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1  |  THE PATOPHYSIOLOGIC PERSPEC TIVE

We commonly consider age as proxy of aging, but depending on our 
genetic background and the type and amount of risk factors at which 

we have been exposed throughout life, that finally determined our 
metabolic history, these two concepts could differ substantially.1,2 In 
fact, some biomarkers could assess our biological age that may differ 
from our chronological one.2,3
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Abstract
The current paradigm considers the study of non-communicable diseases (NCDs), 
which are the main causes of mortality, as individual disorders. Nevertheless, this 
conception is being solidly challenged by numerous remarkable studies. The clear fact 
that the mortality, by virtually all NCDs, tends to cluster at old ages (with the excep-
tion of congenital malformations and certain types of cancer, among a few others); 
makes us intuitive to assume that the common convergence mechanism that expo-
nentially increases mortality by almost all NCDs in older ages is cell aging. Moreover, 
when we study NCDs, we are not analyzing which disorders cause the mortality of the 
populations, rather that which disorders kill us before others do, because the aging 
of the individuals causes inevitably their death by one cause or another. This is not a 
defeatist perspective, but a challenging and efficient one. These intuitive assumptions 
have been supported by studies from the pathophysiologic, epidemiologic, and ge-
netic fields, leading to the affirmation that, as NCDs share genetic and pathophysio-
logical mechanisms (derived from mostly the same risk factors), they should no longer 
be considered independently. Those studies should make us reconsider our current 
conceptions of studying NCDs as individual disorders, and to hypothesize about a 
paradigm that would consider most NCDs (cancer, neurological pathologies, cardio-
vascular diseases, type II diabetes mellitus, chronic respiratory diseases, osteoarthri-
tis, and osteoporosis, among others) different manifestations of the same process: 
the cell aging.
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Aging is considered a multifactorial process characterized by a 
loss of integrity and efficiency of physiological and biochemical pro-
cesses that occur after the reproductive age,4,5 leading to functional 
alterations and the development of diseases related to aging, that 
include most non-communicable diseases (NCDs),5–7 and ultimately 
to cell death.4

Moreover, the fact that main risk factors are shared mostly by 
the main age-related NCDs8,9; could suggest the convergence of its 
pathogenesis on limited pathophysiological2,7,10–12 and genetic7,13 
mechanisms that could be related to cell aging and be mediators be-
tween risk factors and NCDs (Figure 1). Specifically, it has been sug-
gested that NCDs could be considered the consequence of the same 
molecular alterations, eventually oxidative stress (OS) and inflamma-
tion, that are additionally interconnected with each other12,14,15 and 
determine aging in different tissues and organs.2,3,14,16,17

In this line, it has been described that inflammaging, (age-asso-
ciated inflammation)2,18,19 is one of the main pillars of aging2 that 
additionally increases OS.3,4,10,12,15,17,19–23 In turn, OS has proven to 
increase inflammation.3,12,15,19,20,23–27 Thus, inflammation and OS 
maintain a vicious cycle and this media of inflammation/oxidation 
damages proteins, lipids, and DNA10,12,20 and are related to most 
NCDs.10,12,15,23

Additionally, and conjoined to inflammaging, other sources, if 
sustained, may increase chronic inflammatory levels and thus accel-
erate the aging process. These factors include persistent microbial 
infections,2,19,23 cell debris,2 alterations in gut microbiota,2 altered/
misplaced proteins,2 toxic chemicals,23 radiation,23 pollutants,10,28–30 
allergens,23 alcohol consumption,23 tobacco consumption,18,23,31,32 
stress,18 depression,18 sedentary lifestyle,9 decrease of sex hor-
mones,18 unhealthy and/or high calorie diet,9,18,23,32,33 and obe-
sity.10,21,23,24,32,34,35 Moreover, obesity is related to metaflammation 

and shares same mechanisms than inflammaging.2 This could be ex-
plained by the fact that obesity produces inflammatory molecules 
and cytokines24,32,35 and is related to adipose tissue macrophage 
infiltration.18,24,35 Interestingly, the relation between obesity and in-
flammation is suggested to be due to visceral fat, that increases with 
aging, rather than to subcutaneous fat.18,24,32,36 Additionally, the ex-
cess of energy could increase glucose and fatty acid metabolisms 
that in turn increase chronic low-grade inflammation, whereas ca-
loric restriction reduces inflammatory levels.10,24 Those aforemen-
tioned factors, by increasing chronic sterile inflammation that alters 
organ and tissues homeostasis,2 are suggested to be among the main 
risk factors for age-related NCDs (Figure 1).2,18,23

