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Abstract

Post-transcriptional regulation of gene expression plays a crucial role in many bacterial path-

ways. In particular, the translation of mRNA can be regulated by trans-acting, small, non-cod-

ing RNAs (sRNAs) or mRNA-binding proteins, each of which has been successfully treated

theoretically using two-component models. An important system that includes a combination

of these modes of post-transcriptional regulation is the Colicin E2 system. DNA damage, by

triggering the SOS response, leads to the heterogeneous expression of the Colicin E2

operon including the cea gene encoding the toxin colicin E2, and the cel gene that codes for

the induction of cell lysis and release of colicin. Although previous studies have uncovered

the system’s basic regulatory interactions, its dynamical behavior is still unknown. Here, we

develop a simple, yet comprehensive, mathematical model of the colicin E2 regulatory net-

work, and study its dynamics. Its post-transcriptional regulation can be reduced to three hier-

archically ordered components: the mRNA including the cel gene, the mRNA-binding protein

CsrA, and an effective sRNA that regulates CsrA. We demonstrate that the stationary state

of this system exhibits a pronounced threshold in the abundance of free mRNA. As post-tran-

scriptional regulation is known to be noisy, we performed a detailed stochastic analysis, and

found fluctuations to be largest at production rates close to the threshold. The magnitude of

fluctuations can be tuned by the rate of production of the sRNA. To study the dynamics in

response to an SOS signal, we incorporated the LexA-RecA SOS response network into our

model. We found that CsrA regulation filtered out short-lived activation peaks and caused a

delay in lysis gene expression for prolonged SOS signals, which is also seen in experiments.

Moreover, we showed that a stochastic SOS signal creates a broad lysis time distribution.

Our model thus theoretically describes Colicin E2 expression dynamics in detail and reveals

the importance of the specific regulatory components for the timing of toxin release.

Author Summary

Gene expression is a fundamental biological process, in which living cells use genetic

information to synthesize functional products like proteins. To control this process, cells
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make use of many different mechanisms. A well-studied example is the binding of expres-

sion intermediates by a cellular component in order to delay the synthesis. This mecha-

nism is known to regulate the stress-induced release of the toxin colicin E2 by E. coli
bacteria. However, experimental studies have shown that this system is not regulated by

just one component, but the interplay of several cellular components, in which the hierar-

chically ordered main components interact. Here, we create a mathematical model for the

interaction network of colicin E2 release, and study how the component levels evolve. We

show that the system is able to delay the release of the toxin. Additional components allow

to fine-tune the delay and dampen fluctuations in gene expression that would lead to pre-

mature toxin release. A comprehensive analysis of the time evolution reveals a broad dis-

tribution of toxin release times, which is also observed in experiments. This rich

dynamical behavior emerges from the interplay of regulatory components, and, due to its

generality, may also be transferred to similar regulatory networks, in particular toxin

expression systems.

Introduction

Regulation of gene expression occurs at transcriptional and post-transcriptional levels, and has

been studied intensively both experimentally and theoretically [1–10]. Bacterial stress

responses, such as the well-studied production and release of the toxin colicin E2 in Escherichia
coli, represent one setting in which post-transcriptional control is crucial [11–15].

Colicins are toxic proteins produced by certain E. coli strains in response to stress as a

means to kill bacteria that compete with them for the same resources. More specificly, colicin

E2 is a bacteriocin, which damages the DNA of bacterial cells that absorb it (a DNAse). Once

synthesized, colicin E2 forms a complex with an immunity protein, thus protecting its pro-

ducer from its otherwise lethal action [14, 16, 17]. The toxin is released only upon cell lysis,

which is triggered by the synthesis of a dedicated lysis protein [15, 18–20]. As this inevitably

entails the death of the producer cell [19], it is vital for the persistence of the population that

only a fraction of its members actually releases the toxin [14]. The genes for the colicin, immu-

nity protein and lysis protein are organized into the colicin E2 operon, which is depicted in Fig

1, together with the interaction network that controls colicin E2 expression and release.

Each of the three components is encoded by a single gene—the colicin by cea, the colicin-

specific immunity protein by cei, and the lysis factor by cel— and three regulatory regions

control their transcription: an SOS promoter upstream of the cea gene [21], and two tran-

scriptional terminators T1 and T2, located upstream and downstream of the cel gene, respec-

tively [22]. The key transcriptional regulator of the SOS operon is the LexA protein

(reviewed in [23]), marked in orange in Fig 1. LexA dimers repress the SOS promoter region

of the ColE2 operon, but also block the transcription of over 30 other SOS genes [24, 25],

many of which play an important role in DNA repair [26]. In the event of DNA damage, the

LexA dimer undergoes auto-cleavage upon interaction with RecA [27], and the transcription

of SOS genes begins. The presence of the two transcriptional terminators in the ColE2

operon results in the production of two different mRNAs: A shorter transcript (short

mRNA, marked purple in Fig 1) that encompasses only the genes for the toxin colicin E2 and

the immunity protein, and a longer transcript (long mRNA, marked green in Fig 1), which

additionally includes the lysis gene [14, 28, 29–32]. Hence, lysis can only be initiated after the

translation of long mRNA [18], and this crucial operation is regulated at the post-transcrip-

tional level, as described below.

Hierarchical Regulation of Colicin E2 Expression

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005243 December 15, 2016 2 / 20

Competing Interests: The authors have declared

that no competing interests exist.



