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Abstract: Many marine bacteria secrete exopolysaccharides (EPSs), which are made up of a substantial
component of the macro-molecules surrounding cells. Recently, the wide demand for EPSs for food,
cosmetics, pharmaceutical and other applications has led to great interest in them. In this study,
an EPS produced by marine bacteria Aerococcus uriaeequi HZ strains (EPS-A) was isolated and
purified to examine its structure and biological function. The molecular weight of EPS-A analyzed
by high-performance liquid gel filtration chromatography (HPGFC) is found to have a number
average of 2.22 × 105 and weight average of 2.84 × 105, respectively. High-performance liquid
chromatography (HPLC) and Fourier-transform–infrared (FT–IR) analysis indicate that EPS-A was a
polysaccharide composed of glucose and a little mannose. In addition, the flocculating rate of sewage
of EPS-A was 79.90%. The hygroscopicity studies showed that hygroscopicity of EPS-A was higher
than chitosan but lower than that of sodium hyaluronate. The moisture retention of EPS-A showed
similar retention activity to both chitosan and sodium hyaluronate. EPS-A also can scavenge free
radicals including both OH• free radical and O2•− free radical and the activity to O2•− free radical is
similar to vitamin C. Safety assessment on mice indicated that the EPS-A is safe for external use and
oral administration. EPS-A has great potential for applications in medicine due to its characteristics
mentioned above.
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1. Introduction

Microbial exopolysaccharides are critical for the biofilm formation, which is involved in the
protection of bacteria against a harmful environment and in the adherence. The EPS layers with
high viscosity are formed by accumulating various types of polymeric substances. They tend
to be hygroscopic and aerophytic bacteria, and often contain more water than the surrounding
environment [1]. It is known that certain marine bacterial polysaccharides have features such as
hygroscopicity and moisture resistance, ability to scavenge free radicals, oxidation resistance, and the
adsorption of heavy metal ions. The EPS from Pseudoalteromonas SM20310 enables the strain to adapt
to the environments such as low temperature, high salt concentration, and freeze–thaw cycles. In
addition to its functions in the strain, the EPS also obviously increased the tolerance of Escherichia coli to
repeated freeze–thaw cycles [2]. Many studies indicate that the biological activities of polysaccharides
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are related to their structural features, including molecular weight and concentration, the compositions
of sugar, branch structures, and type of glycosyl linkage [3].

Polysaccharides and their derivatives have been widely used in industries, such as food process,
pharmaceutics, cosmetic, and health care. For instance, polysaccharides extracted from algae have
been applied as the excipients in cosmetic formulae because of their high bonding, gelling, and
viscosity-increasing properties [4]. Moreover, the polysaccharide from Morchella conica (Fungi,
Ascomycota) may act as a powerful immunomodulatory agent by modulating nitric oxide production
in macrophages and subserve splenocytes proliferation [5]. EPSs can be readily prepared in the
laboratory by fermentation [6]. Previous experiments proved that the yield of EPS from the submerged
fermentation of Chinese truffle Tuber sinense (Fungi, Ascomycota) can reach 1.59 g/L under predicted
optimal conditions [7]. Pseudoalteromonas SM20310 (Bacteria, Proteobacteria) screened from 110 Arctic
sea ice can produce EPS with of 0.57 g/L [2]. The bacterial strain CAM025 from Pseudoalteromonas
isolated from Antarctic yield ca 100 mg EPS per gram dry weight of cells of EPS at −2 ◦C and at
10 ◦C [8].

In this study, a marine bacterium Aerococcus uriaeequi HZ with the production of EPSs was screened
from abalone aquaculture environments. In order to study the production of the EPSs produced by
A. uriaeequi HZ, the strain was cultured and an EPS was extracted, isolated, and purified (names
EPS-A). We also analyze the structure and composition of EPS-A by Fourier-transform–infrared (FT–IR)
spectrometry and high-performance gel filtration chromatography (HPGFC). Finally, its flocculation
properties, moisture-absorption and retention abilities and antioxidant activity were studied to explore
its potential application in biotechnology.

