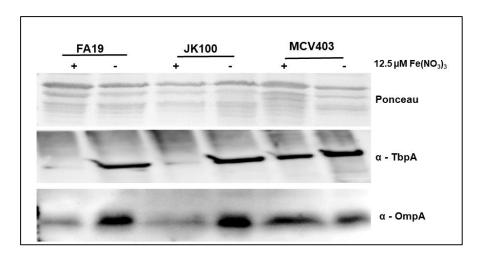
1 Supplementary Information

2


- 3 Transcriptional activation of ompA in Neisseria gonorrhoeae mediated by the XRE family
- 4 member protein NceR

5

- 6 Concerta L. Holley¹, Vijaya Dhulipala¹, Stavros A. Maurakis², Ashley Nicole Greenawalt²,
- 7 Timothy D. Read^{3,4}, Cynthia N. Cornelissen², and William M. Shafer^{1,3,5*}

- ¹Department of Microbiology and Immunology, ²Institute for Biomedical Sciences, Georgia State
- 10 University, Atlanta, GA, USA, ³Department of Medicine (Division of Infectious Diseases) and
- ⁴The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA,
- 12 USA, and ⁵Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur,
- 13 GA, USA

14	CONTENTS
15	
16	Supplemental Figure S1. OmpA expression is increased in an iron-dependent, MisR-
17	independent manner
18	Supplemental Figure S2. Fur represses ngo1982 in the presence of Iron
19	Supplemental Figure S3. Alignment of the NceR sequence from different Neisserial strains
20	using the ClustalW algorithm
21	Supplemental Figure S4. Genomic organization of the N. gonorrhoeae ngo1982 locus
22	Supplemental Figure S5. Alignment of the NceR sequence from N. gonorrhoeae with selected
23	XRE family member proteins from other bacterial strains using the ClustalW algorithm
24	Supplemental Figure S6. Predicted Structure of the NceR protein
25	
26	Supplemental Table S1. Bacterial Strains and plasmids used in this study
27	Supplemental Table S2. DNA pull-down and Mass spectrometry identification of proteins
28	interacting with the ompA promoter
29	Supplemental Table S3. Protein allele variants in the NceR found through analysis of
30	sequenced clinical genomes
31	Supplemental Table S4. Primers Used in this study

Figure S1. OmpA expression is increased in an iron-dependent, MisR-independent manner. Shown is a Western blot of 5 μgs of SDS-PAGE separated protein from whole cell lysates of isogenic Ng strains FA19, JK100, and MCV403 grown in the presence and absence of iron in CDM. The blot was probed with rabbit polyclonal anti-OmpA and anti-TbpA antiserum as described in Materials and Methods.

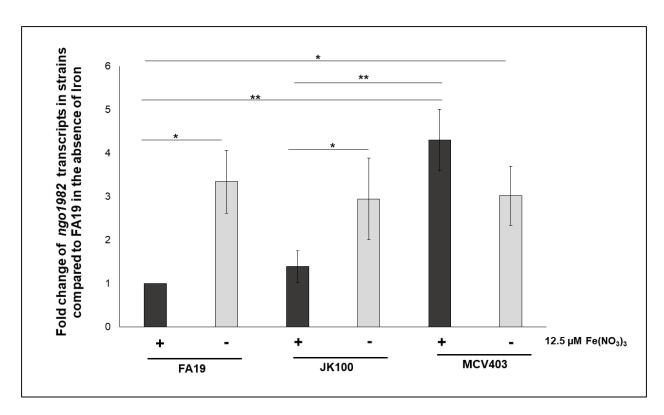
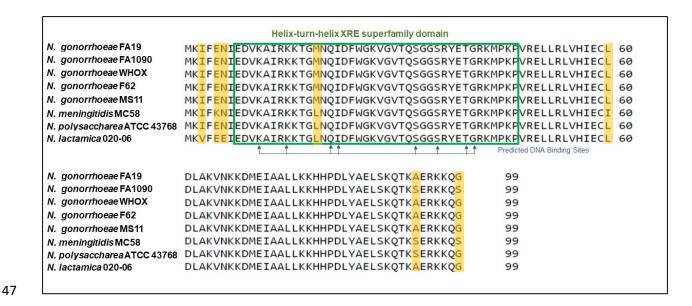