Post-transcriptional regulation makes use of many different mechanisms. Recent studies

emphasize the particular importance of non-coding sRNAs [33] for various processes in E.
coli, especially because of their ability to introduce delays and set up thresholds for transla-

tion [34–37]. This is done either directly, by sRNAs pairing with their target mRNA (sRNA-

mRNA interaction), or indirectly, by sequestering of specific mRNA-binding proteins

(mRNA-protein interaction) [2, 38, 39]. For the latter form of regulation, recent studies

highlighted the importance of the production rates of regulatory components [40]. In the

case of the ColE2 system, the translation of the long mRNA is regulated by the carbon storage

regulator protein CsrA [28], marked red in Fig 1. CsrA dimers destabilize target mRNAs by

binding to a region that includes the ribosome-binding site (Shine-Dalgarno sequence) [41].

Masking of the ribosome-binding site by CsrA thus not only represses translation of the lysis

gene but also promotes degradation of the long mRNA. However, CsrA is also recognized by

two specific sRNAs, CsrB and CsrC [42], marked blue in Fig 1. These sRNAs can therefore

sequester CsrA dimers, preventing them from binding to target mRNAs [43–45]. Thus,

translation of the ColE2 lysis gene is indirectly regulated by sequestration of CsrA. This pro-

cess, also known as “molecular titration”, exhibits ultrasensitive thresholds and has been

extensively studied [46, 47].

Fig 1. Regulation of colicin E2 expression and release. The interaction scheme is a generalized adaption of that presented by Yang

[28]. Under normal conditions, the SOS response system (yellow box) maintains a constant level of LexA dimers, which repress the SOS

promoter of the colicin E2 system (gray box). In the event of DNA damage, RecA is activated and promotes auto-cleavage of LexA. This

permits the transcription of two different mRNAs: Short mRNA codes for components of colicin immunity complexes (colicin gene cea,

immunity gene cei), whereas long mRNA additionally encodes the protein that triggers cell lysis. Translation of long mRNA is regulated by

binding of the protein CsrA to its Shine-Dalgarno sequence (SD). CsrA itself is regulated by the two sRNAs CsrB and CsrC.

Other elements: Psos: SOS promoter; T1 and T2: transcriptional terminators.

doi:10.1371/journal.pcbi.1005243.g001
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The basic interaction network that controls the ColE2 regulatory network has been stud-

ied in great detail in previous works [48–51], and many of its functional characteristics, in

particular the threshold behavior, were described for a wide range of both bacterial and

eukaryotic systems [52]. However, a detailed theoretical description of the dynamics leading

to the release of colicin is still missing, in particular the role of the hierarchically ordered

regulation involving CsrB and CsrC. In this work, we have formulated this post-transcrip-

tional network in a detailed mathematical model, constructed by analogy to studies of sim-

pler sRNA-regulated systems (for example, [33, 34, 36]). We then simplified the model by

assuming fast complex equilibration, and combining the sRNAs CsrB and CsrC into a single,

effective sRNA (see S1 Text for details). This reduced the regulation network to three rele-

vant components: free long mRNA, free CsrA and the effective sRNA (see Fig 2). We then

analyzed this simplified network in detail. In contrast to previous work [36], we give a gen-

eral analytical solution for the three component system, and derive a precise approximation

for fast and clear analysis. This analytic solution exhibits a pronounced threshold in mRNA

production due to CsrA-dependent regulation, which was also confirmed using numeric

simulations. We investigated, how this threshold depends on system parameters, and how it

affects the actual biological system. Furthermore, we have analyzed the role of fluctuations

in the post-transcriptional regulation network and how fluctuations in long mRNA expres-

sion may be dampened by sRNA. Finally, we extended our model by including the transcrip-

tional regulation, and analyzed how the system behaves during a realistic SOS response.

Previous studies have shown discrete activation peaks in LexA-repressed promoters [26]

that can lead to large fluctuations close to the threshold of mRNA expression [9]. In a sto-

chastic simulation of the complete model, we were able to reproduce this phenomenon.

Comparison with experimental data on lysis time distributions [48] also shows that our

model can explain the delayed and broadly distributed release times of colicin complexes.

This underlines the importance of stochasticity for the heterogeneous expression of colicin

E2 in E. coli populations.

Fig 2. Simplified interaction scheme for post-transcriptional regulation of long mRNA. M,A,S:

molecule numbers of free long mRNA, free CsrA dimers and the free effective sRNA; α: production rates; δ:

degradation rates; k: effective rate of coupled degradation. The interaction network (see S1 Fig) of the

regulatory system depicted in Fig 1 was reduced to a three component system. In both figures, the

corresponding components have the same colors. In particular, we combined the complex dynamics (binding,

dissociation, degradation) into an effective coupled degradation. The dynamics of sRNA complexes with N

binding sites for CsrA and production rate αS were simplified to the dynamics of an effective sRNA with one

CsrA binding site but N-times higher production rate (S1 Text).

doi:10.1371/journal.pcbi.1005243.g002
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Results

A mathematical model for post-transcriptional regulation of colicin E2

release

For our theoretical analysis, we initially developed a detailed mathematical model for the post-

transcriptional regulation of colicin E2 release. To this end, we derived a set of coupled, deter-

ministic rate equations from the interaction network depicted in Fig 1, with the corresponding

rates for transcription, degradation, binding interactions etc. as parameters. In the following,

we briefly review how we reduced the network to its core components, which comprise the

theoretical model. The interaction scheme underlying the complete model is presented in S1

Fig and further explanations can be found in the Supporting Information, where we also detail

how our model can account for sequestration by other targets of the global regulator CsrA.

As we wished to study the post-transcriptional regulation of colicin E2 expression, we

included in the model only those components that are relevant at that stage. The model there-

fore omits the short mRNA and its products. However, the rate of transcription of the long

mRNA is a crucial parameter, which is influenced by the kinetics of activation of the SOS pro-

moter, and thus by the processing of its repressor LexA. Upon DNA damage, RecA promotes

auto-cleavage of LexA dimers, thus removing inhibition of the SOS response (marked in red

in Fig 1). The LexA-RecA interaction network has recently been modeled stochastically [53].