2. Results

2.1. Extraction and Purification of Microbial Exopolysaccharide (EPS-A)

EPSs from bacteria have been widely used as anticoagulant, antithrombotic, immunomodulation,
anticancer agents and as bioflocculants in areas such as pharmacological, nutraceutical, functional
food, cosmeceutical and herbicides [9]. Many marine bacteria secrete EPSs as a strategy for growth,
adherence, and to survive under harmful conditions [10]. A. uriaeequi HZ strain was isolated from the
Yellow Sea of China. To analyze if the bacteria can produce EPSs, A. uriaeequi was fermented and the
EPS-A was isolated by Diethylaminoethano (DEAE) ion exchange chromatography and gel filtration
chromatography. The freeze-dried product was yellow-white, water-soluble powder. HPGFC results
showed that the purified product forms a single and symmetric peak, which indicated that EPS-A was
purified with high quality. In order to avoid the presence of protein on the production of extracellular
polysaccharides, the products were scanned by a ultraviolet (UV)-visible spectrophotometer. EPS-A
did not show absorption at 260 nm and 280 nm in the UV spectrum (Figure 1B), which suggested
that the nucleic acid and protein was in the absence [11], and the total sugar content of the EPS is
ca 2.34 g/L. The molecular weight of EPS-A was further measured by HPGFC, and the molecular
distribution of HPGPC of EPS-A is shown in Figure 1A. The result showed that EPS-A is the sugar
with the number average 2.22 × 105 and weight average 2.84 × 105, respectively. The distribution
coefficient was 1.28, indicating the small coefficient dispersion of EPS-A (Table 1).

Table 1. The yield and molecular weight distribution of microbial exopolysaccharide (EPS-A).

Total Sugar Content
(g/L)

Number Average
Molecular Mass (g/mol)

Weight Average
Molecular Mass (g/mol) Distribution Coefficient

2.34 2.22 × 105 2.84 × 105 1.28
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Figure 1. Purification of EPS-A. (A) Mw distribution of EPS-A determination by high-performance
liquid gel permeation chromatography (HPGFC). HPGFC was performed using a Shodex SB-806HQ
column in 0.2 M NaCl solution with 0.5 mL/min flow rate. (B) Ultraviolet (UV)-visible spectrum of
EPS-A. The absorbance from 200–500 nm was measured in H2O at room temperature.

2.2. Monosaccharide Composition Analysis of EPS-A

Monosaccharide composition analysis is used to determine the identities and quantities
of the various monosaccharides in the carbohydrates and glycoproteins. The information
can be used to analyze the structure of carbohydrates and play an important role in
quantification. The monosaccharide composition of EPS-A was identified by high-performance
liquid chromatography (HPLC). EPS-A was hydrolyzed by sulfuric acid and derivatized with
1-phenyl-3-methyl-5-pyrazolone (PMP). As shown in Figure 2, two kinds of monosaccharide were
found, D-mannose and D-glucose, accounting for 10.71% and 66.99%, respectively. As compared with
PMP-labeled standard monosaccharides (Figure 2A), the molar ratio of D-mannose and D-glucose
of EPS-A was 1:9.65 (Figure 2B). This result was different from an exopolysaccharide produced by
Bifidobacterium animalis with Mw = 21.3 kDa, which was composed of the monosaccharides including
arabinose, galactose, glucose, mannose, and rhamnose [12].
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Figure 2. High-performance liquid chromatography (HPLC) chromatograms of seven PMP-labeled
standard monosaccharides (A) and PMP-labeled monosaccharides released from EPS-A (B). Peaks:
1. D-Mannose; 2. D-Rhamnose; 3. D-Glucuronic acid; 4. D-Galacturonic acid; 5. D-Glucose;
6. D-Galactose;7. d-Xylose.

