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Abstract
Cardiotoxicity is among the top drug safety concerns, and is of specific interest in tuberculosis, where this is a known or

potential adverse event of current and emerging treatment regimens. As there is a need for a tool, beyond the QT interval,

to quantify cardiotoxicity early in drug development, an empirical decision tree based classifier was developed to predict

the risk of Torsades de pointes (TdP). The cardiac risk algorithm was developed using pseudo-electrocardiogram (ECG)

outputs derived from cardiac myocyte electromechanical model simulations of increasing concentrations of 96 reference

compounds which represented a range of clinical TdP risk. The algorithm correctly classified 89% of reference compounds

with moderate sensitivity and high specificity (71 and 96%, respectively) as well as 10 out of 12 external validation

compounds and the anti-TB drugs moxifloxacin and bedaquiline. The cardiac risk algorithm is suitable to help inform early

drug development decisions in TB and will evolve with the addition of emerging data.
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Abbreviations
ADTree Alternating decision tree

APD Action potential duration

BDMM Biophysically-detailed myocyte models

CAD Cationic amphiphilic drug

CDISC Clinical trial data interchange standards

consortium

CPTR Critical path to TB drug regimen initiative

CSS Cardiac safety simulator

DDI Drug-drug interaction

ECG Electrocardiogram

EMW Electromechanical window

hERG Human ether-a-go–go-related gene

ORD O’Hara-Rudy models

PBPK Physiologically based pharmacokinetics

PD Pharmacodynamics

PK Pharmacokinetics

QTc Heart rate corrected QT interval

ROC Receiver-operator curve

RR Time gap between the peaks of the QRS

complex of the ECG wave

TB Tuberculosis

TdP Torsade de pointes

WEKA Waikato environment for knowledge analysis

Introduction

The need for new drugs against tuberculosis

Tuberculosis (TB) is a condition that affects one-quarter of

the world’s population, causing 1.5 million TB-related
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deaths per year and remains the leading world-wide cause

of death due to an infectious disease [1]. Due to the pro-

tracted duration of anti-TB therapy, combination drug

regimens are needed that enable a shorter treatment dura-

tion while maintaining an acceptable safety profile. This

necessitates both a robust drug development pipeline, as

well as an improved drug development process. Drug

development tools that provide improved predictions of

efficacy and safety for combination regimens are expected

to enhance the efficiency of regimen development process

by informing key decisions.

Since its inception in 2010, the critical path to TB drug

regimen (CPTR) initiative, a global public–private-part-

nership, has keenly focused on accelerating the develop-

ment of an entirely novel, shorter duration therapy for TB

[2]. A core aspect of CPTR’s strategy is the development,

validation and refinement of a suite of pre-clinical, trans-

lational methodologies and quantitative drug development

platforms. These efforts are focused on optimizing the

translation of novel TB drugs by leveraging integrated and

standardized data to develop first-in-class translational

methodologies, including the cardiac risk algorithm pre-

sented in this manuscript.

Efficient drug safety assessment
during development

Characterization of drug safety, equally with drug efficacy,

is critical during the drug development process. Prior to

human testing, non-clinical safety pharmacology and tox-

icology studies are conducted to predict compound risks in

humans, focusing on the risk of rare lethal events [3].

Despite extensive non-clinical testing, toxicological and

safety-related issues are the most common reasons for drug

candidate attrition up to Phase 2 [4]. Cardiotoxicity and

hepatotoxicity are among the top safety concerns, yet

comprehensive, detailed data on these toxicities is still

sparse in the public space [5, 6]. While the latter is a

common toxicity of anti-TB therapy, especially for first-

line drugs like isoniazid and rifampicin [7], electrophysi-

ological disruption of cardiac activity represents another

main concern for drug development in general, and for

anti-TB drug development specifically.

