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Glioblastoma (GBM) is the most common and deadly primary brain tumor in

adults. Diagnostic and therapeutic challenges have been raised because of poor

prognosis. Gene expression profiles of GBM and normal brain tissue samples

from GSE68848, GSE16011, GSE7696, and The Cancer Genome Atlas (TCGA)

were downloaded. We identified differentially expressed genes (DEGs) by

differential expression analysis and obtained 3,800 intersected DEGs from all

datasets. Enrichment analysis revealed that the intersected DEGs were involved

in the MAPK and cAMP signaling pathways. We identified seven different

modules and 2,856 module genes based on the co-expression analysis.

Module genes were used to perform Cox and Kaplan-Meier analysis in

TCGA to obtain 91 prognosis-related genes. Subsequently, we constructed a

random survival forest model and a multivariate Cox model to identify seven

hub genes (KDELR2, DLEU1, PTPRN, SRBD1, CRNDE, HPCAL1, and POLR1E). The

seven hub genes were subjected to the risk score and survival analyses. Among

these, CRNDEmay be a key gene in GBM. A network of prognosis-related genes

and the top three differentially expressed microRNAs with the largest fold-

changewas constructed. Moreover, we found a high infiltration of plasmacytoid

dendritic cells and T helper 17 cells in GBM. In conclusion, the seven hub genes

were speculated to be potential prognostic biomarkers for guiding

immunotherapy and may have significant implications for the diagnosis and

treatment of GBM.
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Introduction

Glioblastoma (GBM), a World Health Organization Grade

IV glioma (Thakkar et al., 2014), is the most malignant and

invasive primary brain tumor in adults (Hoshide and Jandial,

2016). The National Cancer Institute reported that GBM

accounts for 52% of all primary tumors of brain in the

United States (de Robles et al., 2015). The overall survival

time is less than a year from the diagnosed date in most

GBM patients if left untreated (Laws et al., 2003; Mirimanoff

et al., 2006). Advanced age is the most common risk factor and

prognostic factor associated with a cancer diagnosis (Yancik

et al., 1998; Yancik et al., 2001). However, the basis for the

increased incidence of GBM among elderly individuals is poorly

understood and underexplored (Kim et al., 2021). Moreover,

leptomeningeal spread is one of the most severe complications of

GBM, along with other complications, such as intratumor

hemorrhage, status epilepticus, and hydrocephalus (Mandel

et al., 2014; Noh et al., 2015; Autran et al., 2019). At present,

the standard diagnostic method of standard therapy consists of

surgery along with chemotherapy and radiation, which

insignificantly improved GBM patient’s survival (Stupp et al.,

2005). Furthermore, due to the risk of invasion and high cost, a

better diagnosis method is needed.

MicroRNAs (miRNAs) are small non-coding RNAs with a

total length of 18–25 nucleotides (Chen and Rajewsky, 2007) that

control diverse cellular and developmental events by repressing

large sets of target mRNAs (Ding et al., 2009). MiRNAs can

inhibit the translation of downstream target mRNA to regulate

both physiological and pathological processes (Inui et al., 2010).

The dysregulation of miRNAs contributes to cell growth,

migration, proliferation, invasion, and metastasis in

glioblastoma (Que et al., 2015). Studies have demonstrated an

association between glioblastomas and miRNAs. Some miRNAs

are gene silencers of anti-apoptotic genes that inhibit the growth

and survival of glioblastoma. The miRNA signature can be used

for the diagnosis of brain tumors (Ahmed et al., 2021). Having

some studied showed that high expression of RBM8A (Lin et al.,

2021; Wei et al., 2022) and MDK (Hu et al., 2020; Hu et al., 2021)

promotes growth and migration and showed a good diagnostic

and prognostic value in GBM. Moreover, EN1 and EGR3 may

have predictive prognostic value for GBM (Qin et al., 2020),

however, the biomarkers of GBM still need to be further

explored.