2.3. Fourier-Transform–Infrared (FT–IR) Analysis

FT–IR spectroscopy is a widely used method that shows the infra-red-light absorption by
molecular bonds at a given wavelength [13]. The method can analyze the polysaccharide structure,
such as monosaccharide types, glucosidic bonds, and functional groups, by investigating the vibrations
of molecules and polar bonds between atoms [14–16].

EPS-A had polysaccharide characteristic of a broad absorption peak in 3200~3650 cm−1, which
was the O–H stretching vibration peak (Figure 3). The peak at 2887.4 cm−1 and 2935.6 cm−1

were -C–H stretching vibration of –CH3 and –CH2, respectively. Around 1100 cm−1, there
are three absorption peaks, indicating the presence of monosaccharides in pyran form in the
extracellular polysaccharide. The characteristic absorption peak at 817 cm−1 confirmed the presence of
α-D-mannopyranose [17,18]. The structure of the infrared spectrometry confirmed the measurement
results of the monosaccharide composition.
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Figure 3. FT-IR spectra of EPS-A. Dried polysaccharides were ground and pelletized with KBr.
Ultraviolet-visible spectrum of EPS-A was recorded with a spectrophotometer from 500–4000 cm.
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2.4. Bio-Flocculating Activity

Flocculation technology as a kind of effective and quick method is used for wastewater treatment.
Bio-flocculation is a dynamic process owing to the ability to form extracellular polymers by living
cells. Recently, microbial flocculants have been widely used, which are innocuous and biodegradable.
The flocculating activity of an EPS by Bacillus thuringiensis is 80.4% [19]. An EPS produced by a marine
dinoflagellate Gyrodinium impudicum (Chromista, Dinophyceae) had >90% flocculating activity [20].
In this study, the flocculating rate was as high as 79.90% (Figure 4), With the increase of concentration,
the flocculation ability of EPS-A gradually increased. The results show that EPS-A could be an excellent
candidate as a kind of sewage treatment agent that is non-toxic, harmless, no secondary pollution.
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Figure 4. Sewage flocculation assay of EPS-A. 0.2 g EPS was added l00 mL sewage and incubated for
1 h. The function of sewage flocculation was measured at 550 nm by a spectrophotometer.

2.5. Moisture Absorption and Retention Properties EPS-A

EPSs are hygroscopic and therefore have the ability to maintain a high water content in the
microenvironment [21]. The hygroscopic property has been widely used in the food industry [22].
The hygroscopicity of EPS-A was investigated together with chitosan and sodium hyaluronate. The
experimental results showed that EPS-A moisture absorption was significantly higher than that of
chitosan but less than that of sodium hyaluronate.

The moisture retention ability of EPSs plays an important role in cosmetics and clinical
medicine [23]. The moisture retention of EPS-A was studied and compared with that of chitosan and
sodium hyaluronate. The results showed EPS-A has similar moisture-absorption abilities as that of
chitosan and sodium hyaluronate (Figure 5). The moisture absorption and retention properties make
EPS-A valuable in the food industry, clinical medicine, and cosmetics.
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Figure 5. Moisture-absorption and retention activity of EPS-A. (A) Hygroscopic activity assay of EPS-A.
Hygroscopic activity of EPS-A was determined by measuring the increased weight of absorbing H2O
by EPS-A. Chitosan and sodium hyaluronate were used as controls. The value obtained at 50 h by
sodium hyaluronate was set 100%. (B) Moisture retention activity assay of EPS-A. Moisture retention
of EPS-A was determined by measuring the reserved weight of H2O by EPS-A. Chitosan and sodium
hyaluronate were used as controls. And the value at the beginning was set 100%.
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2.6. Removal Results on Free Radicals