Torsade de pointes (TdP) is a syndrome of polymorphic

ventricular arrhythmia occurring in the setting of marked

prolongation of the QT interval as assessed by electrocar-

diogram (ECG). In TdP the QT interval is prolonged in the

heartbeats before the sudden onset of rapid and disorga-

nized contractions of the heart. Patients with TdP experi-

ence dizziness or loss of consciousness if the arrhythmia is

brief. If sustained, TdP can be lethal. Certain clinical

conditions which prolong the QT interval, such as con-

genital long QT syndrome or the administration of drugs

that block cardiac potassium channels, are often associated

with TdP, although it may not manifest at the time QT

prolongation is observed. Given this association, the

occurrence of post-dose QT prolongation is a commonly

used biomarker to identify drugs that could result in

iatrogenic TdP.

There is growing awareness that QT or heart-rate cor-

rected QT interval (QTc) prolongation is a limited or

incomplete biomarker of TdP risk. In some cases, QT

prolongation secondary to drug administration is not an

accurate indicator of TdP risk and therefore may not be

informative in the context of drug development [8].

Sponsors, academicians, and regulators agree that a more

comprehensive characterization of risk, based on complete

cardiac ion channel profiles and thorough quantification of

electrophysiological effects, may provide better concor-

dance between ECG signals and TdP risk [9, 10].

To help address this challenge, multiple classification

models were proposed recently using various, often

heterogenic sets of data representing a range of input

variables [11–13]. A more comprehensive analysis of

clinical data to enhance the current ECG assessment was

recently proposed by Johannesen and colleagues [14]. They

hypothesized that the effects of multichannel drug block

can be described by the thorough analysis of early repo-

larization (J–Tpeak; the duration between the J point and the

peak of the T wave) and late repolarization (Tpeak–Tend; the

duration between the peak and the end of the T wave). In a

clinical study led by Johannesen, four drugs were given to

22 healthy volunteers, dofetilide (a pure human ether-a-go–

go-related gene (hERG) potassium channel blocker),

quinidine, ranolazine, and verapamil (as drugs that block

hERG and either calcium or late sodium currents). The

results showed that a more thorough ECG-based charac-

terization of multichannel drug effects on human cardiac

repolarization may improve the assessment of drug-related

cardiac electrophysiology disruption.

Rationale of the project and aim of the study

Given the reliance on drug combinations for effective TB

treatment and the large proportion of standard anti-TB

agents which are known or suspected to be torsadogenic, a

robust cardiac safety testing platform should be utilized in

the development of new and novel anti-TB agents. This

study details the development of component of a quanti-

tative cardiac safety testing platform, which was conducted

according to four specific aims:

1) Collate available clinical and non-clinical data per-

taining to adverse cardiovascular effects and associ-

ated clinical outcomes of anti-TB drugs (and their

metabolites) when used individually and in
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combination (e.g., cardiac ion channel activity pro-

files, repolarization reserve effects—QT changes,

T-wave morphology changes, autonomic tone

effects, TdP, sudden death, hospitalization, etc.);

2) Develop an empirical TdP risk assessment model for

single chemical moieties;

3) Incorporate subject-level electrophysiological data

with complete ion channel activity profiles of QT-

prolonging drugs into a quantitative tool for use in

the development of comprehensive algorithms char-

acterizing cardiac arrhythmia risk profiles for anti-

TB drug combinations;

4) Inform experimental designs (in vitro, preclinical,

and clinical), data analytics, signal interpretation, and

go/no-go decisions related to cardiac arrhythmia risk

in the context of anti-TB drug combination

development.

The purpose of the work presented herein is to provide

drug developers with a tool for use early in anti-TB drug

development, to better quantify the risk of TdP utilizing

in vitro ion current inhibition results in combination with

human PK. Specifically, this report summarizes Aims 1 and

2 outlined above; namely, the development of an in silico

model, the cardiac risk algorithm, an empirical classifier

for single chemical moieties intended to support quantita-

tive TdP risk assessment, based on the cardiac electro-

physiology of human left ventricular cardiomyocytes along

with a quantitative assessment of TdP risk.