Before including this detailed network in our final model, we focused on understanding the

post-transcriptional dynamics. To this end, we initially assumed that activation of the SOS pro-

moter occurs rapidly relative to the rates of production and degradation of the long mRNA

[54], which allowed us to approximate the transcription rate of long mRNA by an effective rate

αM (Materials and Methods). With respect to post-transcriptionally relevant components, we

were then left with long mRNA, CsrA, and the two sRNAs CsrB and CsrC, and the

mRNA-CsrA-, CsrA-CsrB-, and CsrA-CsrC-complexes.

CsrB and CsrC regulate CsrA by forming complexes with it. The two sRNAs each have sev-

eral (on average: N) CsrA binding sites, and if every occupation state of the sRNAs were to be

modeled as a separate component, a large number of coupled rate equations would need to be

added to the model. However, due to the fast dynamics of the CsrA-CsrB- and CsrA-CsrC-

complexes, and their virtually identical biochemical behavior, we were able to reduce the

sRNA interaction to a single equation for an effective sRNA, with only one binding site and

transcription rate NαS (see Materials and Methods). As a result, the mechanisms of complex

formation, dissociation and degradation are replaced by an effective coupled degradation of

complex partners. Despite the different processes that are integrated to effective ones, the effec-

tive sRNA still resembles the dynamical behavior of CsrB/CsrC. A detailed derivation of the

simplified system of rate equations can be found in S1 Text. The final post-transcriptional

model is thus reduced to a set of three coupled, deterministic rate equations that capture the

behavior of the free long mRNA (M), free CsrA dimers (A), and an effective free sRNA (S)

component with a single CsrA binding site:

_M ¼ aM � dMM � kMMA; ð1Þ

_A ¼ aA � dAA � kMpMMA � kSpSAS; ð2Þ

_S ¼ NaS � dSS � AkSS; ð3Þ

where (1 − pM) and (1 − pS) are the probabilities for CsrA to survive the coupled degradation.

A graphical illustration of this differential equation system is depicted in Fig 2. Note that in the

Hierarchical Regulation of Colicin E2 Expression
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model the quantitiesM, A and S represent the abundance of the corresponding free compo-

nents. Once a long mRNA, sRNA, or CsrA dimer binds to some other component, it loses its

function and is thus removed from the model system.

For the analysis of our model, we had to determine production, degradation and binding

rates. The particular values used are listed in S1 Table. As far as possible, we chose values that

are measured in studies on either the same or comparable systems (see S1 Text for details). In

the other cases, we tried to derive plausible parameters from known factors that influence the

particular rate. A detailed motivation and derivation of these rates is given in chapter 2 of S1

Text.

Post-transcriptional regulation yields a tunable rate threshold in mRNA

abundance

We analyzed the reduced post-transcriptional model by first calculating its steady state. In

order to obtain a cleaner and simpler result, we derived an approximation (see Materials and

Methods) for the steady state solution, which agreed very well with the results of numerical

simulations (see S2 Fig). Using these simplified equations, we then investigated the impact of

the rates of production of long mRNA (αM) and sRNA (αS) on the levels of the three compo-

nents. The results (see Fig 3) reveal a linear threshold that appears at the same position for all

three components. The threshold divides the parameter space into two regimes, in which

either CsrA or long mRNA and sRNA have a non-zero abundance. This is due to the coupling

between the degradation of CsrA and the abundance of both long mRNA and sRNA, such that

the presence of CsrA dimers excludes that of long mRNA and sRNA, and vice versa. This

mechanism in turn controls the release of colicin-immunity complexes, since a sufficiency of

CsrA dimers ensures reliable repression of the long mRNA and prevents synthesis of the lysis

protein.

From the aforementioned analytic solution we calculated the threshold position as a func-

tion of the system parameters (S1 Text). We found that the threshold for non-zero levels of

long mRNA lies exactly at the point where the production rate of CsrA αA is equal to the sum

of transcription rates for long mRNA αM and sRNA αS (S1 Text). Thus, we observed no

expression of long mRNA in the regime αM + αS< αA, as shown in Figs 3A and 4. We find the

threshold to be sharp, and attribute this to the very slow degradation of CsrA compared to

long mRNA and sRNA [55, 56].

Apart from the threshold itself, we find that the levels of free CsrA and free sRNA predicted

by our steady state analysis are consistent with experimental in-vivo values determined by pre-

vious studies [43, 57]. Moreover, our results are also consistent with the total amount of CsrA

as well as its ratio to sRNA (S1 Text).

So far, we have demonstrated that our three-component system is capable of producing a

threshold behavior. However, it has been shown previously that a mutually exclusive produc-

tion of sRNA and a target mRNA is possible with just two components [36]. The question thus

arises why a third component is needed at all. One possible explanation is that the sRNA

makes it easier to trigger lysis, as an increase in sRNA production induces an increase in the

abundance of long mRNA (Fig 3).

After SOS signals, the sRNA controls and accelerates the degradation of CsrA (see section

on expression dynamics below), eventually leading to the expression of the lysis protein.

sRNA controls fluctuations close to thresholds

In a next step, we analyzed the stochastic dynamics of the post-transcriptional regulation net-

work. To this end, we switched to a stochastic description, calculated the Fano factor

Hierarchical Regulation of Colicin E2 Expression
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(VarM/hMi) for the abundance of long mRNA (see Materials and Methods), and depicted it as

heatmap in Fig 4. The Fano factor measures the relative magnitude of fluctuations, and has

already been applied to gene regulatory networks in previous studies [58]. It can also be under-

stood as a quantified comparison with the pure birth process (Poisson process), which has the

Fano factor F = 1.