On the other hand, the theory of aging based on free radical 
OS3,4,17 describes the physiological basis of the aging process mainly 
related to the production of reactive species, which its most import-
ant representatives are the ones derived from oxygen, called reac-
tive oxygen species (ROS).4

To survive, we need energy as ATP that is produced, in a greater 
extent, in a process called oxidative phosphorylation, carried out 
inside the mitochondria through the electron transport chain (ETC) 
with the fundamental participation of oxygen in the aerobic metab-
olism. Oxygen is acceptor of electrons at the end of the ETC, and 
mostly ends reacting with hydrogen to produce water. This process 
is basic for the survival of our cells; thus, its alteration affects all 
organs and systems. During aerobic metabolism, in normal circum-
stances, a small percentage of electrons (0.1–3% depending on the 
source) are inefficiently transported to oxygen and end up forming 
ROS.3,4,26,29,37 ROS have an unpaired electron in their molecular outer 
orbit which makes them prone to react with adjacent molecules.3,5 
ROS can also be produced by numerous sources5 like responses to: 
(a) external stimuli (air pollutants,7,17,19,28,29,38 chemotherapeutics,38 

F I G U R E  1  Convergence of non-communicable diseases pathogenesis on a summary of pathophysiological pathways related to cell aging. 
T2DM, type 2 diabetes mellitus.
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ultraviolet light,38 ionizing radiation,7,17,38 cigarette smoke,7,17,29,32 
unhealthy/hyper caloric diet,29,33,39 obesity29,40 (that appears to in-
crease OS independently of hypergycemia41), chronic infections,10 
(and in general by any stressor causing tissue damage17; Figure 1); 
(b) and by other endogenous sources (NADPH oxidases, cytochrome 
P450s,38 xanthine oxidases, and nitric oxide synthases, among 
others12,29).

Anyhow, mitochondrial ETC is the major origin of ROS genera-
tion5,17,29 by producing 92% of free radicals.1

Small levels of ROS are needed for processes related to energy me-
tabolism, defense against infections, and cell signaling.4,5,12,20,23,26,38 
Although, the increase of ROS to levels that damage cell physiology 
and structure, is disruptive and it is called OS.3,5,17,23,26,29 ROS le-
sions DNA, lipids, and proteins and accumulates over time.3–5,17,37 
Moreover, ROS formation in the mitochondria increases with age37 
until normal repair mechanisms are overwhelmed,3,5 it induces cell 
senescence4 and, altogether with chronic inflammation,2,42 it be-
comes a main determinant of age-associated diseases.4,5,15

It is interesting to highlight that in humans, by measuring uri-
nary markers, it has been quantified by the oxidative DNA damage, 
which is inversely associated to longevity.4 Moreover, oxidative 
DNA damage does not only depend on the basal metabolic rate4 but 
also on its repair mechanisms (that appear to decrease with age1,4). 
Additionally, decreased levels of oxidative markers are associated 
to some behavioral factors, like caloric restriction without malnu-
trition4,10 and possibly to dietary antioxidants.3,5 Nevertheless, an-
tioxidant supplementation has not provided successful remarkable 
results in health outcomes,29,43 what has been called the antioxidant 
paradox.12 A possible hypothesis for the antioxidant paradox could 
be the entangled relation and coexistence between OS and chronic 
inflammation, that fuel each other and may require treatments that 
target both pathways simultaneously.12

Both nuclear and mitochondrial DNA control the ETC that is es-
sential for energy matabolism.37 The DNA most affected by ROS is 
the mitochondrial DNA3,7,29 and the ROS related mitochondrial dam-
ages accumulate over time and they are associated to mitochondrial 
dysfunction (MD).3,17,44 Thus, mitochondria is both a producer42,45–47 
and a target of ROS3,20,29,43,46,48 and inflammation,6,16,46,49 in a 
self-perpetuating vicious circle.29,43,46,49,50 Additionally, obesity is 
associated to inflammation,2,34–36 OS,29,40,41,44 mitochondrial dam-
age and dysfunction,25,29,40 and premature aging.40 Moreover, a 
hyper caloric diet overloads the mitochondria resulting in MD25,29 
and increases the accumulation of ROS29,34 and chronic inflamma-
tion2,36 that perpetuate MD.20,29,46