Methods

The centerpiece of the Cardiac Risk Algorithm is the in

silico model of the ventricular myocyte as implemented in

the Simcyp cardiac safety simulator (CSS 2.0, Simcyp,

Certara). The CSS includes two biophysically-detailed

myocyte models (BDMM) describing electrophysiology of

the human left ventricular cardiomyocytes which are con-

sidered to represent state-of-the-art models based on the

Hodgkin-Huxley action potential formalism [15, 16]. The

model by ten Tusscher (tT04) represents the default [17].

Additionally, the updated ten Tusscher (tT06) and O’Hara-

Rudy models (ORD) [18, 19] were also implemented. Both

models were developed from data derived predominantly

(tT) or exclusively (ORD) from experiments using human

myocytes. The forward Euler method is employed to

integrate model equations.

CSS operates on two levels, simulating either single cell

electrophysiology and outputting action potential and its

derivatives (APD50, APD90) or simulating a one-dimen-

sional string of cells, where the output is a pseudoECG

(viz. an in silico ECG) and its derivatives (e.g., QRS, QT).

In the latter case, as a one-dimensional fiber of car-

diomyocytes is heterogeneous in character, to mimic the

human heart, CSS has a left ventricular wall thickness

comprised by default of 50% endocardial, 30% midmy-

ocardial and 20% epicardial cells. All other physiological

parameters describe virtual individuals, using known car-

diomyocyte morphometric parameters (volume, area,

electric capacitance). Plasma ion concentration (K?, Na?,

Ca2?) and heart rate are specific for healthy individuals

[25–27]. CSS accounts for intra-individual circadian vari-

ability in physiological parameters (e.g., heart rate, plasma

ion concentrations) [28]. Every element of the CSS system,

including physiological parameters and their variability,

was obtained from the scientific literature as reported in a

peer reviewed publication or white paper [20]. CSS has

itself been validated in a growing number of publications

[15, 21, 22]. The CSS predictive performance was based on

the comparison of the simulated and clinically observed

endpoints (e.g., action potential duration [APD], QT, QRS)

[23].

Data inputs required for the CSS are as follows:

1) Nonclinical ionic channel inhibitory effects as mea-

sured by patch clamp assay (i.e., IC50 values for

rapidly activating delayed rectifier potassium current

IKr (encoded by hERG gene), delayed rectifier

potassium current IKs (encoded by KvLQT1/mink

gene), peak sodium current INa (encoded by Nav1.5

gene), L-type calcium current ICa (encoded by

Cav1.2 gene) and other currents if available);

2) Drug concentrations of parent and/or active metabo-

lites and/or concomitantly given drugs as obtained

from clinical studies or simulated using the Simcyp

physiologically based pharmacokinetic (PBPK)

model; and

3) Subject specific covariates affecting cardiac myocyte

APD or drug exposure (i.e., volume of cardiac

myocytes, sarcoplastic reticulum volume, cardiomy-

ocytes electric capacitance, plasma ions concentra-

tion, heart rate) [25–27].

Drug effects on four main ion channels were simulated

with a simple pore block model. All input data for the

drugs provided in this manuscript are available in the

Supplementary files.

Available outputs from the Simcyp CSS module

include:

1) Single cell action potential and its derivatives

(APD50, APD90—the time needed for 50 and 90%

of the cell repolarization)

2) PseudoECG signal and its derivatives (QRS, QT/

QTc, J-Tpeak, and Tpeak - Tend)
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3) Electro-mechanical window (time gap between the

end of electric and mechanical systole)

These outputs were utilized to develop models of

proarrhythmic potency (cardiac risk algorithms) for single

drugs or drug combinations. Multiple machine learning

algorithms implemented in the Waikato environment for

knowledge analysis (WEKA) were tested during model

development, including decision trees, random forests, and

support vector machines [24]. In all scenarios, the same

procedure was applied, namely the data set was randomly

divided to the learning set (90% of cases) and testing set

(10% of cases) in a tenfold cross validation procedure, and

eventually a validation set of 12 compounds was evaluated

using the best obtained model. The cardiac risk algorithm

output is continuous in the range\ 0;1[ and is inter-

preted as the probability of a compound lacking an asso-

ciation with TdP. A threshold of 0.5 was chosen as a

default value; therefore all results C 0.5 were classified as

negative and those\ 0.5 as positive (viz., TdP(-) and

TdP(?), respectively).