Figure S2. Fur represses ngo1982 in the presence of Iron. qRT-PCR analysis of ngo1982 transcripts in FA19, JK100, and MCV403 at the late-logarithmic phase of growth in the presence and absence of 12.5 μ M Fe(NO₃)₃ in Chemically Defined Medium (CDM). Error bars represent standard deviations from the means of 3 independent experiments. Normalized expression ratios were calculated using recA rRNA expression and test values were further normalized against FA19 in the presence of Fe(NO₃)₃. The statistical significance of the results was determined by Student's t-test and adjusted for multiple comparisons, * = P < 0.05, ** = P < 0.001.

Figure S3. Alignment of the NceR sequence from different neisserial strains using the ClustalW algorithm. The helix-turn-helix XRE superfamily domain is boxed in green. Predicted DNA binding sites as identified by the NCBI Conserved Domain Database (1) are indicated with blue arrows. Amino acid differences between the strains are highlighted in gold. Locus IDs: *N. gonorrhoeae* FA19 (NGEG_RS0110135), *N. gonorrhoeae* FA1090 (F9Z35_RS05515), *N. gonorrhoeae* WHO X (C7S01_RS10830), *N. gonorrhoeae* F62 (NGNG_RS09285), *N. gonorrhoeae* MS11 (NGFG_RS11035), *N. meningitidis* MC58 (NMB_RS10940), *N. polysaccharea ATCC 43768* (NEIPOLOT_00329), and *N. lactamica 020-06* (NLA_RS01200).

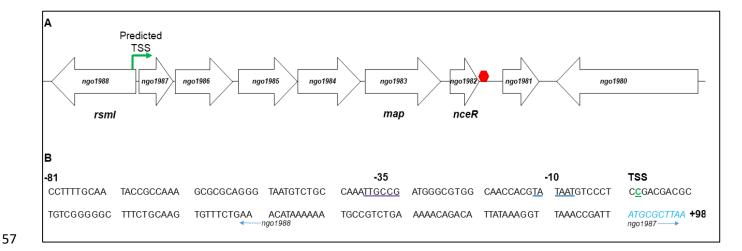


Figure S4. Genomic organization of the *N. gonorrhoeae ngo1982* locus. A) Relative position of the genes within the FA1090 strain genome (GenBank assembly accession number GCA_000006845.1). Approximate location of the predicted transcriptional start sites (TSS) of the operon based on transcriptome mapping of *N. gonorrhoeae* (2) is indicated with the green arrow. The approximate location of the transcript endpoint is indicated with a red hexagon. Map is drawn approximately to scale. B) Sequence of the NGO1987-NGO1982 operon promoter. The predicted -35, -10, and TSS are underlined.