In turn, MD does not only increase ROS and inflammation lev-
els,42,45–47 but it is also associated to calcium and glucose homeo-
stasis37 and alterations in apoptosis.40 Finally, MD is related to 
numerous NCDs (neurodegenerative pathologies, type II diabetes 
mellitus [T2DM] and cancer,37 among others). Interestingly, T2DM is 
three times more frequently transmitted by the mother (the parent 
that transmits her mitochondria to the off springs) than by the fa-
ther51 and in centenarians longevity appears to be transmitted from 
the maternal branch of the family.52

It is important to highlight that MD is considered a major mech-
anism for insulin resistance (IR)44,50 altogether with inflamma-
tion24,34,36,44,50 and ROS.41,50 The subsequent IR, and the following 
increased levels of insulin and insulin-like growth factor (IGF) are as-
sociated with numerous NCDs (T2DM, cardiovascular diseases, neu-
rodegenerative disorders, cancer, and autoimmune diseases, among 
others)53; thus, they could be considered relevant mediators of the 
former physiological pathways.

As closure, there is physiological evidence of the role of ROS 
and chronic inflammation in the etiopathogenesis of NCDs, and 
both mechanisms usually coexist.3,12,20,23,48 ROS (or related OS) is 
associated to the pathogenesis of: cancer,4,5,17,22,23,26 cardiovascular 
diseases,4,5,7,17,21,29 chronic pulmonary disorders,7,23,54 T2DM,4,7,17,50 
increased aging,4,17,23,26 osteoporosis,38 neurodegenerative dis-
eases,4,5,7,17,46 certain mental disorders,55 and eventually to cell 
death.17

On the other hand, chronic inflammation has also been associated 
to the pathogenesis of most NCDs,18,42 including cancer,18,23,32,56,57 
cardiovascular diseases,5,18,21,32,36,44,58–60 chronic pulmonary dis-
eases,61 T2DM,24,32,34–36,44 neurological diseases,18,19,32,46 certain 
mental disorders,32,59,62 osteoporosis,18,58 rheumatoid arthritis,18 
and also to frailty,18 and an increased risk of mortality.18

In summary, inflammation and oxidative stress are mostly inter-
connected through a vicious self-perpetuating circle,3,12,22,23 both 
are closely related to MD,3,14,16,43,46,49,50 and contribute to the de-
velopment of most NCDs (Figure 2).11,15,33

2  |  THE GENETIC PERSPEC TIVE

The pathological convergence theory is coherent with the following 
genetic data:

First, altogether with chronic inflammation and OS, the shorten-
ing of telomeres is considered a basic underlying mechanism of cell 
aging.7,63,64 These factors are interdependent and synergistic.42,64

It has also been assessed that cell aging is determined by the 
modification of genes expression as we get older.1 However, even 
though gene expression can be modified by numerous endogenous 
and exogenous factors, its major determinant is the telomere1 that 
can modify the expression of nearby and distal genes.65

Telomeres maintain genomic integrity, but they decrease with 
each cell division that also alters proteins around them.1 This de-
creased telomere length plays a critical role in aging64,65 and it 
appears to be associated with age-related NCDs7,65–67 (cancer,65 car-
diovascular diseases,7,28,63,65,67 and neurodegeneration7,65), includ-
ing mental disorders68 and life expectancy.65,66,69

Nevertheless, telomere length has not always had a straight 
linear association with chronological age.70 In fact, physical activ-
ity9,65 and antioxidant diet9,65 are associated with preserved telo-
mere length. On the other hand, risk factors, such as obesity40 and 
chronic stress,42,64,71 among other environmental factors,28,61,66 are 
associated to shorter telomere length. Moreover, pathologies that 
cause chronic inflammation, like periodontitis, are also associated 
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F I G U R E  2  Summary of pathophysiological pathways between risk factors and NCDs. Prevention levels. ETC, electron transport chain; 
NCDs, non-communicable diseases; ROS, reactive oxygen species.
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with shorter telomere length.72 Likewise, inflammation markers and 
OS have been associated with a shortening of telomeres19,42,64 and 
they appear to generate a vicious circle that leads to an increased 
aging and age-related NCDs.42