The analysis plan consisted of the following steps

(Fig. 1):

1) Stage 1: Development of cardiac risk algorithm

2) Stage 2: Evaluation of the cardiac risk algorithm on

validation dataset

3) Stage 3: Application of the proposed cardiac risk

algorithm to the chosen anti-TB drugs (moxifloxacin,

bedaquiline)

Data describing the in vitro measured inhibition of all

ionic channels were collected from the available literature

for 12 validation drugs and bedaquiline. This included

information about multiple ionic current inhibition mea-

sured via the patch clamp technique. All collected data are

provided in the supplementary materials (Supplementary

Table 1), including estimated IC50 values and detailed

descriptions of the measurement settings which differ for

the various ionic currents. The IC50 values applied during

the simulation study are marked in green and were selected

based on the assumption that the in vitro study should

mimic the in vivo human physiology as closely as possible.

The main parameters included: temperature, ion concen-

trations, and electric protocol (i.e., holding potential [mV],

depolarization potential [mV], repolarization potential

[mV], and measurement potential [mV]).

Simulations were performed in the CSS at the pseu-

doECG level in one female virtual individual, representa-

tive of the Caucasian population (viz. ‘‘PopRep’’), with 10

concentrations simulated for each drug (0, 0.0001, 0.001,

0.01, 0.1, 1, 10, 30, 100, and 500 lM). The randomly

derived physiological parameters characterizing the virtual

individual are listed below in Table 1 [25–29].

Additional endpoints for further analysis were simulated

using the CSS, including:

• QTc and/or QTc prolongation (difference between

baseline and drug modified QTc)

• QRS and/or QRS prolongation (difference between

baseline and drug modified QRS)

• Index of cardiac electrophysiological balance (iCEB; =

QT/QRS) [30]

• Electromechanical window (EMW) [31]

Input data
Ionic currents inhibi�on and

exposure informa�on

Run simula�ons
Simcyp Cardiac Safety Simulator (CSS) 
with biophysically detailed myocyte 

models (BDMM)

Compile simula�on results
PseudoECG signal and its deriva�ves 
(QRS, QT, J-Tpeak, Tpeak-Tend, and EMW)

Generate Cardiac Risk Algorithm 
Mul�ple machine learning techniques

Assess predic�ve performance
Clinical trial simula�ons for comparison 

of observed and simulated data

Fig. 1 Model building schema
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For cardiac risk algorithm development, the learning set

consisted of 96 compounds (presented in Supplementary

material) and 12 compounds (Table 2) were used to assess

model predictive performance. All compounds were clas-

sified as TdP(?) or TdP(-) based on the CredibleMeds�

QTdrugs classification as of November 2014 (Fig. 2,

Supplementary Table 1) [32, 33].

According to CredibleMeds�, drugs are classified as:

1) Known Risk of TdP—these drugs prolong the QT

interval AND are clearly associated with a known

risk of TdP, even when taken as recommended (here

classified as TdP(?) or positive).

2) Possible Risk of TdP—these drugs can cause QT

prolongation BUT currently lack evidence for a risk

of TdP when taken as recommended (here classified

as TdP(-) or negative).

3) Conditional Risk of TdP—these drugs are associated

with TdP BUT only under certain circumstances of

their use (i.e., excessive dose, in patients with

conditions such as hypokalemia, or when taken with

interacting drugs) OR by creating conditions that

facilitate or induce TdP i.e., by inhibiting metabolism

of a QT-prolonging drug or by causing an electrolyte

disturbance that induces TdP (here classified as

TdP(-) or negative).

Drugs which were not mentioned in the CredibleMeds�

listing were classified as TdP(-) or negative.