We found that fluctuations in mRNA were most pronounced close to the threshold posi-

tion, with the largest fluctuations occurring slightly above the threshold (Fig 4). Moreover,

Fig 4 also shows that the fluctuations became larger as sRNA production decreases. Thus, the

Fig 3. Approximate stationary solutions for (A) long mRNA, (B) CsrA dimers and (C) sRNA. The stationary solutions are given as a

function of the effective transcription rate αM of long mRNA and the production rate αS of sRNA. The production rate of CsrA dimers was set to

αA = 58.52. All other system parameters are given in S1 Table. For values of αM and αS below the threshold, the abundances of free long

mRNA and sRNA are zero, as any newly produced component quickly forms a complex with the highly abundant CsrA. At sufficiently large

production or transcription rates, sRNA and long mRNA titrate all available CsrA molecules and can thus attain non-zero molecule numbers,

The white line gives the transition between two approximate analytical solutions (Materials and Methods).

doi:10.1371/journal.pcbi.1005243.g003

Fig 4. Fluctuations in long mRNA abundance. The fluctuations are quantified by the Fano factor (see main

text) and depicted as heatmap in the plot. They are most pronounced at the threshold, and fade for parameter

sets above the threshold. With an increase in sRNA production (NαS), the fluctuations become smaller and

more localized to the threshold. This illustrates how the third component sRNA acts as a means to reduce

intrinsic fluctuations. The production rate of CsrA dimers was again set to αA = 58.52, and all other system

parameters are given in S1 Table.

doi:10.1371/journal.pcbi.1005243.g004
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third component (sRNA) in the post-transcriptional regulation network also enables signifi-

cant dampening of fluctuations in long mRNA.

To understand why the fluctuations are localized to the region near threshold, one must

take the characteristics of this parameter regime into account. Around the threshold, molecule

numbers are close to zero, which has a direct affect on the relative size of fluctuations: the lower

the abundance, the larger the fluctuations (stochastic regime). Moreover, the threshold is the

only regime in which all three components, CsrA, mRNA and sRNA, can coexist and interact

with each other: An increase in the level of CsrA will lead to a decrease in the abundance of

long mRNA and sRNA, owing to increased complex formation and subsequent degradation.

Analogously, an increase in long mRNA and sRNA molecule numbers leads to a decrease in

CsrA abundance. Therefore, the abundance of CsrA dimers is anti-correlated with the abun-

dance of both long mRNA and sRNA. It has been shown for a two-component system, that

anti-correlated components can create anomalously large fluctuations [59] if degradation rates

are small compared to turnover (ratio of production rate to abundance). For long mRNA, this

is exactly the case close to threshold, where the long mRNA abundance is still very low.

These results show that a third component can reduce intrinsic fluctuations of a hierar-

chically ordered regulatory network.

Modeling colicin E2 expression dynamics in response to an SOS signal

To study the dynamical response of the ColE2 system to an SOS signal, we extended the post-

transcriptional network by including the LexA-RecA regulatory network [53] (Fig 1). LexA

not only represses the SOS promoter, it is also an auto-repressor, as well as being a repressor of

RecA production. As outlined in the Introduction, RecA forms filaments after DNA damage,

which then induce auto-cleavage of LexA dimers. Consequently, the levels of RecA, LexA and

the colicin mRNAs increase, as repression due to LexA is relaxed. A stochastic model of this

network has been introduced recently [53]. In that study, promoter activity in the LexA-RecA

system was found to occur in ordered bursts that result from fluctuations and the particular

structure of the RecA-LexA feedback loop.

In our analysis of the ColE2 post-transcriptional regulation network so far (see above), we

have assumed the dynamics of SOS promoter activation to be so fast that we could use an effec-

tive transcription rate αM for long mRNA. To link the LexA regulatory network to the post-

transcriptional regulation network, we must drop this assumption and explicitly model the

dynamics of LexA dimers, which connect the two networks. In the biological system, this

involves the binding and dissociation of LexA dimers to and from the SOS promoter in the

ColE2 operon. Long mRNA and short mRNA are transcribed only from the derepressed pro-

moter at rates αMl
and αMs

, respectively. Thus, the transcription rates of long mRNA and short

mRNA are proportional to the number of open SOS promoters in the bacterium. The majority

of transcripts are short mRNAs. The mathematical implementation of the integrated regula-

tion network is again a system of coupled rate equations, which we describe in S1 Text. The

additional parameters of the LexA-RecA regulation network are to be found in S2 Table.

We simulated the SOS signal by temporarily up-regulating the coupling parameter cp,
which quantifies the ability of RecA to induce cleavage of LexA (Fig 1). In the uninduced state

before and after the SOS signal, the auto-cleavage parameter was set to cp = 0. Under SOS stress

cp was increased to cp = 6. This increase in cp subsequently boosts the long mRNA production,

and therefore relates to a transition from a sub-threshold state (gray area below the white line

in Fig 3A) to a super-threshold state (green area above the white line in Fig 3A). Due to the sto-

chasticity in the LexA-RecA network and the resulting stochastic promoter dynamics, the

overall transcription rate αMl
of long mRNA is not constant, but fluctuates about a mean value.