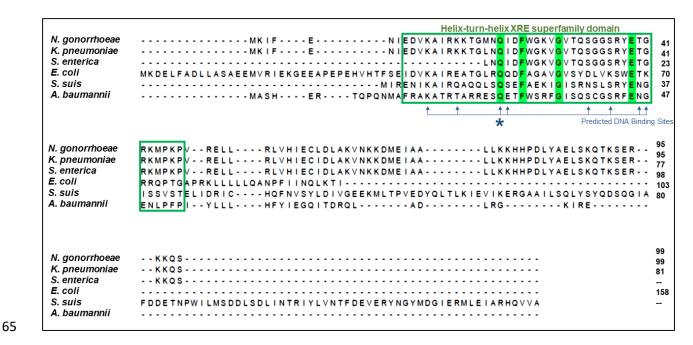


Figure S5. Alignment of the NceR sequence from *N. gonorrhoeae* with selected XRE family member proteins from other bacterial strains using the ClustalW algorithm. The helix-turn-helix XRE superfamily domain is boxed in green. Conserved residues between strains are highlighted in green. Predicted DNA binding sites as identified by the NCBI Conserved Domain Database (1) are indicated with blue arrows. A common predicted DNA binding site is denoted with an asterisk. Protein IDs: *N. gonorrhoeae* (WP_010951376.1), *K. pneumoniae* (MCI4052495.1), *S. enterica* (MBG8803505.1), *E. coli* (WP_170897976.1), *S. suis* (WP_024390985.1), and *A. baumannii* (SST11697.1).

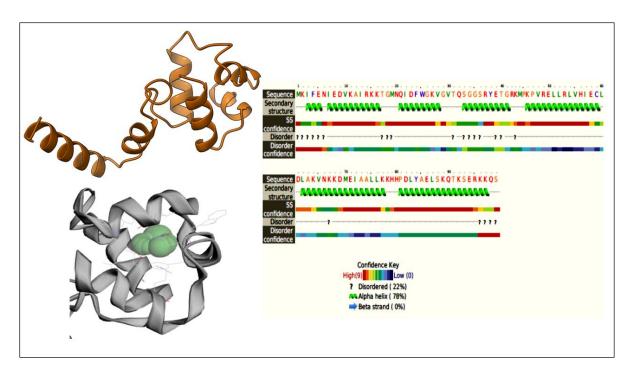


Figure S6. Predicted Structure of the NceR protein. Predicted structure of NceR is shown in yellow. A close-up of the predicted DNA binding pocket identified in the helix- turn- helix region of NceR is shown in green. Predicted secondary structures are shown above the amino acid sequence of NceR. Binding pocket prediction by CastP (3). Secondary structure prediction was performed using Phyre2 program (4).

Supplemental Table S1 - Bacterial Strains and plasmids used in this study

Strain or plasmid	Genotype or description	Reference or source
N. gonorrhoeae		
FA19 rpsl	WT strain	(5)
CH250	FA19 rpsl Δngo1982	This Study
		•
CH258	FA19 rpsl Δngo1982 pGCC4-ngo1982	This Study
JK100	FA19 misR::kan	(6)
MCV403	FA19 with the fur-1 (Y82C) null allele	Gift from C.
		Cornelissen
CH10	FA19 ompA::ermC	(7)
FA19::P _{FL}	FA19 containing a translational fusion of 123 bp of	(7)
	the promoter region of ompA to the lacZ gene	
FA19::P _{FL} s2	FA19 containing a translational fusion of 123 bp of the promoter region of <i>ompA</i> to the <i>lacZ</i> gene and	(7)
	S2 deletion	(-)
FA19::P _{Trunc}	FA19 containing a translational fusion of 81 bp of the	(7)
	promoter region of <i>ompA</i> to the <i>lacZ</i> gene	
CH250::P _{FL}	CH250 containing a translational fusion of 123 bp of	This study
	the promoter region of <i>ompA</i> to the <i>lacZ</i> gene	
CH300	CH250 containing a translational fusion of 123 bp of	This study
	the promoter region of <i>ompA</i> to the <i>lacZ</i> gene and S2 deletion	
CH301	CH250 containing a translational fusion of 81 bp of the promoter region of <i>ompA</i> to the <i>lacZ</i> gene	This study
CH302	CH258 containing a translational fusion of 123 bp of the promoter region of <i>ompA</i> to the <i>lacZ</i> gene	This Study
CH303	CH258 containing a translational fusion of 123 bp of the promoter region of <i>ompA</i> to the <i>lacZ</i> gene and	This Study
	S2 deletion	
Escherichia coli		
One Shot TOP10	F^- mcrA Δ(mrr-hsdRMS-mcrBC) ϕ 80/acZ Δ M15	Invitrogen
	ΔlacX74 recA1 araD139 (ara leu)7697 galU galK	(Carlsbad, CA)
	rpsL (Str ^r) endA1 nupG	
BL21(DE3)	fhuA2 [lon] ompT gal (λ DE3) [dcm] ΔhsdS λ	New England
, ,	DE3 = λ sBamHlo ΔEcoRI-B	Biolabs (Ipswitch,
	int::(lacl::PlacUV5::T7 gene1) i21 Δnin5	MA)
	mun(radim rado venir gener) izi zimile	
Plasmids		
pET-15b	Ractorial expression vector with T7lac promotor	Morek Millipore
p⊑1-13b	Bacterial expression vector with T7lac promoter,	Merck Millipore
01.100	N-terminal His-tag	(Burlington, MA)
pCH30	pET-15b containing FA19 ngo1982 coding region	This Study
pUNCH937	pBluescriptII(SK-) derivative containing the	Christopher E.
	sequential cloning of: i) a BamHI-EcoRI fragment	Thomas (University
	encoding rpsL from pFLOB4300 (8) into BamHI-	of North Carolina at
	EcoRI and ii) The BgIII cat cassette from pNC40	Chapel Hill)
	(9) into BamHI.	- ,
pCH31	pBad Δ <i>ngo1982</i>	This Study
	1 3	· · · ,