Furthermore, studies have shown that the use of molecular

diagnostics and gene analysis in GBM has increased (Louis et al.,

2021). In the present study, we used GBM and control brain

tissues from the Cancer Genome Atlas (TCGA) and the Gene

Expression Omnibus (GEO) databases to perform bioinformatics

analysis. The purpose of this study was to identify relevant

potential markers using a diagnostic classifier to treat patients

with GBM and to construct a risk score model to improve

accuracy.

Materials and methods

Data preprocessing

Four datasets, TCGA, GSE68848, GSE16011, and GSE7696,

included 729 GBM and 45 normal brain tissue samples. RNA

sequencing and the corresponding clinical information for

145 GBM patients and five healthy (control) individuals were

downloaded from TCGA (https://portal.gdc.cancer.gov/).

Expression profiles of the GSE68848, GSE16011, GSE7696,

and GSE25631 datasets were downloaded from the GEO

(https://www.ncbi.nlm.nih.gov/geo/). The

GSE68848 expression profile contained 580 samples, including

228 GBM tumors and 28 control tissues, detected by the

Affymetrix Human Genome U133 Plus 2.0 Array based on

the GPL570 platform (Madhavan et al., 2009). Meanwhile,

astrocytoma samples were removed. GSE16011 contained

284 clinical samples, including 276 glioma samples of all

histology and eight control tissue samples, detected by the

Affymetrix GeneChip Human Genome U133 Plus 2.0 Array

based on the GPL8542 platform (Gravendeel et al., 2009). A total

of 84 samples of GSE7696 contained 80 GBM specimens from

patients treated in clinical trials and four samples of normal brain

tissue (non-tumoral), detected using the Affymetrix Human

Genome U133 Plus 2.0 Array based on the GPL570 platform

(Murat et al., 2008; Lambiv et al., 2011). Gene expression profiles

of GSE68848, GSE16011, and GSE7696 were normalized using

the “RMA” function in the Affy package. The

“varianceStabilizingTransformation” function of the

DESeq2 package (Love et al., 2014) was used to normalize the

TCGA expression profile.

GSE25631 contains 82 surgical specimens of primary

glioblastoma multiform and five normal brain tissues from

areas surrounding arteriovenous malformations (AVM) as a

control, detected by Illumina Human v2 miRNA expression

beadchip based on GPL8179 (Chen et al., 2012). Expression

profile of GSE25631 was used to normalize by the

“lumiExpresso” function in the lumi R package.

Differential expression and enrichment
analyses

Differential expression analysis was performed for

expression profiles in three datasets (GSE68848, GSE16011,

and GSE7696) between GBM patients and controls using the

limma R package (Ritchie et al., 2015). We obtained differentially

expressed genes (DEGs) from TCGA dataset using the

DESeq2 R package (Love et al., 2014). A adjust p-value

of <0.05 was set as the screening criterion to obtain DEGs.

Intersections of DEGs were obtained from four datasets (TCGA,

GSE68848, GSE16011, and GSE7696), and the upregulated or

downregulated DEGs were identified using the ggVennDiagram
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package (Gao et al., 2021). Furthermore, Gene Ontology (GO)

analysis can be classified into different gene functions, including

biological process (BP), molecular function (MF), and cellular

component (CC). The Kyoto Encyclopedia of Genes and

Genomes (KEGG) stores many pathways and is widely used.

Intersected DEGs were used to construct GO and KEGG analyses

using the clusterProfile R package (Yu et al., 2012). Biological

functions and pathways of intersected DEGs with a p value

of <0.05 were considered statistically significant.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) revealed underlying

pathways and evaluated microarray data at the gene set level

(Subramanian et al., 2005). The expression profile of TCGA was

used to perform GSEA using the clusterProfiler R package.

Co-expression analysis of intersected
DEGs

Weighted gene co-expression network analysis (WGCNA) is

a systems biology method for clustering genes identified by

similar expression patterns and transforming the expression of

genes into modules (Langfelder and Horvath, 2008). The

WGCNA R software package (Langfelder and Horvath, 2008)

was used to construct a co-expression network to obtain module

genes using the intersected DEGs. To ensure a scale-free

topology, a soft threshold function was applied to calculate

the power parameters. Dynamic tree cutting was used to

identify co-expressed gene modules and establish a

hierarchical clustering tree based on the unsigned topological

overlap matrix (TOM)-based on dissimilarity. Genes with similar

expression profiles were grouped into the network modules.