The oxygen free radicals such as superoxide radical anion (O2•−) and hydroxyl radical (OH•)
are highly potent oxidants that can react with the biomacromolecules in cells and are related to
mutagenesis and carcinogenesis. The antioxidant properties of polysaccharides from algae, plant,
fungi, and prokaryotes have been studied for their antioxidant properties as potential therapeutic [24].
For example, Dixoniella grisea (formerly Rhodella reticulata, Rhodophyta) EPS had a stronger ability against
O2•− than α-tocopherol and the crude polysaccharides were twice as strong as α-tocopherol [25].
Natural EPS from Brevibacterium otitidis (Bacteria, Actinobacteria) also possessed a strong free radicals
scavenging effect, which can be comparable to vitamin C [26]. In this study, OH• free radical and
super oxygen anion O2•− scavenging activity of EPS-A were analyzed (Figure 6). The results showed
that the scavenging effect of EPS-A on OH• radicals increased with increasing concentration of EPS-A.
when EPS-A concentration reached 100 µg/mL, the clearance rate reached 45.65%, which is lower
than the value of Vitamin C (Vc). Scavenging results of EPS-A on O2•− also showed a significant
dose–effect relationship. When the concentration of EPS-A reached 250 µg/mL, the clearance rate was
67.31%, which is near to Vc. EPS-A showed similar clearance rate to both superoxide radical anion and
hydroxyl radical, even the rate is lower than Vc. Then EPS-A may also be explored as a novel potential
antioxidant. The hydroxyl radical scavenging activities of EPSs were attributed to various mechanisms.
One possibility was that EPSs could absorb radicals and terminate the radical reaction [27].
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Figure 6. Free radical scavenging activity of EPS-A. A OH• free radical scavenging activity of EPS-A.
The scavenging activity to OH• of different concentration EPS was determined by removing OH•
generated by FeSO4 and H2O2. Vitamin C was used as a control and the activity of 100 µg/mL vitamin
C was set 100%. B O2•− free radical scavenging activity of EPS-A. The scavenging activity to O2•− of
different concentration EPS-A was determined by removing O2•− generated from pyrogallol. Vitamin
C was used as a control and the activity of 100 µg/mL Vitamin C was set 100%.

2.7. Safety Assessment of EPS-A

An acute toxicity test on mice was performed to assess the safety of the EPS-A. The mice were
orally administered a dose of 5000 mg/kg of the EPS-A. No mice died in either the treated or the control
group in the 14-day test period. In both groups, the mean body weight of mice increased gradually and
did not show a significant difference during growth, and at the end of the test (Figure 7A). there was
also no substantial difference of the splenic indices between treated mice and the untreated controls
(Figure 7B). The acute toxicity test indicated that EPS-A is safe for usage.
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Figure 7. Effect of EPS-A on the body weight (A) and splenic indices (B) of mice in a 14-day feeding test.

3. Discussion

Microbial EPSs have attracted great interest among scientists because of their wide potential
applications spanning areas such as health (pharmaceuticals and medicine), industry (cosmetics, textile,
dairy etc.), and environment (flocculation, remediation, etc.) [28]. However, only a few microbial EPSs
have been used commercially. Among them, microbial dextran could be considered as the first example
used in food and pharmaceutical industries [24]. Their production costs are the main constraints to
full commercialization, especially the substrate cost and the cost of purification processing [29]. EPSs
are of considerable value in the removal of pollutants from wastewater, in the dewatering of activated
sludge, and in bioflocculation and settling [30]. Flocculation activity >75% was obtained using very low
concentrations of EPSs from Bacillus, and our results showed that EPS-A showed activity of 79.90%.

