
Review Article

Rare catastrophes and evolutionary legacies:
human germline gene variants in MLKL and the
necroptosis signalling pathway
Sarah E. Garnish1,2 and Joanne M. Hildebrand1,2
1The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; 2Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia

Correspondence: Joanne M. Hildebrand ( jhildebrand@wehi.edu.au)

Programmed cell death has long been characterised as a key player in the development
of human disease. Necroptosis is a lytic form of programmed cell death that is universally
mediated by the effector protein mixed lineage kinase domain-like (MLKL), a pseudoki-
nase. MLKL’s activating kinase, receptor interacting protein kinase 3 (RIPK3), is itself
activated within context specific scaffolds of receptor interacting protein kinase 1
(RIPK1), Z-DNA Binding Protein-1 (ZBP1) or TIR domain-containing adaptor inducing
interferon-β (TRIF). These core necroptosis modulating proteins have been comprehen-
sively revealed as potent drivers and suppressors of disease in inbred mouse strains.
However, their roles in human disease within the ‘real world’ of diverse genetic back-
grounds, natural infection and environmental challenges remains less well understood.
Over 20 unique disease-associated human germline gene variants in this core necroptotic
machinery have been reported in the literature and human clinico-genetics databases like
ClinVar to date. In this review, we provide an overview of these human gene variants, with
an emphasis on those encoding MLKL. These experiments of nature have the potential
to not only enrich our understanding of the basic biology of necroptosis, but offer import-
ant population level insights into which clinical indications stand to benefit most from
necroptosis-targeted drugs.

Introduction
Programmed cell death takes many forms and is crucial to every aspect of normal animal development
and homeostasis. The most well studied programmed cell death pathway is the caspase-dependent
apoptosis. Apoptosis can be initiated by a range of intrinsic and extrinsic signals, and is commonly
regarded as a ‘clean death’ characterised by the caspase-mediated disassembly of cells into highly pha-
gocytosable, membrane enclosed bundles [1,2]. Unlike apoptosis, necroptosis is a caspase-independent
form of programmed cell death that is characterised by the release of highly inflammatory cytokines,
intracellular proteins, and nucleic acids into the extracellular space [3–6]. In turn, necroptosis is itself
induced by inflammatory cytokines and danger- or pathogen-associated molecular patterns via their
cognate transmembrane receptors or intracellular pattern recognition proteins like nucleic acid sensor
Z-DNA Binding Protein-1. Of these various initiating stimuli, the most well studied route to necropto-
sis is downstream of tumour necrosis factor receptor 1 (TNFR1). This signal triggers the eventual for-
mation of the RIPK1 and RIPK3-containing necrosome prior to terminal MLKL activation and cell
death (Figure 1) [7–9].
Importantly, several additional, highly context-dependent facets to MLKL function have been

reported (recently reviewed by Weir et al. [3]). These include roles in potassium channel mediated
promotion of inflammasome activation [10], endocytic and exocytic modulation of cytokine release
and membrane repair [11–14], myelin sheath remodelling [15], neutrophil extracellular trap formation
[16,17] and even the direct suppression of intracellular bacteria [18,19].

Version of Record published:
15 February 2022

Received: 12 October 2021
Revised: 17 January 2022
Accepted: 24 January 2022

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 529

Biochemical Society Transactions (2022) 50 529–539
https://doi.org/10.1042/BST20210517

http://orcid.org/0000-0002-1456-2042
https://creativecommons.org/licenses/by/4.0/


Mlkl gene knock-out and knock-in mutant mice have revealed necroptosis as a driver or protective factor in
murine disease spanning every bodily system [20]. Simultaneously, massively parallel sequencing technologies
have increased the efficiency and reduced the cost of human genotyping. This has led to the rapid accumulation
of human genomic data and even paired phenotypic data in large open access databases like gnomAD [21] and
the Global Biobank Engine [22]. Rare mutations in human MLKL have revealed neurological and metabolic
pathologies where the absence of MLKL function plays a driving role [23–25], whilst rare and de novo patient
mutations in MLKL signal modulators like CASP8 and RIPK1 [26], and common polymorphisms in MLKL [27]
have provided insight into pathologies where excessive necroptotic signalling is an important contributor to
inflammatory disease (Figure 2A). Together these studies of MLKL function in humans reveal some similarities,
but also many key differences to observations made in inbred laboratory mouse strains housed under specific
pathogen-free conditions [20].