Hierarchical Regulation of Colicin E2 Expression
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The production rate of sRNA was held constant at αS = 57.5. Fig 5 shows the dynamics of short

and long mRNA levels and the abundance of CsrA dimers and sRNA in response to transient

SOS signaling. When we compared a stochastic realization using Gillespie simulations (Mate-

rials and Methods) with a numerical solution of the deterministic rate-equation system, we

observed significant qualitative and quantitative differences. First, the stochastic realization

exhibited significant fluctuations that manifested themselves in abrupt, short-lived changes in

the abundance of short mRNA over the whole time-course (Fig 5A). Second, the average over

500 stochastic realizations deviated from the deterministically predicted value. Both phenom-

ena arise from the intrinsic stochasticity of the LexA-RecA-regulatory network, as explained

by Shimoni [53]. Fluctuations may lead to a spontaneous dip in the number of LexA dimers

which releases all LexA-regulated genes, including the lexA gene itself, from repression. This

consequently leads to a sudden rise in the abundance of short mRNA. The open lexA and recA
promoters will then generate a burst of newly produced LexA and RecA proteins, which block

and regulate the promoters for the next burst.

Focusing on the dynamics of mRNA transcription, we found that, due to initial simulation

parameters, only small numbers of the short mRNA are produced in the uninduced state.

After up-regulation of the LexA auto-cleavage parameter cp at t = 200 min, the abundance of

short mRNA rises and the aforementioned large bursts appear. The amount of long mRNA,

however, follows a completely different trajectory, conditioned by post-transcriptional regula-

tion. Before the SOS signal, expression of long mRNA is almost completely repressed by CsrA

(Fig 5B). Even the bursts of SOS promoter activity reflected in fluctuating amounts of the short

mRNA have little or no impact on the long mRNA. This filtering effect is biologically relevant,

as it ensures that noisy promoter activity does not erroneously trigger lysis. After induction of

the SOS signal, the deterministic dynamics of the underlying rate equations predicted that,

after a delay of about 40 min, the abundance of long mRNA should rapidly rise to a saturation

value (black dashed line in Fig 5B). However, a mean of 500 realizations deviated significantly

from this prediction (Fig 5B). In particular, the average number of long mRNA molecules

increased more slowly than predicted by deterministic dynamics. Hence the abundance satu-

rated at a much lower value. An appreciable delay between SOS signal induction and expres-

sion of long mRNA was still observed, but lasted for only 15 min.

Studying the dynamics of a single stochastic realization, we observed that the number of

long mRNA molecules underwent large fluctuations, which were followed by periods of no

expression at all. Moreover, the timing of these bursts varied considerably between different

realizations. This constitutes a significant qualitative difference compared to the average over

500 realizations and to the deterministic dynamics (Fig 5), both of which exhibit a smooth and

continuous temporal behavior. Fig 5B and 5C indicates the origin of this behavior: The abun-

dance of long mRNA can only grow if the number of free CsrA dimers is low. The same holds

for the abundance of sRNA, which supports the degradation of CsrA and also can only reach

non-zero abundances if there is no CsrA left (Fig 5D). Thus, before any long mRNA can be

expressed, the free CsrA concentration must drop to very low values due to degradation or

complex formation. The delay between SOS signal induction and the first burst of long mRNA

synthesis therefore depends on the amount of CsrA available. We went on to study the precise

timing of the first burst in long mRNA abundance, since it is crucial for the time-point of

release of colicin-immunity complexes. To this end, we calculated the probability distribution

for the first peak from an ensemble of 500 stochastic realizations. The probability of a peak in

long mRNA abundance rose quickly and reached its maximum approximately 60 min after

induction of the SOS signal (Fig 6A). This phenomenon is also seen in experimental systems:

time-lapse studies with colicin-producing bacteria revealed that their lysis time is broadly dis-

tributed [48]. The distribution depicted in Fig 6A matches qualitatively with comparable

Hierarchical Regulation of Colicin E2 Expression
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Fig 5. Dynamical behavior before and after a realistic SOS response. We simulated an SOS signal by

temporarily up-regulating the LexA auto-cleavage parameter from cp = 0.0 to cp = 6.0 between the two dashed

vertical lines at t = 200 min and t = 500 min. The parameter cp gives the rate at which LexA dimers degrade

due to the presence of RecA. During the simulation, we tracked the abundance of (A) free short mRNA, (B)

free long mRNA, (C) free CsrA dimers and (D)free sRNA over time. In each panel, the fluctuating colored

Hierarchical Regulation of Colicin E2 Expression
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curve represents a single realization of the stochastic system as implemented by a Gillespie simulation. The

smoother darker-colored curve shows the average of 500 different realizations. The black dashed curve

depicts the results found by numerical integration of the deterministic rate equations, which neglects

fluctuations. In general, the stochastic realizations deviated significantly from both the simulation average and

the deterministic solution, as they exhibited large spontaneous bursts. As the short mRNA is not post-

transcriptionally regulated, its abundance level can serve as a proxy for the SOS promoter activity. Comparing

the free short mRNA abundance with free long mRNA shows that short promoter activity peaks were reliably

filtered out by post-transcriptional regulation. After an up-regulation of the LexA auto-cleavage parameter cp at

t = 200 min, the abundance of short mRNA rose and is expressed in large bursts. After some time delay,

during which all newly produced long mRNAs immediately sequestered CsrA dimers, discrete bursts of free

long mRNA are seen, which were followed by periods of no production at all. The timing of the bursts varied

considerably between different realizations. A comparison with (C) shows that the abundance of free long

mRNA is anti-correlated with the molecule number of all free CsrA. Hence, free long mRNA is only present if

the number of free CsrA dimers is low. In the simulation, the production rate of CsrA dimers was set to αA =

58.52 and the transcription rate of sRNA to αS = 57.5. All other parameters are given in S1 and S2 Tables.

doi:10.1371/journal.pcbi.1005243.g005

Fig 6. Probability distribution of the first peak in long mRNA abundance and survival function. We simulated an