Among 96 compounds included in the learning dataset,

28 were classified as TdP(?) and 68 as TdP(-), whereas in

the validation dataset the TdP(?) and TdP(-) compounds

were balanced with 6 in each group (Fig. 2).

TB drugs of interest include moxifloxacin (Known Risk

of TdP - TdP(?)) as an element of the validation set and

bedaquiline (Possible Risk of TdP - TdP(-)) as a new

compound.

Results

The best model (Fig. 3) was developed with the use of an

alternating decision tree (ADTree) with input variables

including EM window and iCEB calculated across 10

Table 1 PopRep virtual individual characteristics

Parameter Value Unit

Age 34 Years

Plasma potassium concentration (K?) 5.49 mM

Plasma sodium concentration (Na?) 137.59 mM

Plasma calcium concentration (Ca2?) 2.25 mM

RR 808 ms

Cardiomyocyte volume 8183 lm3

Cardiomyocyte area 2274 lm2

Electric capacitance 60.42 pF

Sarcoplasmic reticulum volume 628.1 lm3

String length (heart wall thickness) 10.8 mm

Table 2 Validation drugs classification

Drug name CredibleMeds classification for TdP Risk Binary TdP classification

Fexofenadine Not mentioned Negative

Propafenone Not mentioned Negative

Verapamil Not mentioned Negative

Hydrodolasetron Possible risk of TdP (known association with QT prolongation, unknown association with TdP) Negative

Ranolazine Possible risk of TdP (known association with QT prolongation, unknown association with TdP) Negative

Vardenafil Possible risk of TdP (known association with QT prolongation, unknown association with TdP) Negative

Amiodarone Known risk of TdP (known association with TdP) Positive

Citalopram Known risk of TdP (known association with TdP) Positive

Clarithromycin Known risk of TdP (known association with TdP) Positive

Dofetilide Known risk of TdP (known association with TdP) Positive

Moxifloxacin Known risk of TdP (known association with TdP) Positive

Quinidine Known risk of TdP (known association with TdP) Positive

Learning set
96 compounds

28 – TdP(+)
68 – TdP(-)

Algorithm
development model

Validation set
12 compounds

6 – TdP(+)
6 – TdP(-)

External 
verifica�on

Internal 
valida�on

Predic�ve
performance

Fig. 2 Drugs classification and application in algorithm development
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concentrations/compound (encoded consecutively as

EMW1-10 and iCEB1-10) [34].

The model correctly classified the TdP propensity of 85

out of 96 learning set compounds as assessed by internal

validation procedures (89% accuracy), and 10 out of 12

compounds in the external validation set (83% accuracy).

Results are presented in Fig. 4, Panels A and B respec-

tively, whereas the receiver-operator curve (ROC) for the

learning set is shown in Fig. 5.

The incorrectly classified drugs from the learning data-

set are presented in Table 3. Of the compounds from the

validation set, the incorrectly classified drugs included

citalopram and quinidine which were both classified as

TdP(-) or non-proarrhythmic. Both anti-TB drugs of

interest were correctly classified according to their Credi-

bleMeds�-based assessment, with moxifloxacin classified

as TdP(?) and bedaquiline classified as TdP(-) with a

high probability at 0.911.

Fig. 3 Drugs classification (from the WEKA classifier)
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Discussion

The cardiac risk algorithm describes the first step in the

development of a comprehensive cardiac safety assessment

platform to inform drug development decisions, in terms of

the potential torsadogenic risk of candidate anti-TB drugs.

This platform applies preclinical knowledge for different

types of compounds, in terms of their ion channel activity

and exposure–response relationships for electrophysiolog-

ical activity, to generate a binary classification as to the

potential risk of drug-induced TdP. As with any quantita-

tive drug development platform, the Cardiac Risk Algo-

rithm is intended to continuously evolve with additional

data.