Figure 1. TNF-induced necroptosis occurs when upstream pro-survival and pro-apoptotic pathways are inhibited.

(A) The binding of TNF to TNFR1 stimulates downstream nuclear factor-κB activation and other pro-survival, proinflammatory signals. (B) When

cIAP1/2 activity is low, signalling is diverted to the formation of a death-induced signalling complex termed Complex II (a/b). This physically distinct

complex is variably composed of TRADD, FADD, RIPK1, RIPK3 and the apoptosis initiator Caspase-8. (C) Necroptosis is activated when cellular

conditions curb Caspase-8 activity and favour the assembly of RIPK1 and RIPK3, via their RIP Homotypic Interaction Motif (RHIM) domains, into a

high molecular mass complex termed the necrosome. Here, RIPK3 is activated by autophosphorylation and MLKL is recruited and phosphorylated

by RIPK3. MLKL dissociates from RIPK3 and oligomerised MLKL is trafficked to biological membrane [84,85]. The precise molecular events that

lead to lytic permeabilization of the cell are still a matter of contention [86]. Sites of some selected published human germline mutations shown to

be associated with human disease due to gain (red) or loss/reduction in function (green) are shown.
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MLKL truncation/deletion mutations in human
neurodegeneration
To date, only four individuals that are homozygous for a predicted loss of function (LOF) MLKL gene variant
have been reported in the gnomAD database, a carefully curated collection of whole genome or exome data for
over 140 000 human adults of diverse ancestry [21]. In 2020, Faergman et al. reported homozygosity of one of
these MLKL variants (p.Asp369GlufsTer22, rs561839347) in two brothers diagnosed with progressive neurode-
generative spectrum disorder [24,28]. MLKL was not detectable by western blot in tissue derived from these
patients, and patient-derived fibroblasts did not undergo programmed cell death when exposed to an exogenous
necroptotic stimulus in culture. These data support gnomAD’s ‘loss of function’ classification of p.
Asp369GlufsTer22, making this the first peer-reviewed, clinical description of humans that are homozygous for
an MLKL LOF gene variant. The brothers presented with an asymmetric lower limb weakness at the ages of 19
and 30, respectively, which developed into a novel progressive neurodegenerative disorder characterised by
paresis, ataxia and dysarthria. Magnetic resonance imaging performed at 28 and 31 years, respectively, after
onset of symptoms revealed severe global cerebral, cerebellar, cortical cerebellar fibers tract and brainstem
atrophy and small, discrete periventricular T2-hyperintense white matter lesions. All pathology was limited to
the nervous system and the patients did not exhibit any increased susceptibility to infections. It is important to

Figure 2. Frequency of gene variation and pathogenic gene variants in MLKL and upstream signalling modulators.

(A) Total unique germline and de novo variants reported in ClinVar [52] as ‘pathogenic’, ‘likely pathogenic’, ‘associated’ or ‘risk

factor. Somatic gene variants, contiguous copy-number variants, and gene variants not accompanied by a human disease

condition were excluded from these counts. It is important to note that some patient mutations reported in the scientific

literature may not have been submitted or updated by authors to the ClinVar database at the time of writing and thus are not

included here. Disease causing variants in more upstream MLKL signalling modulators including death receptors, pattern

recognition receptors, interferons and the NF-κB pathway are not presented here but are described in recent reviews [87–90].