SOS signal by temporarily up-regulating the LexA auto-cleavage parameter from cp = 0.0 to cp = 6.0 between the two

dashed vertical lines at t = 200 min and t = 500 min (see also Fig 5). The parameter cp gives the rate at which LexA

dimers degrade due to the presence of RecA. (A) With the parameters defined in S1 and S2 Tables, the timing of the

first peak in long mRNA abundance is broadly distributed with maximal probability approximately 60 min after induction

of the SOS signal. (B) The survival function is defined as the fraction of E. coli cells in a population that exhibited no

peak in long mRNA abundance, and thus would not release colicin. The fraction of cells releasing colicin increased

smoothly after induction up to 100%. This heterogeneous response of a bacterial population to an SOS signal is also

observed in nature. In the simulation, the production rate of CsrA dimers was set to αA = 58.52 and the transcription rate

of sRNA to αS = 57.5. All other parameters are given in S1 and S2 Tables.

doi:10.1371/journal.pcbi.1005243.g006
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datasets from these experiments. Moreover, our model is able to numerically predict average

lysis times in dependence on different SOS signal strengths (see S5 Fig). From the probability

distribution of the timing of the initial peak in long mRNA abundance we calculated the sur-

vival function, i.e. the probability with respect to time that a cell will not release toxin. Here we

assumed that this first burst provides enough long mRNA in the cell to produce the lysis pro-

tein, which then induces its lysis with concomitant release of colicin-immunity complexes into

the surrounding medium. The function of lysed cells plotted in Fig 6B shows that the number

of cells that release the toxin rises with the duration of the SOS signal.

Incorporation of the LexA-RecA regulatory network allowed us to model the colicin E2

expression dynamics in response to a realistic SOS signal, and the results presented above

highlight the importance of CsrA for colicin release.

Discussion

Gene expression is a process that allows for various forms of regulation at all levels. In theoreti-

cal studies of post-transcriptional regulation of several biological systems, modulation of

mRNA production by proteins or sRNA has been shown to create, for instance, temporal

thresholds for mRNA translation [9, 35, 36]. Proteins have also been shown to regulate the

expression of the toxin colicin E2 [28] in the context of an SOS response to environmental

stress. Experimental studies have elucidated the detailed interaction network responsible for

the production and release of the colicin [28]. However, the dynamics of this system, in partic-

ular at the post-transcriptional level, have remained elusive. In close analogy to previous two-

component models, we developed a mathematical model for this hierarchically ordered post-

transcriptional regulation of colicin E2 release. Interestingly, the known interaction network

for this system necessitated the modeling of three, not two, components: the long mRNA

which is necessary for colicin release, its negative regulator CsrA, and sRNA, which in turn

negatively regulates CsrA. Contrary to previous studies [9, 35, 36, 60], the sRNAs do not regu-

late the mRNA directly, but control the level of the regulator protein CsrA. Thus, the sRNA

acts as the “regulator’s regulator”.

In our analysis of the model, we used rate constants that were determined from experimen-

tal systems (see chapter 2 of S1 Text for details). Comparing the predicted CsrA levels before

the SOS signal (see Fig 5C) with in-vivo measurements of E. coli [57] shows that our model

results in a pre-SOS free CsrA abundance that agrees with actual bacterial systems (for other

abundances, see S1 Text). Moreover, the model is not just able to predict steady state abun-

dances, but also reproduces the reaction to varying external stress levels as seen in experiments

(see S5 Fig).

Investigation of the dynamics revealed that the model exhibits a time delay in the produc-

tion of free long mRNAs. This delay is due to the high abundance of CsrA in the non-SOS

state of the cell, which causes CsrA to quickly bind to free long mRNA and thus prevents its

transcription. Only during an SOS signal, which indicates external stress for the cell, the

level of CsrA gets steadily reduced. The time this process takes to get CsrA levels so low that

fluctuations in long mRNA production result in free long mRNA, causes a delay in colicin

release. As colicin release is coupled to cell lysis, the delay is therefore a mechanism for fil-

tering out transient SOS signals that might erroneously lead to synthesis of the lysis protein.

Moreover, also intrinsic fluctuations, for instance in sRNA production, are filtered out by

this mechanism: Even if a large and sudden burst in sRNA were strong enough to drop

CsrA abundance close to zero, the CsrA buffer gets restored quickly due to the large produc-

tion rate of CsrA. This rate is only effectively lowered during a SOS signal, which increases

the production of the CsrA-sequestering long mRNA. The fact that lysis is regulated by a
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threshold mechanism of a global regulator protein like CsrA might also be a guarding mech-

anism for the cell: only prolongued extreme situations will cause the abundance of these reg-

ulators to drop to low molecule numbers.

However, delays and similar threshold behavior also emerge in two-component systems,

raising the question why a third component is necessary here. Strikingly, we found that the

third component (sRNA) in the post-transcriptional interaction network enables the cell to

tune the duration of the delay by sequestering CsrA. In the case of the ColE2 system, this

means that cells are able to adjust the (average) time between a SOS signal and the onset of cell

lysis leading to colicin release.

Furthermore, previous studies of systems with slow, bursting promoter kinetics have also

uncovered a major limitation of two-component sRNA-based regulation compared to regula-

tion based on transcription factors: Two-component systems are subject to significantly higher

levels of intrinsic noise [9]. However, Fig 4 (panels A,C,D) shows that, in the post-transcrip-

tional regulation of colicin E2 release, fluctuations become smaller at higher values of αS. The

sRNA might therefore allow for significant dampening of these fluctuations. This idea is sup-

ported by the fact that the relatively high degradation rate of sRNA makes it less susceptible to

induced fluctuations.