Second, low-grade inflammation through IGF1/insulin signaling 
could downregulate the expression of genes that appear to increase 
life expectancy and decrease age-related NCDs.10 Additionally, it 
has been assessed that some genes related to inflammatory and OS 
responses and IGF1/insulin signaling, appear to present different 
polymorphisms in centenarians compared to younger individuals.73 
Interestingly, the genetic polymorphism of those genes may produce 
different health outcomes at younger than in older ages.52,73,74

Third, as epigenetic mechanisms may produce metabolic mem-
ory,29,75,76 the long-term expression of genes can vary depending on 
our lifestyle29 (including environmental exposures and diet, among 
other factors22). Specifically, hyperglycemia can activate the in-
flammatory and OS metabolic pathways in the long term75 through 
epigenetic mechanisms. Interestingly, caloric restriction (30–50% 
reduction of normal amount of calories intake) inhibits GHRH-GH-
IGF/insulin77 (a possible inflammatory pathway10) and appears to 
reduce the incidence of age-related NCDs in mammals.10 Moreover, 
Catalase-NAD+–Sirtuin overexpression by caloric restriction could 
increase longevity in mammals77 by regulating cell processes related 
to inflammation and ROS.76 Additionally, the OS and a proinflam-
matory state can induce aberrant epigenetic regulation linked to 
NCDs.22 Finally, as some detrimental epigenetic changes may be ir-
reversible over time,75 it would be interesting to assess the timing in 
which they become irreversible; which detrimental epigenetic modi-
fications could be reversible, and to further analyze the external and 
modifiable factors that may increase the long-term expression of 
genes that benefit our survival and health.

Fourth, different diseases are highly connected genetically. 
Goh et al.78 suggested that disease nodes are related with gene 
nodes and this network of NCDs tends to cluster in groups sharing 
the same pathophysiology.78 In addition, Yang et al. assessed that 
nearly 80% of different disease pairs significantly share the same 
coexpression of genes, like T2DM with allergic asthma and chronic 
kidney disease,13 and they suggested that the relation between dif-
ferent diseases could be explained by common dysfunctional reg-
ulation mechanisms that may determine a common etiology and 
pathophysiology.13

3  |  THE PERSPEC TIVE OF THE THEORY 
OF E VOLUTION

Human biology has always had an efficient purpose, because the 
evolution selected the best options for survival. Then, why do our 
bodies develop metaflammation, high ROS production, and IR if 
they accelerate cell aging and are associated to the pathogenesis of 
NCDs?

The Homo Sapiens, that we know as human being, exists since 
315,000 years ago. All this time, it evolved to select those individuals 

more fitted to the environmental conditions they were living in. 
Those conditions included: high exposure to infectious diseases, lim-
ited food resources, high risk of mortality at delivery and by pred-
ators, and lack of proper medical assistance. For the survival of the 
species, the evolution focused on selecting those individuals more 
fitted to survive until they reached the reproductive stage (the one 
that matters in evolutionary terms). Thus, the physiology of our cells 
has prepared to face the almost always permanent exposure to in-
fectious diseases and shortage of food.2,34

During the last century, in most of our planet, we changed 
abruptly the external conditions in which our cells learned to func-
tion. The protection from communicable diseases (CDs) and the 
more than sufficient access to food resources, have reduced our 
mortality by CDs and starvation, but have placed the physiology of 
our cells in conditions that they never faced before. Thus, they man-
age this situation poorly and, with the increase of life expectancy, 
their evolutionary learned physiologic behavior, make us more prone 
to die from NCDs.