(B) Summed global Minor Allele Frequency (MAF) of Missense and Loss of Function (LOF) variants as annotated by gnomAD at

time of writing, (n = >280 000 alleles sequenced) [54]. Missense and LOF alleles flagged as ‘low confidence’ or ‘variant quality/

annotation dubious’, alleles unique to non-canonical transcripts (with exception of CFLAR, where both long and short forms

were included) or alleles with MAFs > 0.5 were excluded. (C) The top 10 missense variants used in calculating summed

missense allele frequency in (B) and their global allele frequency plotted according to position in protein. *TICAM1 pPro367dup

MAF = 0.3.
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note that this MLKL mutation also segregated with a homozygous in-frame deletion of one amino acid in the
adjacent FA2H gene (fatty acid 2-hydroxylase), and a maternally inherited missense amino acid substitution in
the X-linked gene AP1S2 (vesicle sorting and transport) in these patients. While FA2H variant function was not
impaired when examined in vitro and the AP1S2 variant is classified as ‘benign’ based on ACMG guidelines [29],
the influence of these and other genetic/environmental modifiers cannot be fully excluded from the severe pheno-
type exhibited by these individuals.
Another MLKL LOF gene variant (p.Gln48Ter, rs763812068) was found to be >20 fold enriched in a cohort

of Hong Kong Chinese patients suffering from the neurodegenerative disease Alzheimer’s, relative to a large
ancestry-matched population [23]. This MLKL LOF variant is specific to populations of Southern Chinese
descent, was only present in heterozygotes, and was not linked to any predicted damaging mutations in the
adjacent FA2H gene. Wang et al. reported that shRNA-mediated knock down of MLKL in APPswe-293 cells
led to an increased ratio of amyloid beta proteins Aβ42 to Aβ40. Further study of the precise role of MLKL in
modulating levels of these proteins in neuronal cells remains an important area of future investigation.
Homozygous and heterozygous Mlkl gene knock-out (MlklKO/KO) mice do not appear to exhibit the spontan-

eous, progressive neurodegeneration observed in the patients described by Faergman et al. [24] and Wang et al.
[23], implicating the contribution of additional genetic and/or environmental modifiers or key-interspecies dif-
ferences in MLKL function. MLKL protein is present at low to undetectable levels in the healthy adult mouse
brain and spinal cord [30–32], and was reported to be dispensable to the onset and severity of mouse auto-
immune lateral sclerosis (ALS) [32]. There are reports however that MLKL is induced following injury to the
mouse cerebral cortex and spinal cord [33,34]. MlklKO/KO mice also exhibit a reduced propensity for demyelin-
ation in several other independent experimental mouse disease models. This manifests as improved outcomes
in mouse models of Parkinson’s disease [35] and multiple sclerosis [36], and poorer outcomes in models of
physical nerve injury [15]. These mouse data, combined with the wide steady state distribution of MLKL
protein throughout the human brain [37] supports the existence of important roles for MLKL in cell types
essential for neurological function in humans. The collective global frequency of MLKL LOF alleles is 0.0007,
(equivalent to 1–2 in every 1000 individuals being heterozygous carriers) (Figure 2B). The identification and
clinical description of additional human individuals that are homozygous or compound heterozygous for
MLKL LOF alleles will shed further light on whether the absence of MLKL alone is sufficient to give rise to
neurodegenerative disease, or if other genetic or environmental events are indeed at play.

An MLKL missense hypomorph in Maturity Onset Diabetes
of the Young (MODY)
Recently, a heterozygous MLKL missense variant p.G316D (rs375490660) was reported to be associated with
Maturity Onset Diabetes of the Young (MODY) in a Palestinian family [25]. This variant segregates with a
known MODY-associated LOF gene variant in the gene encoding the pancreatic transcription factor PDX1,
and other predicted deleterious variants in the genes ERN2 (endoplasmic reticulum stress), NIPAL4 (Mg2+

transporter activity) and SPTBN4 (actin binding). When compared with exogenously produced MLKLWT,
protein levels of exogenously produced MLKL p.G316D are significantly reduced. RIPK3-phosphorylated
(Ser358) MLKL p.G316D are basically undetectable despite normal upstream signalling. Exogenous expression
of MLKL p.G316D was also unable to reconstitute necroptotic cell death in two lineage-distinct CRISPR-Cas9
MLKLKO/KO human cell lines and did not appear to influence the function of endogenously expressed MLKLWT

