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Livestock disease controls are often linked to movements between farms, for

example, via quarantine and pre- or post-movement testing. Designing effec-

tive controls, therefore, benefits from accurate assessment of herd-to-herd

transmission. Household models of human infections make use of R*, the

number of groups infected by an initial infected group, which is a metapopu-

lation level analogue of the basic reproduction number R0 that provides

a better characterization of disease spread in a metapopulation. However,

existing approaches to calculate R* do not account for individual move-

ments between locations which means we lack suitable tools for livestock

systems. We address this gap using next-generation matrix approaches to cap-

ture movements explicitly and introduce novel tools to calculate R* in any

populations coupled by individual movements. We show that depletion of

infectives in the source group, which hastens its recovery, is a phenomenon

with important implications for design and efficacy of movement-based

controls. Underpinning our results is the observation that R* peaks at inter-

mediate livestock movement rates. Consequently, under movement-based

controls, infection could be controlled at high movement rates but persist at

intermediate rates. Thus, once control schemes are present in a livestock

system, a reduction in movements can counterintuitively lead to increased dis-

ease prevalence. We illustrate our results using four important livestock

diseases (bovine viral diarrhoea, bovine herpes virus, Johne’s disease and

Escherichia coli O157) that each persist across different movement rate ranges

with the consequence that a change in livestock movements could help control

one disease, but exacerbate another.
1. Background
Livestock diseases have an important impact not only on the economy and animal

welfare [1,2], and can also pose a zoonotic risk to humans [3–5]. Many are intro-

duced into herds via movements of infected animals, e.g. bovine tuberculosis

(bTB), brucellosis, bovine viral diarrhoea (BVD), scrapie, foot-and-mouth disease

(FMD) and Johne’s disease [5–11]. Livestock disease control is therefore often

implemented at the point of between-farm movement [12,13]. Controls that

target infected animals moving between farms, include vaccination, quarantine,

restricting movement for farms found to have infected animals, or even inter-

national movement restrictions [14]. This leads us to the question of how hard a
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disease is to control when control is directed at herd-to-herd

spread and how disease control effort depends on the rate of

livestock movement.

The usual metric for assessing the required degree of con-

trol is the basic reproduction ratio, R0 [15–17]. R0 is the

number of secondary infectives following introduction of a

single typical primary infected individual into an entirely sus-

ceptible population. If R0 . 1, then a disease can invade,

whereas if R0 � 1 it cannot. The aim of disease intervention is

often described in terms of reducing effective R0 to below

1. For example, if a proportion q of the population is vaccina-

ted, then the effective R0 is R ¼ (1 2 q)R0, giving the critical

coverage to prevent disease spread of qc ¼ 1 2 1/R0 [15,18].

However, R0 is an individual-based rather than a group-

based metric, and a system with high R0 could have high

within-group (i.e. within farm) transmission, but only low

between-group (between farm) transmission [19]; R0 can

therefore be poor at describing transmission within meta-

populations [20], such as the risk of disease in one farm

spreading to others, e.g. via livestock movements.

There have been several approaches to address this

deficiency. Early patch-based models proved analytically

tractable, but only considered the infected status of a patch

as a whole, and assumed that the timescale of reaching a

quasi-stationary state was short relative to movement

dynamics [21–23]. This sort of simple model has sometimes

failed to predict more complex and unintuitive disease

dynamics [24]. Household models examine disease persist-

ence within a metapopulation of a large number of small

groups (e.g. households), and typically assume that disease

spreads between groups that share individuals (e.g. children

mix with other children at school, the adults mix with other

adults at work and both return to the household), or that

proximity is sufficient (e.g. transmission between patches of

plant populations) [25–27]. However, household models

neglect more long-lived movements such as those from live-

stock moving between farms, or wildlife dispersing from

their natal range [25,28,29], and in doing so ignore the

depletion of infectives from the primary group.

In the context of household models, Ball & Neal [30–32]

introduce R*, a group-level analogue of R0, describing the

number of secondary infected groups generated by a primary

infected group. As with R0, R* ¼ 1 provides a threshold for dis-

ease spread within the metapopulation. Similarly, 1 2 1/R*

provides the degree of disease intervention necessary to pre-

vent disease spread. In situations where disease control is at

the group-to-group level, R* provides a convenient alternative

to R0 for predicting levels of disease control required, especially

in highly heterogeneous metapopulations.

Here, we derive R* using the next-generation matrix

(NGM) technique [33,34], for a generic metapopulation

model with disease spread via explicit animal movements

that does account for the depletion of susceptibles from the

primary group. In the simplest case, R* takes an intuitive

form in terms of the movement rate, the within-herd preva-

lence and the within-herd persistent time. We demonstrate

that R* peaks at intermediate movement rates, revealing

ranges of movement rates where disease intervention will

be most difficult.