pCH32	pbad Δ <i>ngo1982::rpls/CAT</i>	This Study
pGCC4	IPTG-inducible <i>Neisseria</i> chromosomal complementation vector	(10)
pCH33	pGCC4 containing the wild type <i>ngo1982</i> gene	This Study
	from FA19	
pLES94	pUC18 derivative containing a truncated <i>lacZ</i> gene	(11)
	for use in translational fusions; recombines at	
	the proAB locus of the gonococcal chromosome	
pCH22	pLES94 containing 123 bp upstream of ompA (FL)	(7)
pCH23	pLES94 containing 81 bp upstream of ompA (Trunc)	(7)
pCH25	pCH22 with deleted S2 site	(7)

Supplemental Table S2. DNA pull-down and Mass spectrometry identification of proteins interacting with the ompA promoter

			FA19			JK100					
			+ i	ron	- ir	on	ti +	on	- ir	on	Fold
Gene ID	Gene	Description	Sample	Control (-DNA)	Sample	Control (-DNA)	Sample	Control (-DNA)	Sample	Control (-DNA)	Change: -Fe /+Fe ^a
NGO_0177	misR	Two-component system transcriptional response regulator	16	0	43	0	0	0	0	0	
NGO_0718	ybbH	Putative RpiR-family transcriptional regulator	3	0	7	0	7	0	5	0	2.06
NGO_0603	ihfB	Integration host factor subunit beta	5	0	4	0	3	0	2	0	
NGO_2130	regF	RegF	2	0	3	0	3	0	0	0	2.3
NGO_1982		XRE family transcriptional regulator;Putative zinc finger/helix-turn-helix protein	4	0	3	0	3	0	4	0	9.95
NGO_1250	mtrA	HTH-type transcriptional regulator MtrA	0	0	3	0	0	0	0	0	
NGO_0777	dbhA	Transcriptional regulator;DNA-binding protein Hu;Transcriptional regulator	0	0	3	0	0	0	2	0	2.27
NGO_0999	rpoD	RNA polymerase sigma factor RpoD	0	0	3	0	0	0	3	0	2.77
NGO_0305	ihfA	Integration host factor subunit alpha	2	0	2	0	2	0	2	0	2.36
NGO_0322		Uncharacterized protein	0	0	2	0	0	0	0	0	78.8
NGO_2122		Uncharacterized protein	0	0	2	0	0	0	0	0	
NGO_1043		Uncharacterized protein	0	0	0	0	0	0	2	0	3.8
NGO_1613		Putative integrase/recombinase phage associated protein	0	0	0	0	0	0	3	0	

^aIron and/or Fur regulated as described in (12)

Supplemental Table S3: Protein allele variants in NceR found through analysis of sequenced clinical genomes^a