in MLKL wild-type cells (simulating the heterozygous state of patients). While the stability and function of
endogenously expressed MLKL p.G316D were not verified in patient-derived cells in its endogenous heterozy-
gous context, normal levels of MLKL p.G316D mRNA in patient derived cells indicates that this missense muta-
tion does not lead to reduced mRNA stability [25]. For this reason, we have chosen to classify this missense
variant for the purpose of this review as a ‘hypomorph’ as opposed to a full LOF variant, as the
phospho-Ser358-independent functions of MLKL p.G316D are yet to be investigated.
With a global minor allele frequency of 1.062 × 10−5, MLKL p.G316D homozygotes have not been recorded

in the gnomAD database. How a monoallelic reduction in necroptotic cell death contributes to the aetiology of
diabetes in this family remains a matter of investigation. MlklKO/KO mice do not display any of the hallmarks of
diabetes when fed a standard laboratory mouse chow diet, and actually demonstrate improved glucose and
insulin tolerance relative to MlklWt/Wt controls when placed on a high fat diet for more than 12 weeks [38,39].
Investigating whether Mlkl gene knockout or mutation is a genetic modifier in mouse models of spontaneous
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diabetes (e.g. Pdx1Wt/KO mice [40]) could provide a useful route for the mechanistic dissection of these human
findings.
Importantly, such studies can also prompt examination of potential risk posed by other human MLKL LOF

and missense variants to the incidence of MODY. With no ‘gold standard’ criterion or threshold for diagnosing
MODY in human patients, broadening gene panels for precision genetic testing will inform clinical diagnosis
and management [41].

Common MLKL missense variants in inflammatory disease,
historically important hypermorphs?
The biological consequences of spontaneous and rationally designed MLKL gain of function or ‘activating’
mutations have been described both in vitro and in vivo in murine models [30,42,43]. Human MLKL however
is less amenable to rationally designed modifications that confer RIPK3 independent activity [43,44]. In 2020, a
random, chemically induced germline missense mutation in mouse Mlkl was shown to result in systemic lethal
neonatal inflammation in homozygotes and hematopoietic dysfunction in heterozygotes [27]. This mutation,
Mlkl p.D139V, confers constitutive cell death activity to MLKL, removing the requirement of upstream necrop-
totic signalling and RIPK3-mediated phosphorylation. The human equivalent, MLKL p.D140V, has been
observed only once, and only in heterozygous form in humans in the gnomAD database (rs1330913532).
Interestingly, three very closely situated MLKL missense gene variants are amongst the most prevalent MLKL
single nucleotide polymorphisms (SNPs) present in humans. These SNPs, MLKL p.Ser132Pro (rs35589326,
global MAF — 0.0138), p.Arg146Gln (rs34515646, global MAF — 0.0152) and p.Gly*202Val (rs144526386,
global MAF — 0.0123, *non canonical transcript)- have not been previously associated with human disease in
any previous genome-wide- or phenome-wide-association studies (GWAS or PheWAS) individually. They were
however shown to occur in trans at 10–12 times the expected frequency in a cohort of patients suffering from
chronic recurrent multifocal osteomyelitis (CRMO) [27]. While this association has not been independently
replicated in a second CRMO patient cohort to date, this finding does fit nicely with mouse and human studies
that implicate ‘unchecked’ necroptosis in the progression of inflammatory diseases [20,26].
An analysis of the cellular function of the protein products of these common human MLKL SNPs rela-

tive to wild-type MLKL is yet to be reported in the literature. However, the hypermorphic nature of the
closely situated mouse mutation Mlkl p.D139V does raise important questions as to the evolutionary signifi-
cance of such high allele frequencies. An estimated 8% of the global population are heterozygous carriers of
MLKL p.S132P, p.R146Q or p.G*202V based on gnomAD data, and 167 are homozygotes. Many reported
hypermorphic variants in immune-related genes that confer a survival advantage to specific pathogens have
achieved high allele frequency in certain populations [45,46]. Many such SNPs are also associated with an
increased relative risk of autoinflammatory diseases like inflammatory bowel disease and systemic lupus ery-
thematosus [46]. The identification of such evolutionary triads (pathogen - gene hypermorph — inflamma-
tory disease) has the potential to blaze important trails into the development of novel anti-microbials and
immunomodulatory therapies alike.
By this same evolutionary logic, MLKL’s implication in diseases like diabetes and Alzheimer’s also warrants

the investigation of any historical survival advantage conferred by MLKL gene variants or expression
Quantitative Trait Loci (eQTL) with regards to nutrient acquisition and storage. An intriguing example of this
was described recently for MLKL’s upstream activator RIPK1. Human gene variants that increase RIPK1 gene
expression were found to be associated with obesity [47]. Nutrition and metabolism serve alongside pathogens
as major evolutionary drivers of human genetic variation, and are core determinants of the common disorders
(e.g. cardiovascular disease), that contribute substantially to disease burden in the modern world [48].