Pearson’s correlation analysis was performed to calculate the

module-trait correlation.

Construction of random survival forest
model

Module genes were used to perform Cox and Kaplan-Meier

analyses in TCGA to obtain prognosis-related genes.

Additionally, the Metascape network tool was used to perform

functional enrichment analysis of prognosis-related genes. The

random forest survival model was performed with prognosis-

related genes using the “coxph” function of the survival package.

We used the randomForestSRC package in R to rank the

prognosis-related genes, and those with a relative importance

of >0.4 were considered as final hub genes. Furthermore, the

expression levels between the GBM and normal samples of hub

genes were shown using a violin plot and heat map in TCGA.

Risk score prediction based on Cox
regression mode

A risk score model was established by multivariate Cox

regression analysis using hub genes to test independent prognostic

value. GBM patients were divided into groups between high-risk and

low-risk based on the median of the risk score to obtain the survival

time of patients by “predict” function in the survival R package

(Barakat et al., 2019). The forestplot R package determined the hazard

ratio (HR) and 95% confidence interval (CI) of each hub gene

variable. The median risk score was used to predict 1- and 2-year

survival time by time-dependent receiver operating characteristic

(ROC) curves in patients with GBM. The nomogram was used for

diagnosis and prognosis (Iasonos et al., 2008; Fu et al., 2017),

consisting of hub genes to estimate the prognosis probability at

1 and 2 years using the rms package. Subsequently, calibration plots

were used to evaluate the calibration of the nomograms. The area

under the curve (AUC) values of these hub genes were calculated

separately in the four datasets using the pROC R package.

Regulation of miRNA-mRNA

Differential expression analysis was used to identify the

upregulated and downregulated differentially expressed

miRNAs (DEmiRs) in GSE25631 using the limma package.

Target genes of the top three DEmiRs with the largest |

log(fold change)| and the binding sites of the top three

DEmiRs and hub genes were predicted using the TargetScan

(http://www.targetscan.org/vert_72) database.

Landscape of immune cell infiltration

The single-sample gene set enrichment analysis (ssGSEA)

algorithm was performed based on 24 immune cell types to

comprehensively assess the immunologic characteristics of every

sample using the GSVA R packages. The degree of immune cell

infiltration between GBM and control samples was calculated

using the limma R package. Pearson’s correlation was used to

calculate the correlation between hub genes and immune cells.

Moreover, we used the CIBERSORT algorithm to assess the

distribution of 22 immune cell types in each TCGA sample.

Results

Biological function of DEGs

A flowchart of the study is presented in Figure 1. We identified

DEGs between GBM patients and controls to identify dysfunctional

genes associated with GBM (Figure 2A). A total of 8,676 DEGs were

identified in GSE16011, 14,592 DEGs in GSE68848, 5,622 DEGs in
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GSE7696, and 14,003 DEGs in TCGA. Among these DEGs,

3,800 intersected DEGs had the same direction of differential

expression, including 1779 upregulated and 2021 downregulated

DEGs in all four datasets (Figure 2B). We analyzed intersected

DEGs for GO enrichment analysis and the results showed the

following: 1) in BP, intersected DEGs were mainly involved in

neurotransmitter transport and cognition; 2) in CC, intersected

DEGs were mainly involved in synaptic vesicles and neuron-to-

neuron synapses; and 3) in MF, intersected DEGs were mainly

enriched in tubulin binding and GTPase binding (Figure 2C).

Furthermore, we analyzed these intersected DEGs in the KEGG

pathway. The results showed that intersected DEGs were mainly

involved in the MAPK, cAMP, and Ras signaling pathways

(Figure 2D). Results remind that intersected DEGs were involved

in biological functions andmay be promote the development ofGBM.