The physiology of our cells, that has adapted to the external 
conditions present during 315,000 years, functions by: (1) increas-
ing the immune response after the ingestion of any nourishment 
(postprandial inflammation)2 because of the high prevalence of 
infectious microorganisms in food and water; as it has been as-
sessed that gut inflammations can activate and imprint specific 
neurons that, when later stimulated, can trigger inflammatory re-
sponses79,80; (2) increasing the immune response to face any heal-
ing process and/or infection, even though it becomes chronic and 
leads to OS,10,14 because a deficient healing process was a more 
urgent and hazardous health problem than a future NCD after the 
reproductive age (a life period not relevant in evolutionary terms); 
(3) increasing IR either after a sustained overstimulation of the 
insulin pathway, presumably by pathogens in its need to take up 
glucose,34 or after any chronic inflammation,2 with the possible 
objective of decreasing intracellular glucose levels, so the infec-
tious microorganisms will not have energy resources for its rep-
lication2,34; (4) producing ROS that help our defense cells to kill 
pathogenic microorganisms4,5,14; and (5) and to increase energy 
storage (as adipose tissue) for the individual to be prepared for 
the, more than likely, periods of starvation,2 probably in the same 
way that low birth weight newborns develop higher IGF-1 levels in 
adolescence to compensate and catch up with growth; however, 
the subsequent IGF-1 axis long-term programming leads to T2DM 
and hypertension.53 If the fats stored are not used because of a 
sustained hypercaloric diet, the subsequent obesity might cause 
IR,21,24,35,36,44 MD,29,40 inflammation,21,24,35,36,44 and OS40,41,44; 
that are related to cell aging and to most NCDs. One possible rea-
son for the generation of metaflammation by adipose tissue could 
be that if the body has enough resources to prevent starvation to 
be an urgent hazard, it can afford to dedicate some resources to 
be prepared for the high risk of infections. This hypothesis is sup-
ported by the fact that malnourishment states are associated to 
immunosuppression34 (possibly caused by a decreased production 
of leptin by adypocites34). Moreover, activation of acute phase 
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response (APR) against infections, depends on the mobilization of 
energy sources (mainly lipoid ones)34 for an increased lipidic de-
livery to immune cells, and a direct neutralization of microorgan-
isms by lipoproteins.81 The APR may protect from acute injuries/
infections but, if maintained, there is a suppression of the insulin 
signaling anabolic pathway34 and an increase in atherogenesis,81 
inflammation,34 and oxidation.34 Additionally, the close relation 
between metabolic and immune pathways,34 in line with our hy-
pothesis, is also supported by the fact that adipocytes and im-
mune cells, like macrophags,35 share properties, functions,2,34,35 
genetic transcription factors,34,35 and, in some cases, a same cel-
lular origin (macrophages from white adipose tissue could derive 
from preadipocytes).34,35 Moreover, macrophages can accumulate 
lipids and become foam cells in the atherosclerotic plaque.34

In summary, knowing the physiologic evolution of our cells may 
be relevant in NCDs research. It would be of interest to consider 
the field of human evolutionary biology82; within a Darwinian-
evolutionary framework, for an evolutionary theory of aging in 
NCDs research.73 Thus, by comprehending the past evolution of our 
cells, we could understand its current functioning and try to predict 
its future adaptation to the foreseeable changes in the environment.

4  |  THE EPIDEMIOLOGIC PERSPEC TIVE

The pathological convergence theory is coherent with the following 
epidemiological data:

First, as it is generally known, mortality increases exponentially 
with age until the point that all individuals die. According to the re-
cords, the person that lived longer was Jeanne Louise Calment that 
died at 122 years old.14 The uneven distribution of mortality with 
the roughly asymptotic relation between age and mortality until an 
apparent age limit for the human race (in the current environmental 
circumstances), it is in line with our hypothesis that age (as a rough 
proxy of cell aging) is the main convergence mechanism that leads to 
most NCDs and ultimately and inevitably to death.

Second, NCDs aggregate in older people.83–88 It has been de-
scribed that roughly half of the population 50 years and older has 
between ≥ 289 and ≥ 5 NCDs84 and the probability of NCDs mul-
timorbidity increases remarkably with age83–86 and obesity.83,86 
These data are consistent with the hypothesis that NCDs share 
pathophysiological mechanisms85,87 that appear to be related to 
aging. Additionally, the aggregation of NCDs has been associated to 
an increased risk of mortality.90