MLKL gene variants as modifiers of complex polygenic
human traits and diseases
To date, MLKL gene variants have only been weakly associated with human traits or changes in disease risk in
conventional GWAS. The highest 'P' value reported for an MLKL variant in a published GWAS was for a non-
coding SNP rs2057805 (global MAF 0.2489) located in an upstream regulatory region in adolescent idiopathic
scoliosis [49]. This association reached genome wide significance with a Bonferroni-adjusted P-value of 3 ×
10−9. Other notable associations of MLKL SNPs with quantitative human traits that are significant or approach-
ing genome wide significance include one with comparative height at age 10 (P = 5.26 × 10−7) [50] and another
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with mean reticulocyte volume, P = 1 × 10−8 (Global Biobank Engine, Stanford, CA (URL: http://gbe.stanford.
edu accessed September 2021)) [22]. Interestingly, three non-coding SNPs in MLKL’s obligate activating kinase
RIPK3 are each very strongly associated with standing height in humans, P values <4 × 10−23 [22]. While the
small ‘beta’ log odds ratios for each of these MLKL and RIPK3 SNPs described indicate that they account for
only very low proportions of the phenotypic variance in these quantitative traits, they nonetheless highlight the
potential of such unbiased approaches for uncovering unexpected gene-function links [51].

Disease causing gene variants identified in important
upstream regulators of MLKL
When considering the pathophysiological impacts of necroptosis, we must not only consider genetic variation
in MLKL itself, but also variation in genes that can inappropriately unleash, amplify, or even dampen the cellu-
lar activity of MLKL. Based on observations of important MLKL regulatory genes gleaned from genetically
modified mice [20], we have plotted for the purposes of this review the number of disease associated human
mutations reported in ClinVar [52], as accessed in September 2021 (Figure 2A). This tally is strongly domi-
nated by RIPK1, TNFAIP3 (encoding A20) and CASP8, where several unique LOF or missense mutations are
characterised by autoinflammatory and lymphoproliferative syndromes [53]. It is important to note however,
that the identification of pathogenic gene variants is heavily biased towards those that associated with severe or
atypical disease. A higher number of pathogenic RIPK1, TNFAIP3 and CASP8 mutations in ClinVar does not
equate to a larger contribution to the heritable variation in disease risk, when considering all disease burden in
the human population. In fact, it is likely quite the opposite. Examining the mutational spectrum of ∼141 000
individuals catalogued by the gnomAD database permits a simple visualisation of the high evolutionary con-
straint on LOF variation in RIPK1, TNFAIP3 and CASP8 [54] (Figure 2B). MLKL and ZBP1 each exhibit a
higher summed frequency of predicted LOF alleles than RIPK1, TNFAIP3 and CASP8 combined, and both are
dotted with a larger repertoire of more common (>MAF 0.001) missense gene variants (Figure 2C). The higher
missense and LOF variation tolerance profiles of MLKL, RIPK3 and ZBP1 indicate that gene variants are less
likely to result in a loss of reproductive fitness (e.g. severe disease in children and young adults) that would
cause them to be subject to purifying selection over time [55]. By this same logic however, the higher levels of
standing protein-coding variation in MLKL, RIPK3 and ZBP1 genes also increases the statistical likelihood that
these genes can act as low effect size modifiers of polygenic traits in humans (e.g. disease risk, infection
response, height or weight) [56].