Identification of module genes in GBM

GSEA showed that genes in the TCGA dataset were positively

correlated with the P53 signaling pathway and DNA replication

(Figure 3A) whichmay be promote the development of GBM and

negatively correlated with GABAergic synapses and nicotine

addiction (Figure 3B) that may be inhibit the development of

GBM. To screen the key module most associated with GBM,

WGCNA was performed using intersected DEGs. The lowest

power that gave an independence larger than 0.90 was 10

(Figure 3C). A total of 3,800 intersected DEGs with similar

expression patterns were placed into seven different modules

to obtained 2,856 module genes (Figures 3D,E). As shown in

Figure 3F, we obtained the correlation between seven different

modules in GBM.

Identification of optimal diagnostic gene
biomarkers

Intersected DEGs were used to identify prognosis-related

genes in the four datasets using Cox regression and Kaplan-Meier

curve analyses in TCGA. Subsequently, 91 prognosis-related

genes were identified. Metascape enrichment analysis of the

91 prognosis-related genes indicated protein secretion and

FIGURE 1
Flow chart of the present study. DEGs, differentially expressed genes; ssGSEA, single sample Gene Set Enrichment Analysis; GSEA, Gene Set
Enrichment Analysis; K-M curve, Kaplan-Meier curve; Time-dependent ROC, Time-dependent receiver operating characteristic curve; TCGA, The
Cancer Genome Atlas.
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disruption of postsynaptic signaling by CNV (Figure 4A).

Figure 4B shows the interactions between these GO terms and

the KEGG pathways. The relationship between the error rate for

the data and the number of classification trees (Figure 4C), and

the importance of the seven genes (DLEU1 and POLR1E, SRBD1,

PTPRN, KDELR2, HPCAL1, and CRNDE) by Random forest

model are shown in Figure 4D. In the multivariate Cox regression

analysis, PTPRN, KDELR2, HPCAL1, and CRNDE were high-

risk factors (Figure 4E), in which KDELR2 and CRNDE were

overexpressed in GBM (Figure 4F). Heat maps showed the

expression of seven hub genes, including five upregulated and

two downregulated genes, in TCGA (Figure 4G). In addition, the

1-year survival time of patients showed the DLEU1 and POLR1E

groups had a significantly better overall survival (Supplementary

Figure S1).

Prognostic risk score as a prognostic tool
in GBM

As shown in Figure 5A, the number of deaths in the high-risk

group was significantly higher than that in the low-risk group in the

risk-score model. Time-dependent ROC curve analysis for the

median risk score was used to show that the AUC values for 1-,

2-, and 3-year survival were 0.818, 0.756, and 0.765, respectively

(Figure 5B).We then constructed a nomogrammodel for hub genes

and risk scores to predict the 1- and 2-year overall survival

probability of GBM patients (Figure 5C). Subsequently, we used

calibration plots of the nomogram to estimate the 1- and 2-year

overall survival probabilities (Figure 5D). In conclusion, seven hub

genes were predicted significantly associated with overall survival

probability of GBM patients.

FIGURE 2
Differential expression analysis and enrichment analysis in glioblastoma (GBM). (A) Volcano plots of differentially expressed genes (DEGs) in four
datasets (GSE16011, GSE68848, GSE7696, and TCGA). Red dots indicate upregulated DEGs, grey dots indicate not-regulated DEGs, and blue dots
indicate downregulated DEGs. (B) Venn diagram of the intersected DEGs of four datasets, including commonly up/downregulated DEGs. (C) BP, MF,
and CC were obtained by Gene Ontology enrichment analysis. BP, biological process; MF, molecular function; CC, cellular component. (D)
Functional pathways of intersected DEGs.
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Regulation between DEmiRs and DEGs

A total of 147 DEmiRs were identified in GSE25631, containing

65 upregulated and 82 downregulatedDEGs betweenGBMand control

samples, by differential expression analysis (Figure 6A). We further

explored the regulation between the top three DEmiRs with the largest |

log2 (fold change)| with 91 prognosis-related genes in GBM patients.