In bacteria, these mechanisms could have several functions: First, a comparison of different

sRNA production rates (S4 Fig) indicates that the sequestration of CsrA by the sRNA could

indeed be crucial for fast release of the colicin, as CsrA degradation rates cannot be arbitrarily

increased in bacterial systems. Second, they can tune the reaction to external stress at the pop-

ulation level. Experimental studies have shown that, in the absence of stress, 3% of colicin pro-

ducing cells release the toxin during the stationary phase; but this fraction can be increased up

to eventually 100% if an external SOS stress is applied [14, 48]. Previous experimental studies

also found that colicin systems exhibit heterogenous expression times, which originate from

the stochasticity of the SOS signal [49, 50]. Recent time-lapse experiments with colicin E2 pro-

ducing bacteria showed that this lysis time distribution also depends on the strength of the

SOS signal [48]. We reproduced these experiments with stochastic simulations, in which we

created different stress levels by different values of the RecA degradation rate parameter cp.
Our predictions for lysis time distributions (Fig 6A and S5 Fig) show qualitative agreement

with these time-lapse experiments. Moreover, the ability of the sRNA to tune the average dura-

tion of the delay might serve as a mechanism to adjust the cell lysis to different stress levels.

Altering the sRNA level could be an additional mechanism, apart from the stochastic SOS sig-

nal, by which bacterial populations can adjust the fraction of cells releasing the toxin depend-

ing on the strength and duration of the external stress. Finally, the co-option of sRNA makes

the cells less susceptible to lysis due to adventitious fluctuations in promoter activity. This is

particularly important considering the bursting behavior and large-scale fluctuations seen in

the LexA-RecA-regulatory system, which are readily observed in experiments and reproduced

by stochastic models [53].

In order to focus on the interplay between the LexA-RecA system and the hierarchical regu-

lation of long mRNA by CsrA and sRNA, we kept the plasmid number constant. If we consid-

ered random, Poisson-distributed plasmid numbers instead, the effect would be very small, as

shown in S4B Fig. This fact demonstrates that the colicin plasmid copy number only has

minor influence on the lysis time distribution (see S1 Text for details).

In conclusion, we have provided here the first detailed theoretical description of colicin E2

production and release, and used it to study the dynamical behavior of this system. Moreover,

the general three-component model described here should be applicable to many other sys-

tems of toxin production in microorganisms.

Hierarchical Regulation of Colicin E2 Expression
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Materials and Methods

Derivation of effective long mRNA transcription rate αM

In most models of prokaryotic gene expression, it is assumed that promoter kinetics are fast

compared to RNA production and degradation rates. In that case, the promoter state is well

approximated by its steady state [54]. In the analysis of the post-transcriptional regulation net-

work, the promoter status affects the transcription rate of the (long) mRNA. Thus, we replaced

it by an effective transcription rate for (long) mRNA, which takes into account the probability

of a gene being blocked. In the literature this procedure is referred to as “adiabatic elimination

of fast variables” (see for example [61]). For this effective rate we also took into account that

the colicin operon is located on a plasmid [62], of which approximately 20 copies exist in each

cell [14] (see S1 Text).

Reduction of CsrB and CsrC to an effective sRNA

The two sRNAs CsrB and CsrC regulate CsrA via complex formation. More specifically, each

CsrB molecule has approximately 22 binding sites for CsrA, with 9 CsrA dimers being attached

on average [63, 64]. CsrC interacts in the same way, but has fewer CsrA binding sites [63]. As a

first step, we therefore replaced the two sRNA types by a single effective one, which has N

binding sites. However, all of the N + 1 sRNA configurations still enter the interaction network

as separate components, since the binding and dissociation probabilities change with the num-

ber of free binding sites. By investigating the dynamics of the CsrA-sRNA complexes, we dis-

covered that the probability distribution for occupied CsrA binding sites on the sRNAs

reaches its stationary state on a time scale that is proportional to the rate of complex-(un)bind-

ing. Since binding and unbinding events are biochemically much simpler processes than tran-

scription, translation or degradation, it is very likely that the dynamics of CsrA-sRNA

complexes is much faster than all other reaction rates in the system. Following the line of

Levine [36] and Legewie [34], we therefore assumed rapid complex dynamics, and replaced

the different binding site occupations by an effective sRNA, with only one binding site and

transcription rate NαS (see S1 Text for details on the calculation).

Approximate solution of the reduced three-component model

For the calculations of the abundances of the three components (for example, to obtain the

plots of Fig 3), we began by assuming the stationary state. Solving for the abundance of one

component then gives a cubic equation, for which the exact, general solution is very lengthy

and cumbersome to analyze. Therefore, we considered the cubic equation for the cases of very

large and very small molecule numbers, and ignored terms that became negligible. This

resulted in two easily solvable quadratic equations. Comparisons with numerical solutions of

the cubic equations proved that the quadratic solutions approximate the general solution well

in their respective abundance regime. Equating the terms omited in the approximation yields

a criterion for the transition between the two approximations (see S1 Text). The transition is

depicted as a white line in Fig 3. That this transition lies close to the threshold is coincidental.

Comparison with the exact, numerical solutions showed that the threshold is not an approxi-

mation artifact. S2 Fig illustrates the precision of the approximation by comparing its predic-

tion for long mRNA abundance to that from numerical simulations.