We illustrate our findings for four important livestock

infections—bovine herpes virus (BHV), bovine viral diarrhoea

virus (BVDV), Mycobacterium avium ssp paratuberculosis
(paraTB) and Escherichia coli O157 (E. coli O157)—showing
that a reduction in movement rates could counterintuitively

result in an increase in disease prevalence, and moreover,

that control to reduce one disease could exacerbate another.
1.1. The next-generation matrix approach
In a recent helpful overview of NGM approaches, Diekmann

et al. cover their use over a wide range of single population dis-

ease models [34,35], but do not consider metapopulation

models. The NGM provides a natural basis for the calcula-

tion of R0. In brief, the approach is to obtain a matrix K, where

the entries Kij represent the expected number of new cases

with state-at-infection i, arising from one individual with

state-at-infection j. R0 is the dominant eigenvalue of this matrix.

To illustrate the technique, consider a single population

with SEIR disease dynamics:

_S ¼ þmN � mS� bSI
N

,

_E ¼ �mEþ bSI
N
� aE,

_I ¼ �mI þ aE� gI

and _R ¼ �mRþ gI,

where individuals are born into susceptible state S, following

infection they enter exposed state E and incubate the disease,

then progress to the infectious state I, and finally recover to

the immune state R. N is the population size, m is the per
capita mortality rate, here set equal to the birth rate, b is the

disease transmission coefficient, 1/a is the average incu-

bation period and g is the per capita recovery rate. The state

space is the vector xðtÞ ¼ ðS, E, I, RÞ`.

To obtain K, first linearize around the disease-free equili-

brium, x�DF ¼ ðN, 0, 0, 0Þ`, giving for small E and I the

linearized infectious subsystem

_E ¼ þbI � ðmþ aÞE

and _I ¼ þaE� ðmþ gÞI,

where only the production of new infectives and changes in

the state of existing infectives are captured. The linearized

subsystem is the form _y ¼ Ay, where yðtÞ ¼ ðE, IÞ` and

A ¼ �m� a þb
þa �m� g

� �
,

is the Jacobian matrix.

Now, decompose A into the sum of two matrices T þ S,

where

T ¼ 0 þb
0 0

� �
¼ TEE TEI

TIE TII

� �
,

is the matrix of transmissions, where TEI represents the rate at

which newly infected individuals in state E are created by

infectious individuals I, and

S ¼ �m� a 0
þa �m� g

� �
¼ SEE SEI

SIE SII

� �

is the matrix of transitions, where, for example, SIE is the rate

at which individuals move into state I from state E. Negative

entries represent a net flow out of the state in question; hence,

SEE shows the rate at which individuals that start in E leave
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this class, without returning. The matrix

� S�1 ¼

1

mþ a
0

a

ðmþ aÞðmþ gÞ
1

mþ g

0
BB@

1
CCA,

is interpreted biologically as the matrix of sojourn times [34].

Thus, the entries of the first column of matrix �S�1 are the

expected time spent in states E and I conditional on starting

in state E (likewise entries of the second column are the

expected times conditional on starting in state I ).

The NGM with large domain, KL, is given by the matrix

product of transmission rate and residence time, that is

KL ¼ �TS�1 [33], and so

KL ¼
ab

ðmþ aÞðmþ gÞ
b

ðmþ gÞ
0 0

0
@

1
A ¼ KEE KEI

KIE KII

� �
,

where, for example, KEI is the number of infections of type E
generated by an index case in the I class. R0 is then the domi-

nant eigenvalue of KL

R0 ¼ rðKLÞ ¼
ab

ðmþ aÞðmþ gÞ :

By including only the rows and columns of KL related

to categories of state-at-infection (i.e. exposed E, but not

infectious I ), KL can be reduced to the NGM matrix K

K ¼
ab

ðmþ aÞðmþ gÞ

� �
¼ ðKEE Þ,

which is smaller and mathematically easier to work with, and

has a biological interpretation convenient for direct construc-

tion using epidemiological principles [34]. The dominant

eigenvalue is the same for both KL and K, and either may

be used to calculate R0.