In this study, EPS-A showed good moisture-absorption and retention ability. The moisture-
absorption ability of EPS-A was between chitosan and sodium hyaluronate; and its moisture-retention
ability was comparable with chitosan and sodium hyaluronate. Similarly, Sun et al. [31] found the
moisture-absorption ability of extracellular polysaccharide produced by an Arctic marine bacteria was
higher than that of chitosan but less than that of sodium hyaluronate. Moreover, the moisture-retention
ability was higher than that of chitosan and sodium alginate. To my knowledge, few studies are
able to clarify this mechanism of extracellular polysaccharides. Chen’s group [32] reported that
the moisture-absorption and retention ability of Carboxymethyl chitosans (CM-chitosan) containing
different subrogation points was related to the active sites of 6-carboxymethyl in the molecular
structure. Moreover, the carboxymethylation of N sites promote moisture-absorption and retention
ability which increase with its molecular weight. The extracellular polysaccharides of the Arctic
marine bacteria are mainly composed of N-acetyl glucosamine, glucuronic acid, mannose, medium
galactose, and fucose, as well as a small amount of rhamnose and glucose. In this study, the EPS-A is
proved to consist of glucose and a small amount of mannose. It is speculated that the monosaccharide
composition of the bacterial extracellular polysaccharide and the molecular weight of the extracellular
polysaccharide have a great relationship with the moisture-absorption and retention ability, and the
mechanism of the difference in moisture-absorption and retention ability need to be revealed in the
later period. In addition, moisture-retaining and absorbing bio-materials have been extensively used
in cosmetic, food, pharmaceutical and other industries [31]. The moisture-retention ability of EPS-A
reveals its great potential as a wound dressing and moisturizing ingredient [33]. Also, EPS-A showed
its antioxidant activity as Vc. The antioxidant properties of EPSs are important functions in maintaining
human health and preventing disease. For example, an EPS from Pleurotus salmoneo-stramineus (Fungi,
Basidiomycota) with antioxidant activity represented a surprising antitumor capability against colon
cancer [34]. In summary, our study showed that EPS-A is a promising biomaterial for food, cosmetics
and medical applications (Figure 8).
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4. Materials and Methods

4.1. Cell Culture

Marine bacterium A. uriaeequi HZ [35] strain was isolated from abalone breeding environment
in Rongcheng, Shandong Province, China, and cultivated on Zobell 2216E solid medium containing
5.0 g/L peptone, 1.0 g/L yeast extract, 0.01 g/L sodium phosphate, and 35 g/L bay salt with pH
7.6~7.8 at 25 ◦C. The medium with 30 g/L sucrose, 2.5 g/L beef extract, 30 g/L bay salt, and 0.01 g/L
sodium phosphate was used for fermentation study to produce EPS-A.

4.2. Production and Purification of EPS-A

A. uriaeequi HZ was cultured in the flask at 25 ◦C for 8 h, then 10% seed culture was inoculated
in fermentation flasks and incubated on a shaker with 230 rpm at 25 ◦C for 35 h. The fermentation
broth was centrifuged at 4000 rpm for 20 min. Ethanol was added to the supernatants to reach the final
concentration of 60% (v/v) and precipitated overnight at 4 ◦C [36]. The precipitates were centrifuged
at 4000 rpm for 20 min to remove the supernatants. The pellets were dissolved in water and mixed
with Savage reagent (chloroform: n-butanol = 5:1) at a 1:4 volume ratio. The solution was mixed
sufficiently and centrifuged to remove organic solvents and denatured protein [37]. The total sugar
content of the EPS was determined by the phenol-sulfuric acid method [35].

The EPS in deionized water was further purified by using DEAE-52 anion-exchange
chromatography with a 1.6 cm × 30 cm column. The samples were eluted at a flow rate of 60 mL/h
with a linear gradient of 0 to 1 M NaCl solution in the system. The EPS fraction was further purified
using gel filtration chromatography (Sepharose 4B) on a column (1.6 cm × 100 cm), which was eluted
at a flow rate of 12 mL/h with 0.1 M NaCl solution [2]. Then the purified EPS was dialyzed by
deionized water using a selective semi-permeable membrane (8000~14,400 da). The polysaccharide
was freeze-dried and stored at 4 ◦C until analysis [38].