While the algorithm itself is empirical, it was derived

from mechanistic information about multiple potentially

model
ADtree

learning set
96 compounds

28 – TdP(+)
68 – TdP(-)

internal
valida�on

PREDICTED

TdP
(-)

TdP
(+)

O
BS

ER
VE

D TdP
(-)

65 3

TdP
(+)

8 20

ACC (accuracy) 0.885
TPR (sensi�vity) 0.714
TNR (specificity) 0. 956
PPV (precision) 0.884

ROC 0.958

valida�on set
12 compounds

6 – TdP(+)
6 – TdP(-)

external
valida�on

model
ADtree

PREDICTED

TdP
(-)

TdP
(+)

O
BS

ER
VE

D TdP
(-)

6 0

TdP
(+)

2 4

ACC (accuracy) 0.833
TPR (sensi�vity) 0.667
TNR (specificity) 1.00
PPV (precision) 0.875

ROC 0.819

A

B

Fig. 4 Results of the ADtree

model—internal and external

validation

Fig. 5 Receiver-operating curve

for learning set at varying

binary classification threshold

values
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affected channels and subsequent disruption of the elec-

trical and mechanical cardiac activity. To capture the

mechanistic model components, it was necessary to include

all available information on the concentration-dependent

inhibition of relevant cardiac ionic currents, which has

potential limitations given the heterogeneity of the input

data for the relevant parameters. Hence, strict criteria for

utilization of the IC50 values were proposed a priori to

reduce its influence on the simulation results and therefore

the model quality. The applied selection criteria were that

the in vitro study should mimic the in vivo human physi-

ology as closely as possible, and that the lowest IC50 value

should be applied. By applying these criteria, the mecha-

nistic model inputs are believed to have been selected

consistently, and albeit somewhat conservatively given the

selection of the lowest reported IC50 value.

Although this platform is ultimately intended to support

the assessment of novel and repurposed compounds for the

treatment of TB, a systematic approach was used to merge

in silico electromechanical simulations with observed

clinical TdP risk for a range of clinically-relevant drugs

across multiple therapeutic areas. This approach thereby

incorporates drugs representing a range of structural classes

with a broad spectrum of on- and off-target pharmacolog-

ical effects. Of the clinically and structurally diverse

compounds included in the 96 compound learning set, a

total of 11 compounds were misclassified, with 3 incor-

rectly predicted as TdP(?) and 8 incorrectly predicted as

TdP(-). In the former case, the three misclassified drugs,

gatifloxacin, sertindole, and tolterodine belong to different

therapeutic and structural classes and exhibited predicted

probabilities of 0.47, barely below the minimum TdP(-)

threshold value of 0.5. It is noted that since the time of

algorithm development, gatifloxacin (a fluoroquinolone

investigated for the treatment of TB) has been re-classified

by CredibleMeds� as a TdP(?) drug, supporting its cor-

responding classification in the present work [35]. More-

over, the CredibleMeds� classification of sertindole and

tolterodine as ‘‘Possible risk of TdP’’ is not necessarily

inconsistent with mid-range probabilities and it is possible

that, as in the case of gatifloxacin, additional clinical data

may result in reclassification of these agents. For example,

a sizeable proportion of sertindole-associated TdP cases

have been reported in the context of overdoses; whereas

tolterodine, as a CYP2D6 and CYP3A4 substrate, is a

potential candidate for drug–drug-interactions that could

contribute to TdP risk, although it remains to be seen if this

drug has a potential to cause TdP when exposure magni-

tudes do not surpass therapeutic levels [36, 37]. Using only

QT prolongation as the metric of TdP risk, 48 of the 96 test

compounds would have been classified as having a risk of

TdP whereas only 28 were truly associated with TdP. The

cardiac risk algorithm (CRA) performed substantially bet-

ter and appears to be a significant advance in assessing

cardiac safety.

The 8 drugs in the learning set that were incorrectly

classified as TdP(-) were structurally distinct, represented

a range of therapeutic classes, and also exhibited proba-

bilities of being TdP(-) close to the threshold value (range

0.57–0.66). Such ‘‘borderline’’ findings are not accounted

for when converting the Cardiac Risk Algorithm proba-

bilities to a binary TdP(?)/(-) classifier, and suggest that a

different threshold value and/or a more discrete classifi-

cation may be required.

