen, W. Li, J. Fan, and W. Chen, ‘‘A hierarchical neural net-
work for sleep stage classification based on comprehensive feature learning
and multi-flow sequence learning,’’ IEEE J. Biomed. Health Informat.,
vol. 24, no. 5, pp. 1351–1366, May 2020.

[28] N. Sho’ouri, ‘‘EOG biofeedback protocol based on selecting distinctive
features to treat or reduce ADHD symptoms,’’ Biomed. Signal Process.
Control, vol. 71, Jan. 2022, Art. no. 102748.

[29] A. Kaur, ‘‘Wheelchair control for disabled patients using EMG/EOG based
human machine interface: A review,’’ J. Med. Eng. Technol., vol. 45, no. 1,
pp. 61–74, Jan. 2021.

[30] S. Aungsakul, A. Phinyomark, P. Phukpattaranont, and C. Limsakul,
‘‘Evaluating feature extraction methods of electrooculography (EOG) sig-
nal for human-computer interface,’’ Proc. Eng., vol. 32, pp. 246–252,
Jan. 2012.

[31] F. Simini, A. Touya, A. Senatore, and J. Pereira, ‘‘Gaze tracker by elec-
trooculography (EOG) on a head-band,’’ in Proc. 10th Int. Workshop
Biomed. Eng., Oct. 2011, pp. 1–4.

[32] I. Rejer and K. Lorenz, ‘‘Genetic algorithm and forward method for feature
selection in EEG feature space,’’ J. Theor. Appl. Comput. Sci., vol. 7, no. 2,
pp. 72–82, 2013.

[33] L. Meng et al., ‘‘Exploration of human activity recognition using a single
sensor for stroke survivors and able-bodied people,’’ Sensors, vol. 21, no. 3,
p. 799, Jan. 2021.

[34] J. Ha, K.-M. Choi, and C.-H. Im, ‘‘Feasibility of using electrooculography-
based eye-trackers for neuromarketing applications,’’ IEEE Trans. Instrum.
Meas., vol. 71, pp. 1–10, 2022.

[35] D. Boghen, B. Troost, R. Daroff, L. Dell’Osso, and J. Birkett, ‘‘Velocity
characteristics of normal human saccades,’’ Investigative Ophthalmol. Vis.
Sci., vol. 13, no. 8, pp. 619–623, 1974.

[36] W. M. Bukhari, W. Daud, and R. Sudirman, ‘‘A wavelet approach
on energy distribution of eye movement potential towards direc-
tion,’’ in Proc. IEEE Symp. Ind. Electron. Appl. (ISIEA), Oct. 2010,
pp. 181–185.

[37] W. M. B. W. Daud and R. Sudirman, ‘‘Time frequency analysis of
electrooculograph (EOG) signal of eye movement potentials based on
wavelet energy distribution,’’ in Proc. 5th Asia Model. Symp., May 2011,
pp. 81–86.

VOLUME 12, 2024 65