Protein allele group	AA changes ^b	Total # of Isolates in Group	% of Strains in dataset with allele variant
WP_003686868.1	Wild-Type	626	81.6%
WP_002215072.1	M19L, L60I, A93S, G99S	115	15.0%
WP_002243124.1	M19L, L60I, G99S	7	0.91%
WP_172760178.1	G35D	5	0.65%
WP_172763779.1	[deletion AA 1-10]	2	0.26%
WP_010951376.1	A93S, G99S	1	0.13%
WP_048339600.1	S36P	1	0.13%
WP_071197876.1	[deletion AA 1-18]	1	0.13%
WP_139594787.1	S36L	1	0.13%
WP_172763623.1	N6I, G35D	1	0.13%
WP_172765896.1	[deletion AA 1-6]	1	0.13%
WP_172766211.1	[deletion AA 1-7], G34R	1	0.13%
WP_192213791.1	G41C, R42S, A93S	1	0.13%
WP_192214471.1	A93S	1	0.13%
WP_192276056.1	G41C, A93S	1	0.13%
WP_192370388.1	G41D, A93S	1	0.13%
WP_192390701.1	G41Y, A93S	1	0.13%

^a = Comparison of 767 public genome projects for *N. gonorrhoeae* strains ^b = Compared to FA1090 (Reference Number: WP_010951376.1)

84 Supplemental Table S4 – Primers Used in this study

Primer Name	Sequence (5' to 3') †	Purpose
ompA_PD_F	[BTN]TCGGTTCCGTACTATCTGTACTGT	DNA pull-down
ompA_PD_R	GGTTTGAAGAAAGTCATGGCG	DNA pull-down
1982F1	TGCGGTGGTCAGAAGTTTCA	Construction of
		ngo1982 mutant;
		sequencing primer
1982R1	AACCGAAACCGGCTACGAAA	Construction of
		ngo1982 mutant;
		sequencing primer
1982start	TCTAGAAAGCTTAAATATTTTCATAAAACT	Construction of
	<u> </u>	ngo1982 mutant
1982stop	TCTAGACAAAGTTAAACCGCGACC	Construction of
1002010p	<u>10177671</u> 070 0 0 0 1 1 7 0 0 0 0 0 0 7 1 0 0	ngo1982 mutant
1982pacl	A <u>TTAATTAA</u> GTCAGCCCCGCCACC	Complementation of
1002paoi	7(<u>1170(1170(</u> 010)(00000000)(00	ngo1982 mutant
1982pmel	GG <u>GTTTAAAC</u> CGTTTCGGACTGTTTG	Complementation of
1302pmci	66 <u>61114446</u> 6611166646161116	ngo1982 mutant
1982HisF	TATACATATGATGAAAATATTTGAAAAT	Construction of NceR-
130211131	TATA <u>CATATO</u> ATGAAAATATTTGAAAAT	His plasmid
1982HisR	TATA <u>GGATCC</u> TTAACTTTGTTTTTTCTTTCG	Construction of NceR-
190211151	TATA <u>GGATCC</u> TTAACTTTGTTTTTTCTTTCG	
roo A a Ew	AACCTCGAAGTCATTTCCACCGG	His plasmid
recAqFw		qRT-PCR
recAqRv	TCTGGCATTGGGCGACGGCTTC	qRT-PCR
1982 qRTF	AAGATGTTAAAGCCATCCGTAAA	qRT-PCR
1982 qRTR	ATTGAGTAACGCCGACCTT	qRT-PCR
ompA_qRTF	CCCAAACAATCCGCCATGT	qRT-PCR
ompA_qRTR	CGCTGCTCTTGGTAGTCCATAT	qRT-PCR
1981_RT_F	CAATCCTGTCTTCCGCAATC	qRT-PCR
1981_RT_R	TCAGCACATAACCGCCTTC	qRT-PCR
mtrR qRT F	CTTGTTTGACGCGTTGTTCCA	qRT-PCR
mtrR qRT R	GTGGATGTCGTTGCTTTGCA	qRT-PCR
ItgA qRT F	AAGAAGCACGCAAATCGCC	qRT-PCR
ItgA qRT F	TGATAATGCCCCAATACGCC	qRT-PCR
pOmpA2F	CCGCCTTAGCTCAAAGAGAA	EMSA
pOmpAR	TTAA <u>GAATTC</u> CGCCACCCAAACCGTACAT	EMSA
[FAM]ompAFL	[6-FAM]	DNAse I protection
	AGTGAATCGGTTCCGTACTATCTGTACTGT	
[Hex]ompR	[HEX]GAAAGTCATGGCGTTTCCTT	DNAse I protection
ompAFL	AGTGAATCGGTTCCGTACTATCTGTACTGT	Sequencing Ladder
ompR	GAAAGTCATGGCGTTTCCTT	Sequencing Ladder
lctp	GCGCGATCGGTGCGTTCG	Sequencing primer
aspC1	GCCGGATGCGTCTTTGTAC	Sequencing primer