The TargetScanHuman database showed the binding sites of two

miRNAs (miR-577 and miR-203b-3p) on long noncoding RNA

(lncRNA) (DLEU1) and two mRNAs (POLR1E and SRBD1). The

results showed that position 1,622–1,629 of the DLEU1 3′ UTR was

bound tomiR-577, position 278–284 of the SRBD1 3′ UTRwas bound

tomiR-577, andposition934–940of thePOLR1E3′UTRwasbound to

hsa-miR-203b-3p (Figure 6B). We established a regulatory network

involvingfiveDEmiRs that targetedprognosis-related genes (Figure 6C).

Exploring the infiltration of immune cell
types in GBM and control tissues

Four datasets (GSE68848, GSE16011, GSE7696, and TCGA)

were selected to study immune cell infiltration. Macrophages,

FIGURE 3
Gene Set Enrichment Analysis (GSEA) and Weighted Gene Co-expression Network Analysis. (A) GSEA showed head of six pathways enriched in
glioblastoma (GBM) patients. (B) GSEA showed tail of six pathways enriched in GBM patients. (C) Network topology analysis under different soft
threshold power. (D) Cluster tree showed co-expression modules based on WGCNA. (E) Correlation between seven key modules and clinical traits.
(F) Correlation between the modules in GBM.
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neutrophils, and T helper cells showed a higher degree of infiltration

in GBM than in controls (Figure 7A). Plasmacytoid dendritic cells

(pDCs) and T helper (Th) 17 cells were found to have a significantly

high correlation, while T helper cells showed a low correlation

between 24 immune cell types and themedian risk score (Figure 7B).

The results of correlation with immune cell types showed that

POLR1E, DLEU1, and CRNDE were negatively correlated with

most immune cell types, whereas HPCAL1, PTPRN, SRBD1, and

KDELR2 were positively correlated with most immune cells

(Figure 7C). Furthermore, among the 22 immune cell types,

macrophages M2 showed high infiltration between GBM and

control samples from TCGA (Figure 7D). Evaluation of the

FIGURE 4
Metascape enrichment analysis of 91 prognosis-related genes and identified the hub genes in glioblastoma (GBM). (A) Gene Ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in 91 prognosis-related genes. (B) The interactions of these GO
terms and KEGG pathways. (C) Relationship between error rate and number of trees. (D) Random forest model was performed to determine the
importance of the seven genes. (E) Forest plot of the multivariate Cox regression analysis in prognosis-related genes. The genes with a hazard
ratio (HR) >1 were identified as associated with prognostic risk factors, an HR <1 was considered a protective factor. (F) Violin plot showed the
expression of seven hub genes in control and GBM samples. The thick black bar in the middle indicates the interquartile range, and the black line
extending from it represents the 95% confidence interval. (G) Heat map showed the expression of seven hub genes in GBM and control samples in
TCGA dataset. GBM, glioblastoma; TCGA, The Cancer Genome Atlas.
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involvement of CRNDE in GBM indicated an AUC of 0.94 in

GSE16011, and the AUCs were more than 0.97 in the GSE68848,

GSE7696, and TCGA datasets (Figure 7E). CRNDE was highly

expressed in GBM compared with the control samples in the four

datasets and is shown in the bar diagram (Figure 7F).

Discussion

Patients with GBM have poor prognosis (Gregucci et al.,

2021) and novel diagnosis and treatment approaches against

GBM are urgently needed. In this study, co-expression network

and univariate Cox regression analyses were constructed to

identify seven hub genes related to prognosis, including

KDELR2, DLEU1, PTPRN, SRBD1, CRNDE, HPCAL1, and

POLR1E. Among which, we found that PTPRN, KDELR2,

HPCAL1, and CRNDE were high-risk factors by the

nomogram model and survival prediction. Furthermore, the

seven hub genes were associated with immune cell infiltration.