4.3. Molecular Weight Determination of EPS-A

The molecular weight of EPS-A was determined by gel filtration chromatography [39]. HPGFC
was used for analysis using a Shodex SB-806HQ column (0.8 cm× 30 cm, Agilent, Santa Clara,
CA, USA). The mobile phase included 0.2 M NaCl in H2O. The system was run at a flow rate of
0.5 mL/min at 35 ◦C. 100 µL standard sample (Table 2) was injected into the liquid chromatograph.
The chromatogram was recorded, and the universal correction and the linear regression equation
was performed and calculated by Gel Permeation Chromatography (GPC) software (A.02.01, Agilent,
Santa Clara, CA, USA). The EPS-A was determined in the same method as above. The standard curve
was shown in Figure 9. The k value of the reference substance was 0.0006, and the α value was 0.75.
The molecular weight and molecular weight distribution of EPS-A were calculated by GPC software.
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Table 2. Standard samples of the Polystyrene sulfate (PSS).

Standard Samples LOT MW (g/mol) Weight (mg)

PSS929n 63,900 10.1
PSS8065n 152,000 10.2
PSS13092 282,000 10.1
PSS14052 976,000 10.0
PSS9304-4 2,260,000 10.0

Figure 9. Standard curve of HPGPC-PSS series of standard samples.

4.4. Hydrolysis and Derivatization of EPS-A

Twenty mg EPS-A was mixed with the 10 mL sulfuric acid solution (1 Mol/L) and incubated at
100 ◦C for 8 h for hydrolysis. After centrifugation, the hydrolysate at 10,000 r/min for 10 min, 4.5 mL of
supernatant was pipetted and neutralized to pH 7 with 2 mol/L NaOH, and the neutralized solution
was made up to 10 mL. PMP derivatization of monosaccharides was carried out as described previously
with proper modification [40,41]. Briefly, 50 µL neutralized solution, 50 µL PMP-methanol solution
(0.5 mol/L) and 50 µL NaOH solution (0.3 mol/L) were mixed in a 1.5 mL tube, which was placed in a
constant temperature water bath at 70 ◦C for 30 min. After cooling to room temperature, 50 µL of HCl
solution was added to the mixture for neutralization, and 100 µL of ultrapure water was added for
dilution. The mixture was extracted 3 times with chloroform, and filtered by a 0.45-micron filter before
HPLC. The 2 mmol/L standard solution of mannose, rhamnose, glucuronic acid, galacturonic acid
glucose, galactose, and xylose was derivatized by the same method. All the assays were independently
conducted in triplicate.

4.5. High-Performance Liquid Chromatography (HPLC) Analysis of the Monosaccharide Composition

An HPLC (DGU-20A, Shimadzu, Kyoto, Japan) equipped with a column InertSustain (4.6 mm ×
250 mm, Shimadzu, Kyoto, Japan) was used for identification and quantification of the monosaccharide
composition in EPS-A, The mobile phase was 80% ammonium acetate solution and 20% acetonitrile at
a flow rate of 1.0 mL/min, and the column temperature was at 30 ◦C. The EPS-A was detected by UV
detector at 245 nm [27,41].

4.6. Ultraviolet (UV)-Visible and FT–IR Spectroscopy

A UV-2450 spectrophotometer (Shimadzu, Kyoto, Japan) was used to record the ultraviolet-visible
spectrum of EPS-A. A Fourier-transform–infrared spectrophotometer (PerkinElmer, Norwalk, CT,
USA) was used to record FT-IR spectra of the samples [42].
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4.7. Sewage Flocculation Analysis of EPS-A

The sewage in this study was collected from the sewage treatment station at Qilu University of
technology; 0.2 g EPS-A was added to 100 mL of sewage in the 250 mL flask. The mixture was left to
stand for l h. Absorbance was measured with a spectrophotometer at 550 nm. The original sewage
photogenic liquid absorbance Dγ value was illustrated by the A1, the processed wastewater photogenic
liquid absorbance Dγ value was illustrated by B1. The flocculation effect is in the flocculating rate:

Flocculating rate (%) = (A1 − B1)/A1 × 100%

4.8. Hygroscopic Activity of EPS-A

Flasks containing 0.1g EPS-A was placed in the sealed dryers with saturated NaCl or CaCl2
solution, respectively. The relative humidity in the two dryers is 73% and 32% respectively. After the
preset time, the sample was weighted and hygroscopic rate was calculated. Chitosan and sodium
hyaluronate were used as controls. The hygroscopic rate was calculated based on:

Hygroscopic rate (%) = (increased weight/original weight) × 100%

4.9. Moisture Retention Determination of EPS-A

Flasks containing 0.1 g EPS-A with 0.5 g of distilled water were incubated in the sealed dryers
with a saturated CaCl2 solution or silica gel, respectively. The relative humidity in the two dryers is
32% and 0%. After the preset time, the sample was weighted and hygroscopic rate was calculated.
Chitosan and sodium hyaluronate were used as controls. Moisture retention was calculated based on:

Moisture retention (%) = (weight of water after incubation/original weight of water) × 100%

4.10. OH• Free Radical Scavenging Activity

The free radical scavenging activity of OH• was analyzed using Fenton’s reaction [43].
The hydroxyl radical was generated in a mixture of 1.0 mL 1,10-phenanthroline (5 mM), 1.0 mL
sodium phosphate buffer (0.05 M, pH 7.4), 0.5 mL FeSO4 (7.5 mM) and 0.5 mL H2O2 (3%, v/v). A series
of concentrations of EPS-A were added to the solution and reacted at 37 ◦C for 30 min. The absorbance
was recorded at 510 nm. H2O and Vitamin C (Vc) were used as the blank and positive control,
respectively. Clearance calculation formula was:

Clearance rate (%) = [A0 − (Ax − Ax0) ]/A0 × 100%

where ∆A0 and ∆A denote the absorbance of the blank solution and the absorbance of the
solution after addition of the EPS, respectively. Ax0 was the absorption of the background of the
polysaccharide solution.

4.11. O2•− Free Radicals Scavenging Activity

The in vitro O2•−-scavenging activity of EPS-A was measured using the pyrogallol method [44].
Briefly, Reagents were added into a cuvette in the following order: 10 µL pyrogallol (3 mM), 80 µL
NaOH (4 mM), 10 µL EPS-A, and 900 µL luminol (with a concentration of 0.1 mM in sodium carbonate
buffer, pH = 10.2) and incubated in a water bath at 25 ◦C. A series of reactions with a final different
concentration of EPS-A were set up and absorbance was recorded at 325 nm. Vc group was treated as
control. The clearance calculation formula was:

Clearance rate (%) = (∆A0 − ∆A)/(∆A0) × 100%
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where ∆A0 and ∆A denote the self-oxidation rate and the self-oxidation rate after adding
EPS-A, respectively.

4.12. Safety Assessment of EPS-A

Acute oral toxicity of the EPS-A was analyzed following both the Good Laboratory Practice
Standards manual and the Organization for Economic Cooperation and Development (OECD)
Guidelines for Acute Toxicity of Chemicals no. 420 as previous reported [31]. KM (Kunming) female
mice (8 weeks old, weight between 19 and 21 g) were obtained from the Experimental Animal Center
of Shandong University (Jinan, China). All of the experimental protocols were approved by the
Experimental Animal Ethic Committee of Qilu University of Technology, Shandong, China (Animal
Experimental Ethical Inspection Protocol No. 201605004, 16 May 2016).

5. Conclusions

In this study, an exopolysaccharide from Aerococcus uriaeequi (EPS-A) was purified with the
number average molecular mass of E 2.22 × 105 g/mol and the weight average molecular mass of
2.84 × 105 g/mol. EPS-A was mainly composed of glucose and mannose with β-configurations.
EPS-A showed wastewater flocculation with 79.90 % activity. The sugar can also scavenge hydroxyl
free radical in a clear dose–effect relationship. When the EPS-A concentration reached 100 µg/mL,
the clearance rate reached 45.65% to •OH. When the concentration was 250 µg/mL, the clearance rate
reached 67.31% to O2

− •. Finally, EPS-A also showed moisture-absorption and retention properties
that can be compared with sodium hyaluronate and chitosan.
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