[†] Restriction endonuclease cut sites are underlined. BTN= biotin

Supplemental References

- Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI,
- Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki
- 90 CJ, Marchler-Bauer A. 2020. CDD/SPARCLE: the conserved domain database in 2020.
- 91 Nucleic Acids Res 48:D265-D268.
- 92 2. Remmele CW, Xian Y, Albrecht M, Faulstich M, Fraunholz M, Heinrichs E, Dittrich MT,
- 93 Muller T, Reinhardt R, Rudel T. 2014. Transcriptional landscape and essential genes of
- 94 Neisseria gonorrhoeae. Nucleic Acids Res 42:10579-95.
- 95 3. Tian W, Chen C, Lei X, Zhao J, Liang J. 2018. CASTp 3.0: computed atlas of surface
- topography of proteins. Nucleic Acids Res 46:W363-W367.
- 97 4. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal
- for protein modeling, prediction and analysis. Nat Protoc 10:845-58.
- 99 5. Sarubbi FA, Jr., Blackman E, Sparling PF. 1974. Genetic mapping of linked antibiotic
- 100 resistance loci in *Neisseria gonorrhoeae*. J Bacteriol 120:1284-92.
- 101 6. Kandler JL, Holley CL, Reimche JL, Dhulipala V, Balthazar JT, Muszynski A, Carlson
- RW, Shafer WM. 2016. The MisR Response Regulator Is Necessary for Intrinsic
- 103 Cationic Antimicrobial Peptide and Aminoglycoside Resistance in *Neisseria*
- gonorrhoeae. Antimicrob Agents Chemother 60:4690-700.
- 105 7. Holley CL, Ayala JC, Shafer WM. 2020. Transcriptional control of the gonococcal ompA
- gene by the MisR/MisS two-component regulatory system. Sci Rep 10:9425.
- 107 8. Johnston DM, Cannon JG. 1999. Construction of mutant strains of Neisseria
- gonorrhoeae lacking new antibiotic resistance markers using a two gene cassette with
- positive and negative selection. Gene 236:179-84.
- 110 9. Thomas CE, Carbonetti NH, Sparling PF. 1996. Pseudo-transposition of a Tn5 derivative
- in *Neisseria gonorrhoeae*. FEMS Microbiol Lett 145:371-6.

- 112 10. Mehr IJ, Seifert HS. 1998. Differential roles of homologous recombination pathways in
- Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol
- 114 Microbiol 30:697-710.
- 115 11. Silver LE, Clark VL. 1995. Construction of a translational lacZ fusion system to study
- gene regulation in *Neisseria gonorrhoeae*. Gene 166:101-4.
- 117 12. Ducey TF, Carson MB, Orvis J, Stintzi AP, Dyer DW. 2005. Identification of the iron-
- responsive genes of *Neisseria gonorrhoeae* by microarray analysis in defined medium. J
- 119 Bacteriol 187:4865-74.