Calculation of the Fano factor using linear noise approximation

We started the analysis of noise properties by reformulating the simplified three-component

system as a Master equation. As Master equations are typically impossible to solve
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analytically, we performed a general van Kampen expansion in multiple variables (compo-

nents). Our analysis included all higher orders, and not only lowest order terms as is com-

monly found in textbooks [61, 65]. With van Kampen’s expansion we were able to derive

general formulas for the first up to the fourth moment of the random variable representing

the fluctuations of the system around the stationary solution of the rate equations. The

terms of each equation were classified in first order terms (dominant terms) and higher

order terms (second order, third order, etc), according to the scaling behavior of each term

with the system size. We used different methods to calculate the Fano factor for long mRNA.

The most reliable results were obtained by implementing only first order terms in the calcu-

lations of second moments. This reproduced the shape of the Fano factor well, but it overes-

timates fluctuations in the vicinity of the threshold. S3 Fig illustrates the degree of

agreement between analytical calculations of the Fano factor agree with the results from Gil-

lespie simulations.

Gillespie simulations

To verify how well our analytical results of the deterministic rate equations coincide with the

actual mean molecule numbers, we set up a Gillespie simulation [66]. The Gillespie algorithm

generates a statistically correct realization of the master equation behind the rate equations.

The core of the algorithm lies in using random numbers to determine which next reaction will

occur and the waiting time prior to the succeeding reaction. The reactions simulated by the

Gillespie approach are listed in S1 Text. To quantify the delay between SOS signal induction

and the first burst in long mRNA abundance, we defined the beginning of the first peak as the

point when the number of long mRNA molecules exceeds 8 for the first time. The time of the

peak itself was set to the point at which that number reached a maximum. We then calculated

the probability distribution from an ensemble of 500 stochastic realizations, using the parame-

ters defined in S1 and S2 Tables.

Supporting Information

S1 Table. Parameter values for the post-transcriptional dynamics modeled by the rate

equations and Gillespie simulations. Rates are given in molecules per cell volume VEC =

0.65μm3 per minute. The number of ColE2 plasmids is nsos = 20. The literature values can be

found in [28, 55, 56].

(PDF)

S2 Table. Additional parameter values for the SOS response network, modeled by the rate

equations and Gillespie simulations. Rates are given in molecules per cell volume VEC =

0.65μm3 per minute. The number of ColE2 plasmids is nsos = 20. R, Le,Col,L: number of RecA

proteins, LexA dimers, colicin proteins and lysis proteins.Ml,Mr,Ms,M: number of lexA, recA,

short mRNAs and long mRNAs. Bl Br,Bsos: number of LexA dimers bound to the lexA, recA
and SOS promoters. All literature values are taken from [53].

(PDF)

S1 Fig. Detailed interaction scheme of post-transcriptional regulation network. The inter-

action scheme is mathematically formulated as N + 5 coupled rate equations. M,A,S,L and

Cma give the numbers of long mRNA, CsrA dimers, sRNA, lysis protein and long

mRNA-CsrA complexes. Cn gives the number of sRNA molecules with n CsrA dimers

bound. The rates of a reaction is expressed by the formula next to the arrows. α: production

rates; δ: degradation rates; v−,k−: Complex dissociation rates; v+,k+: Complex formation

rates. To illustrate the complex dynamics between CsrA dimers and sRNA we depict the
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reaction rates of CsrA with an sRNA that has already bound n 2 [0, 1, . . ., N] CsrA dimers.

For more details see S1 Text.

(EPS)

S2 Fig. Comparison of the stationary solution for long mRNA abundance M� with the

time-average hMi. The stationary solution M� was calculated using rate equations, the time-

average hMi was obtained by Gillespie simulations. We show two cuts through the surface

of Fig 3A at αS = 20 and αS = 40. The points indicate the result of Gillespie simulations,

whereas the lines show the analytical result obtained from the approximated steady state

equations. The production rate of CsrA dimers was chosen to be αA = 58.52, all other

parameters are given in Table S1 Table.

(EPS)

S3 Fig. Comparison of the analytically calculated Fano factor with corresponding Gillespie

simulations. The production rate of CsrA dimers was set to αA = 58.52. All other parameters

are given in S1 Table. For both parameter sets, αS = 20 and αS = 40, the analytic calculations

using van Kampen’s system size expansion reproduced the shape of the fluctuations obtained

by Gillespie simulations well. In the threshold regime the analytic result overestimated the

fluctuations slightly.

(EPS)

S4 Fig. Effects of parameters on the lysis time distribution. (A) shows the lysis time distribu-

tion as in Fig 6A for comparison. (B) This distribution hardly changes if the number of plas-

mids, nSOS, follows a Poisson distribution. (C) Lowering the sRNA production rate to αS = 56

shifts the lysis distribution towards later times, whereas (D) doubling it to αS = 58 causes sev-

eral cells to lyse even before (and hence independent of) the SOS signal. This illustrates that

the sRNA is a possible means of controlling cell lysis.

(EPS)

S5 Fig. Average lysis times for different stress levels. To illustrate the predictive possibilities

of our three component model, we compare the results of numerical simulations using our

model with experimental data [48]. The experiment measured the average lysis time for three

different concentrations of the antibiotic Mitomycin C (0.05, 0.25 and 0.70 μg/ml). In the

numerical simulations, we used the parameter set defined in S1 and S2 Tables, and varied the

parameter cp (values: 1, 3, 6, 12, 15, 20, 30, 90) to emulate the stress levels. To fit the data, we

only applied a scaling factor to map the Mitomycin concentration to values of cp, and shifted

the theoretical delays by a constant value. The last step is necessary, as the numerical simula-

tions also account for the constant time between SOS signal and first appearance of short

mRNA, which is not the case in the experiments.

(EPS)

S1 Text. Supplementary information on calculations and numerical simulations. Detailed

derivations of the (simplified) rate equations and the linear noise approximation, as well as the

detailed reaction scheme used in the Gillespie simulations.

(PDF)
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