The performance of the cardiac risk algorithm for the

validation set compounds classified verapamil, fexofe-

nadine, hydrodolasetron, vardenafil and ranolazine as

having a high probability ([ 0.8) of being TdP(-). The

classification is in concordance with the available literature

reports for verapamil, fexofenadine, and vardenafil, and it

is consistent with ranolazine’s current CredibleMeds�

classification as being only a conditional risk drug [38–40].

Propafenone (which is not included in the CredibleMeds�

database and thus was treated as TdP(-) in this analysis)

was also classified as lacking an association with TdP, but

with mid-range probability [0.65 for TdP(-), 0.35 for

Table 3 ADTree model

incorrectly classified drugs from

the learning dataset

Drug Observed Predicted TdP(?) probability TdP(-) probability

Gatifloxacin TdP(-) TdP(?) 0.535 0.465

Sertindole TdP(-) TdP(?) 0.535 0.465

Tolterodine TdP(-) TdP(?) 0.535 0.465

Chlorpromazine TdP(?) TdP(-) 0.342 0.658

Sotalol TdP(?) TdP(-) 0.364 0.636

Chloroquine TdP(?) TdP(-) 0.429 0.571

Disopyramide TdP(?) TdP(-) 0.429 0.571

Mesoridazine TdP(?) TdP(-) 0.429 0.571

Pentamidine TdP(?) TdP(-) 0.429 0.571

Probucol TdP(?) TdP(-) 0.429 0.571

Sparfloxacin TdP(?) TdP(-) 0.429 0.571
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TdP(?)]. This mid-range probability may be related to the

pharmacological properties of this agent, as it is classified

as a Class 1 antiarrhythmic and is known to be a moderate

QT prolonging agent. Interestingly, another Class 1

antiarrhythmic included in the learning set, disopyramide,

exhibited a similar probability of TdP(-) but was consid-

ered misclassified as it has a known risk of TdP according

to CredibleMeds�. Thus, it is possible that propafenone

may best be considered as having a ‘‘probable risk of TdP’’,

consistent with its mid-range probability per the Cardiac

Risk Algorithm.

The two anti-TB drugs of interest, moxifloxacin and

bedaquiline, were correctly classified as TdP(?) and

TdP(-), respectively. Notably, moxifloxacin, a well-

known QT prolonger, exhibited a mid-range TdP(-)

probability of 0.46. While CredibleMeds� classifies mox-

ifloxacin as TdP(?), this drug is considered to be relatively

safe as evidenced by its extensive use as a positive control

for thorough QT (TQT) trials [40, 41]. Therefore, the

probability predicted by the Cardiac Risk Algorithm seems

appropriate, and suggests that moxifloxacin could be

classified as a middle risk compound. Bedaquiline was

classified as TdP(-), consistent with the lack of TdP

reported in bedaquiline clinical trials [42].

Although the percentage of drugs misclassified by the

proposed Cardiac Risk Algorithm is small ([ 83% accu-

racy), it was considered that an alternative threshold value

for the binary classification may improve the classification.

However, the ROC analysis demonstrated that the thresh-

old TdP(-) probability value of 0.5 used in this study was

near optimal for the learning and testing sets of data. For

example, while 100% of true TdP(-) compounds in the

learning set can be correctly classified by decreasing the

threshold probability slightly to 0.47, there is no change in

the total number of incorrectly classified drugs as 11

known TdP(?) drugs are classified as TdP(-) with this

threshold. Further, this alternative threshold does not

modify the validation test results.

It may be logical to instead consider whether the results

suggest that there is a need for at least three risk categories.

From the observations, while it seems obvious that the

intermediate risk category would allow not only better

classification but also better risk assessment, the exact

threshold values for trinary classification are not clear.

More importantly, classification of the learning and vali-

dation set compounds as low, medium and high risk should

be done prior to model development, therefore the per-

formance of a more granular classification requires addi-

tional study. In the interim, the cardiac risk algorithm

classification of a compound as TdP(?)/(-) should be

interpreted along with its associated probability.