Third, one risk factor is usually related to more than one NCD 
(stress,91 unhealthy and/or hypercaloric diet,8,9,53 obesity,8,10,40,92 to-
bacco,8,31,53 alcohol consumption,93 environmental pollutants,10,28,94 
radiation,95 and sedentary lifestyle8,9). Likewise, an NCD is usually 
related to more than one risk factor8 (cancer,8,31,92,93,96 cardiovas-
cular diseases,8,29,31,93 chronic pulmonary diseases,9,31,92,96 neuro-
logical disorders,93,97 T2DM,8,53,92,96 arthritis,92,98 and premature 
senescence,9 among others). Moreover, usually there is a mid to long 

latency period between the exposure to risk factors and the devel-
opment of NCDs (for example, the average lag time between smok-
ing and the development of lung cancer is 30–40 years96). According 
to our hypothesis, this latency period corresponds to the increased 
cell aging caused by the risk factor that ends up with the develop-
ment of NCDs at a younger chronological age than a person not ex-
posed to the risk factor. This hypothesis is in line with the life course 
approach to chronic disease epidemiology.96 The fact that some risk 
factors have higher impact in specific NCDs (for example, tobacco 
and lung cancer, and alcohol consumption and digestive diseases), 
it is reasonable to assume that it could be related to multiple fac-
tors, like the stage of life when they occurred (including intra utero 
exposures),96 the sex,96 the clustering of different risk factors,96 the 
accumulation,96 the lag time for the development of the disease,96 
and possibly to other factors like a direct exposure of the risk factor 
to the specific tissue, the dose, the bioavailability, the aggressivity, 
and the tissue specific susceptibility among others; in a similar way 
as a same pathophysiologic mechanism60 and/or a same genetic al-
teration99 may have different pathogenic responses depending on 
the organ in which they arise.60,99

Fourth, it has been assessed that the main NCDs are associated 
between them.10,22,54,100,101 This fact is in line with our hypoth-
esis that NCDs share common pathophysiologic pathways.60 For 
example, it has been shown that there is an association between 
cardiovascular risk and osteoporosis even after adjusting for age.58 
Additionally, both share the same risk factors (tobacco, low physi-
cal activity, and vitamin D deficiency) and same pathophysiological 
mechanisms (OS, inflammation, and dyslipidemia).58 Nevertheless, 
it has been suggested that the associations between some NCDs 
could be related to shared physiological pathways (like inflammatory 
changes and/or OS) independently of some of their shared risk fac-
tors.54,58,101,102 There have also been assessed associations between 
cardiovascular and respiratory diseases,100–102 rheumatoid arthritis 
and cardiovascular diseases,103 chronic obstructive pulmonary dis-
ease (COPD) and lung cancer,54 and T2DM and cancer,22,104 among 
other NCDs.

Fifth, it has been assessed that primary prevention of risk fac-
tors is beneficial for improving health outcomes in studies in dif-
ferent age groups6; although it is recommended to initiate it at an 
early age.6 For example, in the case of smoking, some health ben-
efits could be most significant if quitting before 50 years old,105 
the impact of its amount on the risk of COPD appears to be higher 
at younger ages106 and also the excess of risk for some NCDs ap-
pears to remain higher a long time after quiting,107,108 although it 
is lower than for current smokers.106 Thus, future studies should 
further analyze whether the clear benefit on health outcomes of 
the primary prevention of modifiable risk factors may have dif-
ferent impact depending on the age group, among other factors. 
Additionally, NCDs generally have mid to long latency periods96 
and a long prodromal stage (with changes in inflammatory and 
oxidative activity)33; moreover, some epigenetic modifications 
that contribute to the initiation of an NCD could be irreversible.75 
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Furthermore, in older populations, the association between in-
flammatory and/or oxidative markers and cardiovascular disease 
appears to be independent of some traditional risk factors.18,109,110 
Thus, for older people, it could be of interest to analyze the com-
bination of necessary and effective primary and secondary clas-
sical prevention programs6,8 with the development of additional 
prevention programs that could be beneficial on reducing or curb-
ing the physiological decline related to aging18,111 on an individual 
basis33; because it has been suggested that combining interven-
tions targeting cell aging mechanisms with disease-specific ap-
proaches may result in more than additive health benefits.112

5  |  CONCLUSIONS

Evidence obtained from the genetic, pathophysiologic, and epide-
miologic approaches allow us to conceive and understand the nature 
of NCDs on an integral way as different facets of the same process: 
cell aging, and the convergence of the aggressions that represent the 
main risk factors in some limited pathophysiologic pathways (even-
tually related to inflammation and oxidative stress). Future studies 
should provide more evidence about the potential health benefits 
of combining the effective measures of addressing each risk factor 
and each NCD, with interventions targeting cell aging mechanisms, 
on an individual basis.
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