MLKL and the varied manifestations of inborn errors in
CASP8
A full decade before MLKL’s role in cell death was discovered, inherited deficiency of Caspase 8 was reported
to mediate autoimmune lymphoproliferative syndrome (ALPS). Chun et al. [57] reported homozygosity of a
CASP8 variant (p.R248W) in two siblings that presented with lymphadenopathy and splenomegaly. Caspase-8
p.R248W exhibited reduced stability and resulted in an enzymatically inactive protein, with peripheral blood
lymphocytes defective in CD95-induced apoptosis. Caspase-8 activity is an important determinant of pro-
grammed cell death downstream of death receptor and inflammasome activation [58]. The absence or inhib-
ition of Caspase-8 or c-FLIPL activity facilitates the stabilisation of RIPK1 and RIPK3 [59–62] (both shown to
be cleaved by Caspase-8 and/or Caspase-8-c-FLIPL heterodimers). Amongst other signalling events, this also
promotes the formation of the necrosome and MLKL-mediated cell death. Mice deficient in Caspase 8 die at
embryonic day 10.5 but Casp8WT/KO heterozygotes are phenotypically normal [63]. Casp8KO/KO embryonic
lethality does not occur on a MlklKO/KO background, but Casp8KO/KO, MlklKO/KOmice do go on to develop pro-
gressive lymphadenopathy [64]. In light of this later observation, dysregulated MLKL function and necroptotic
cell death is likely to be more pertinent to the many examples of human CASP8 variant -borne disease that do
not manifest as ALPS.
Caspase-8 deficiency manifests as very early-onset Inflammatory Bowel Disease (VEO-IBD) in some indivi-

duals. Lehle et al. [65] reported three unrelated patients with homozygous CASP8 mutations (p.Q237R and
p.R265W (equivalent position to canonical isoform R248W)) that presented with diarrheal, perianal disease,
failure to thrive and discontinuous severe proctocolitis, as well as increased susceptibility to bacterial and viral
infections. Primary patient cells and cells engineered to express CASP8 p.Q237R exogenously exhibited
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increased IL-1β release in response to lipopolysaccharide (LPS) priming, that could be blocked by
NLRP3-mediated inflammasome inhibitor MCC950 and the MLKL inhibitor necrosulfonamide. Furthermore,
CASP8 p.Q237R, but not p.R265W, was also shown to predispose engineered HT-29 colon carcinoma cells to
increased MLKL oligomerisation and death when exposed to a necroptotic stimulus [65]. The important role of
MLKL in this disease scenario is further supported by recent observations that MLKL fully mediates the ileitis
and colitis observed in mice with intestinal epithelial cell-specific deficiency of Caspase-8 [66]. Chun et al.’s
[65] and Lehle et al.’s [67] clinical descriptions of distinct disease manifestation in individuals harbouring
CASP8 p.R248W/R265W also highlights that unchecked necroptosis may be variably expressed as a phenotype
of the same CASP8 mutation, depending on the individual . The genetic or environmental determinants of this
disparate role of MLKL remains an important line of future investigation into the potential toxicity of
Caspase-8 targeted drugs.

Choose your battle: MLKL and disease associated with
inborn errors of RIPK1
Given the important position of RIPK1 at the nexus of several cellular signalling pathways, MLKL and necrop-
tosis account for a significant portion, but not all of, the downstream effects born of genetically encoded
RIPK1 dysfunction. In 2018, Cuchet-Lourenco et al. [68] reported four individuals that were homozygous for
three unique RIPK1 LOF nucleotide deletions, and a number of additional patients with homozygous RIPK1
LOF alleles were reported soon after [69]. Patients presented with early-onset inflammatory bowel disease, lym-
phopenia and arthritis of varying severity. One patient also suffered from growth restriction, severe motor delay
and mild intellectual disability [70]. An increased susceptibility to viral, bacterial and fungal infection was also
reported [53,71]. Patient fibroblasts isolated from one of these patients were shown to be more susceptible to
cell death in the presence of TNF and polyI:C. These cells were protected from death by the MLKL inhibitor
necrosulfonamide, strongly implicating necroptosis [68]. Similarly to Casp8, Ripk1 knockout in murine models
is homozygous lethal, with mice dying during the immediate post-natal period due to systemic inflammation
and cell death in multiple tissues. This inflammation is ameliorated in a MlklKO/KO background, but mouse pup
survival is only extended by a few days [72]. The severe phenotype of RIPK1 KO/KO mice is only bypassed when
both necroptosis and extrinsic apoptosis are removed from the equation by compound genetic crosses [72–74].
Homozygous RIPK1 LOF in humans can lead to severe disease, but is not incompatible with life as it is in
mice. Is this difference intrinsic to inter-species differences in RIPK1 itself, or can it be explained by key
species-specific differences in the regulation of downstream signal effectors like MLKL?
Compounding these questions are disease causing missense RIPK1 gene variants that prevent RIPK1 cleavage