Finally, the predictive performance of any classification

model depends not only on the algorithm utilized for the

model development but also the data quality. Discussion

around the role of both elements is out of scope of the

current manuscript, yet it can be hypothesized that data

quality is at least equally, if not more, important than the

algorithm used. As was recently discussed, TdP risk clas-

sifications vary between sources and there is no conclusive

information on TdP risk for multiple known drugs [43]. It

is likely that alternative classifications for certain drugs,

such as those whose classification has been modified by

CredibleMeds� could have changed the modeling results,

thereby highlighting an inherent risk of relying on a static

‘‘snapshot’’ of a dynamic classification system that is

continuously updated with gained clinical experience.

The main limitations of the present study are listed

below:

– A single chemical entity was utilized for the model

development; to analyze and predict the influence of

multiple chemicals (i.e., drugs and/or their metabo-

lites), and mechanistic models allowing for the

interaction

– In vitro data quality—heterogeneous sources were used

at the model development stage, all of them from the

publicly available literature

– Lack of non-drug parameters influencing drugs tor-

sadogenicity (i.e., interacting drugs, diseases, physio-

logical parameters and their variability).

In conclusion, an in silico modelling and simulation

approach that considered ECG changes beyond QT was

proposed as a tool for the cardiac safety assessment. The

cardiac safety simulator connected with the Simcyp plat-

form was used as the simulation platform. Despite the

potential sources of uncertainty, the combined PBPK-PD

model was able to reasonably extrapolate in vitro data to

the in vivo situation to predict clinical cardiac conse-

quences of drugs, including anti-TB agents. Such an

approach allows the testing of clinical scenarios early in

drug development programs, thus facilitating earlier go/no-

go decisions. This is of specific importance for the evalu-

ation of novel anti-TB drugs in development, given the

potential association of anti-TB agents with QT prolonga-

tion and the need for combination therapies for effective

treatment. Therefore, future work will expand this

methodology to support the selection of combination reg-

imen components based on overall TdP probability.
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19. O’Hara T, Virág L, Varró A, Rudy Y (2011) Simulation of the

undiseased human cardiac ventricular action potential: model

formulation and experimental validation. PLoS Comput Biol

7(5):e1002061

20. Tox-portal. www.tox-portal.net. Accessed 08 June 2017

21. Abbasi M, Patel N, Small B, Jamei M, Polak S (2016) Early

assessment of pro-arrhythmic risk of drugs using the in vitro data

and single cell based in silico models: proof of concept. Toxicol

Mech Methods 27(2):88–99

22. Glinka A, Polak S (2015) QTc modification after risperidone

administration—insight into the mechanism of action with use of

the modeling and simulation at the population level approach.

Toxicol Mech Methods 25(4):279–286

23. Lu HR, Yan GX, Gallacher DJ (2013) A new biomarker–index of

cardiac electrophysiological balance (iCEB)–plays an important

role in drug-induced cardiac arrhythmias: beyond QT-prolonga-

tion and Torsades de pointes (TdPs). J Pharmacol Toxicol

Methods 68(2):250–259

24. Witten IH, Eibe F, Hall MA (2011) Data mining: practical

machine learning tools and techniques. Morgan Kaufmann,

Burlington

25. Polak S, Fijorek K, Glinka A, Wisniowska B, Mendyk A (2012)

Virtual population generator for human cardiomyocytes param-

eters. In silico drug cardiotoxicity assessment. Toxicol Mech

Methods 22(1):31–40

26. Polak S, Fijorek K (2012) Inter-individual variability in the pre-

clinical drug cardiotoxic safety assessment analysis of the age—

cardiomyocytes electric capacitance dependence. J Cardiovasc

Transl Res 5(3):321–332

27. Fijorek K, Patel N, Klima Ł, Stolarz-Skrzypek K, Kawecka-

Jaszcz K, Polak S (2013) Age and gender dependent heart rate

circadian model development and performance verification on the

proarrhythmic drug case study. Theor Biol Med Model 10:7
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