In short, immune-related genes may subsequently affect

prognosis of GBM patients by affecting the abundance of

infiltrating cells in biological processes. Moreover, we

FIGURE 5
Seven hub gene-risk scores were constructed based on themedian risk score. (A)Distribution of glioblastoma (GBM) patients and survival states
of GBM patients with the risk scores, heat-map of seven hub genes. (B) Time-dependent receiver operating characteristic (ROC) analysis in The
Cancer Genome Atlas for median of risk score in GBM. AUC, area under the curve. (C) The nomogram was built by seven hub genes. (D) The
calibration plots for internal validation of the nomogram for 1- and 2-year survival. OS, overall survival.
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identified gene-related prognosis in the regulation of miRNAs

and that involved in biological functions to promote the

occurrence and development in patients with GBM.

By comparing GBM tissues with normal tissues in the four

datasets, we identified the intersected DEGs to explore new

therapeutic targets and prognostic markers of GBM.

Enrichment analysis revealed that the intersected DEGs of

the four datasets were involved in the Ras (Sun et al., 2021),

MAPK, and cAMP signaling pathways (Li et al., 2021). The

MAPK signaling pathway is a major RAS effector pathway that

plays an important role in the survival, drug resistance, and

metastasis of cancer (Reardon et al., 1999; Roberts and Der,

2007; Santarpia et al., 2012). We explored the potential of

91 prognosis-related genes as prognostic markers for GBM

patients. The ribosome and calcium (Ca2+) signaling pathway is

activated in GBM, with inhibition of GABAergic synapses and

nicotine addiction. GBM cells induce and acquire stem cell-like

cell (GSCs) properties via exogenous ribosomes, which may

promote the development of GSCs in GBM tissues (Shirakawa

et al., 2021). Recent studies have indicated that the Ca2+

signaling pathway mainly affects the gene expression and

invasion of GBM cells (So et al., 2021). Additionally,

dysfunction of GABAergic damage plays an important role

in neurodevelopmental disorders (Tang et al., 2021). Nicotine

protects against psychiatric symptoms in schizophrenia

(Lucatch et al., 2018), suggesting that GABAergic synapses

and nicotine addiction may play protective roles.

Furthermore, intersected DEGs for GO enrichment analysis,

which involved in cognition and GTPase binding. The Rho

family of small GTPases, which could regulate the invasion and

migration of GBM cells (Al-Koussa et al., 2020). There are also

studies revealing that cognition is significantly associated with

survival of diagnosis and relapse in GBM patients (Johnson and

Wefel, 2013).

FIGURE 6
Regulation between 91 prognosis-related genes and the top three differentially expressed miRNAs (DEmiRs) with the largest |log2 (fold
change)|. (A) Volcano plots of DEmiRs in GSE25631. Red dots indicate the top three up-regulated DEmiRs and blue dots indicate top three down-
regulated DEmiRs. (B) Binding sites of top three DEmiRs with the largest |log2 (fold change)| and prognosis-related genes. (C) A Sankey diagram was
generated using three DEmiRs with the largest |log2 (fold change)|, prognosis-related genes and pathways.
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WGCNA, used for finding modules of highly correlated

genes which enhanced the functions for co-expression

network analysis (Langfelder and Horvath, 2008). Moreover,

WGCNA has been used to analyze gene expression data from

lung cancer (Ding et al., 2019), medulloblastoma (Du et al.,

2020), colon adenocarcinoma (Wang et al., 2020). In this study,

FIGURE 7
Identifying immune cell infiltration in glioblastoma (GBM) and expression of CRNDE in four datasets. (A) Twenty-four immune cell types were
used to constructed ssGSEA in four datasets. Red dots indicate the high-infiltrated immune cell types and blue dots indicate low-infiltrated immune
cell types. (B) Radar chart shows the correlation between immune cells and seven hub gene-risk score. (C) Pearson’s correlation shows the
correlation between immune cells and seven hub genes. (D) Distribution of 22 immune cell types in each sample from TCGA using the
CIBERSORT tool. (E) The area under the curves (AUCs) of CRNDE in four datasets. (F) The expression of CRNDE between GBM and controls. ****p <
0.001. GBM, glioblastoma.
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we distinguished seven modules and 2,856 module genes in GBM

using WGCNA. We identified seven modules, yellow, blue,

turquoise, black, red, green, and brown, whose genes are

strongly related to GBM. Among these, module genes play a

positive role in GBM. Therefore, our results indicate that

complex gene networks regulate GBM occurrence and

development.