by caspases. Heterozygosity of such ‘cleavage resistant’ alleles is sufficient to induce a severe periodic inflamma-
tory syndrome in humans characterised by fever and lymphadenopathy [75–77]. Homozygosity reduces the
lifespan of mouse embryos to E10.5, well shorter than that observed for Ripk1KO/KO mice and for reasons that
cannot be remedied by the deletion of Mlkl [76,78]. The hyperinflammatory phenotype of heterozygous adult
mice is similarly unaltered by the genetic deletion of Mlkl (N. Lalaoui, unpublished).

RIPK3 variants in human health and disease
To date, there have been no clinical descriptions of humans that are homozygous for RIPK3 LOF gene variants.
One individual that is homozygous for a predicted LOF RIPK3 allele was recorded as part of the ‘human
knockout project’, though details of this individual’s phenotype were not provided [79]. The allele in question,
RIPK3 p.Pro493ThrfsTer9 (rs531266348), contains a frame shift insertion that may lead to a short C terminal
truncation as opposed to a full LOF. As such, its classification as ‘Loss of Function’ is classified as low confi-
dence in the gnomAD database, as is the only other potential LOF variant found in homozygous form; RIPK3
p.Arg422Ter (rs146886719). Similar to the MlklKO/KO mouse, Ripk3KO/KO mice do not show any overt signs of
spontaneous neurodegenerative disease or diabetes under steady state conditions, even when aged beyond 12
months [80,81]. Interestingly, Ripk3 KO/KO mice do show evidence of disturbed bone architecture and increased
osteoclasts, supporting the reported association of the RIPK3 cis-eQTL rs3212240 with lower estimated bone
mineral density in a human cohort [82]. Given our discussion of gene variation and evolutionary fitness, it
would be remiss not to mention reports that MlklKO/KO and Ripk3KO/KO mice show a significantly reduced pro-
pensity for reproductive organ aging [81,83]. Necroptosis deficient mice sire more pups at advanced age than
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their wild-type counterparts. This advantage is offset by the reduced fitness of the pups born to older fathers,
but certainly warrants consideration of the influence of necroptosis gene variation and necroptosis drugs in
human fertility going forward [81].

Conclusion
This review gives an overview of the current landscape of MLKL’s role in heritable disease. Two distinct, de
novo MLKL LOF variants have been shown to segregate with a severe familial neurodegenerative disorder and
familial maturity onset diabetes of the young (MODY). While MLKL LOF alleles are more prevalent in the
population relative to other key genes involved in programmed cell death, they are dwarfed in frequency
(>100-fold less frequent) by a series of common non-conservative protein modifying mutations that cluster at
key functional domains of MLKL. The identification and clinical description of additional families and indivi-
duals carrying homozygous and heterozygous MLKL LOF gene variants is not unlikely given the growing
uptake of whole genome sequencing for clinical diagnosis. While rare, these individuals will reveal new and
important insights into the role of MLKL and disease aetiology and the basic molecular mechanism of MLKL’s
varied cellular functions. They will help to focus and fine-tune the study of the trait- and disease- modifying
potential of the MLKL protein coding variants carried by >10% of the global population, unlocking new clinical
indications and contraindications for drugs that target necroptosis and its important upstream regulators.

Perspectives
• Naturally occurring human gene variants are important tools for the study of necroptosis at

the molecular and pathophysiological level.

• Rare and de novo necroptosis gene variants have been implicated in autoinflammatory
disease, neurodegeneration and metabolic disease.

• More than 10% of individuals carry protein-coding single nucleotide polymorphisms in MLKL.
Studying their role in human health and disease will uncover new clinical indications and con-
traindications for drugs that target necroptosis and its important upstream regulators.
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