According to our findings in the current study, the results of

the random forest survival model showed that KDELR2, DLEU1,

PTPRN, SRBD1, CRNDE, HPCAL1, and POLR1E may be hub

genes significantly associated with survival in GBM. KDELR2 is a

novel biomarker that is highly expressed in high-grade gliomas

(Mao et al., 2020). Upregulated DLEU1 was discovered in GBM

tissues and might play an essential role in accelerating GBM

development by modulating cell proliferation and apoptosis (Liu

et al., 2019). Furthermore, PTPRN has been used for prognosis

and plays a role in treating patients with radiotherapy and

chemotherapy (Zhu et al., 2021). A previous study showed

that the expression of lncRNAs CRNDE was high in patient

tissues and was associated with poor prognosis in GBM (Zhao

et al., 2021). miR-577 was found to have binding sites for

DLEU1 and SRBD1 by regulated network analysis.

DLEU1 and SRBD1 may be the target genes of miR-577.

Furthermore, POLR1E expression was negatively modulated

by miR-203b-3p expression. It is notable that few studies on

SRBD1, HPCAL1, and POLR1E have been reported in GBM,

while SRBD1 and POLR1E hardly appear in the literature.

The results showed that the low/high-risk score was related to

OS by a risk score system, suggesting that the risk factors were

correlated with the prognosis of GBM patients. Compared to the

high-risk group, the survival time of GBMpatients in the low-risk

group was longer. Time-dependent ROC analysis showed that

the hub genes (KDELR2, DLEU1, PTPRN, SRBD1, CRNDE,

HPCAL1, and POLR1E) had good performance in survival

prediction. Furthermore, the nomogram model visualizes the

influence of risk factors and survival prediction to indicate

CRNDE as a poor gene of prognosis. AUC analysis showed

that AUCs of CRNDE were all greater than 0.94 in four datasets,

the results certified the gene had a high accuracy of the diagnostic

models. Above all, overexpression of CRNDE may be a key gene

involved in the prognosis of patients with GBM.

Using ssGSEA, pDCs, and Th17 cells were found to have a

significantly high degree of infiltration between hub genes and

immune cells. Recent studies have indicated that pDCs lead to

immunosuppression and promote tumor growth (Zhou et al.,

2021). Moreover, the results of Pearson analysis showed that

HPCAL1 and PTPRN had high infiltration in Th17 cells,

POLR1E, SRBD1, DLEU1, KDELR2, and CRNDE had high

infiltration in Th2 cells. Th17 cell populations have been

implicated in the liver, ovaries, breast, melanoma, and

colon (Zou and Restifo, 2010). Removal of the tumour

from cancer patients that becoming less polarised towards

Th2 cell (Tatsumi et al., 2002), reminding us that Th2 cell may

be consist in cancers. pDCs and Th17 cells are promising

targets for GBM immunotherapy. However, the Th2 and

Th17 cell subsets may be weakly correlated in GBM (Miller

and Weinmann, 2009) that we need to further study. In

addition, in the proportion of 22 immune cell types,

macrophages M2 had high infiltration between GBM and

control samples of TCGA. Previous studies have found that

M2 macrophages participate in glioma progression and their

prognostic value in gliomas has been affirmed (Zhang et al.,

2021).

However, this study had some limitations. First, all the data

analyzed were from the GEO and TCGA cohorts, and the

experiments were not validated. Second, studies with large

sample sizes are warranted to validate our findings. Functional

analysis of hub genes involved in immunoregulation requires

further research.

Conclusion

We constructed diagnostic models to identify seven hub genes

related to prognosis in GBM, including KDELR2, DLEU1, PTPRN,

SRBD1, CRNDE, HPCAL1, and POLR1E. Subsequently, pDC and

Th17 cells were found to have a significantly high degree of

infiltration, with a risk score of seven hub genes. In conclusion,

our study provides novel targets to improve the treatment efficacy

and prognostic accuracy of GBM.
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