In the scalar case above, R0 ¼ KEE, which, on taking the

limits a! 1 and m! 0, reduces to the familiar R0 ¼ b=g

for the SIR model. This calculation for the SIR model also fol-

lows by identifying transmission T ¼ b and the transition rate

S ¼ �g, whence the time spent infectious is �S�1 ¼ 1=g,

and the expected number of secondary infections from

an index case in an otherwise susceptible population is

R0 ¼ �TS�1 ¼ b=g. The NGM approach thus rigorously

extends such arguments to more complex settings.
2. Next-generation matrix approach for
homogeneous metapopulation dynamics with
one disease category

We now apply the NGM approach to disease spread among a

metapopulation of livestock herds, first illustrating the

approach for a disease system with one disease category,

and then showing how this may be naturally extended to

more complex diseases. We show that R* may be given by

the intuitive formula

R� ¼ kNPposTinf,

with per capita movement rate k, herd size N, herd expected

infectious lifetime Tinf and average prevalence of infectives

during the infectious lifetime Ppos. This is conceptually similar

to the SIR model formula R0 ¼ b=g if one considers substitut-

ing the rate at which new infectious individuals are formed, b,
with the average rate at which infectives leave herds kNPpos,

and substituting in the expected infectious period, 1/g, with

the expected time disease persists in the herd, Tinf.

2.1. Derivation of R*
Consider an SIS disease dynamic in a metapopulation of

herds each containing N individuals. In the absence of infec-

tion, individuals die and are replaced with susceptibles at per
capita rate m. We assume frequency-dependent disease trans-

mission with transmission rate b, recovery at per capita rate g

and a per capita movement rate between herds of k.

For analytic tractability, we maintain constant herd size

by assuming that the birth and death processes are coupled.

Thus, the status of each herd may be defined by just the

number of infectives, i, because the number of susceptibles

is s ¼ N 2 i. We consider a homogeneous metapopulation

where we assume undirected movement between herds,

and that movements are equally likely between any herds.

We choose to represent the metapopulation dynamics

using the master equation approach (also known as the Chap-

man–Kolmogorov forward equation, see [36] for a detailed

explanation) that allows us to capture the probability of a

herd being in a state with i infectives. We begin by considering

the respective rates l(i) and g(i) at which infectives are lost and

gained. We assume when an animal leaves a herd it is replaced

with a susceptible or infected individual in proportion to their

prevalence in the metapopulation. Consequently, l(i) and g(i)
depend on PS and PI, the mean prevalence of susceptibles

and infectives in the metapopulation, i.e.

PI :¼ 1

N

XN

i¼0

ipi, PS :¼ 1� PI,

where pi is the probability that a herd contains i infectives.

In a herd with i infectives, the net loss of infectives owing

to movements is kPSi (because a proportion PS of replace-

ments are susceptible); therefore, the net loss of infectives

via mortality, recovery and movement is

lðiÞ ¼ miþ giþ kPSi:

Similarly, the net gain of infectives owing to movements

is equal to the net loss of susceptibles, which is given by

kPIs. Therefore, the net gain of infectives via disease trans-

mission and movement is

gðiÞ ¼ bsi
N
þ kPIs,

where s ¼ N 2 i.
We may now write down the master equation governing

the probability pi(t) of a herd containing i infectives at time t:

dpi

dt
¼ þgði� 1Þpi�1 � ½gðiÞ þ lðiÞ�pi þ lðiþ 1Þpiþ1,

for i ¼ 1,2, . . . ,N and subject to

pNþ1 ¼ 0, and p0 ¼ 1�
XN

i¼1

pi:

Here, pðtÞ ¼ ðp0, . . . ,pNÞ` is a vector of length N þ 1.

Removing the disease-free state i ¼ 0, gives q(t), a vector

of length N describing the probability of i infectives in the

infectious subsystem.

To determine R*, we first linearize around the disease-free

state q�DF ¼ ð0, . . . ,0Þ`. For qi close to the disease-free state for
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i ¼ 1, . . . ,N, we obtain

dq1

dt
¼ þkPIN �

bs
N
þ mþ gþ k

� �
q1 þ 2ðmþ gþ kÞq2

and

dqi

dt
¼ þbðsþ 1Þ

N
ði� 1Þqi�1 �

bs
N
þ mþ gþ k

� �
iqi

þ ðmþ gþ kÞðiþ 1Þqiþ1:

This can be written in matrix form

dq

dt
¼ Aq ¼ ðT þ SÞq,

where A is the Jacobian matrix, and is decomposed into

ðT þ SÞ, where T is the matrix of transmissions, and S is

the matrix of transitions. Here

Tij ¼ kdi1j,

where dij ¼ 1 if i ¼ j and 0 otherwise, i.e.

T ¼

k1 kj kN
0 � � � 0

..

. . .
. ..

.

0 � � � 0

0
BBB@

1
CCCA

and

Sij ¼

þbðsþ 1Þ
N

ði� 1Þ if j ¼ i� 1

� bs
N
þ mþ gþ k

� �
i if j ¼ i

þðmþ gþ kÞðiþ 1Þ if j ¼ iþ 1
0 otherwise

8>>>>>><
>>>>>>:

:

For the metapopulation model, the interpretation of T and

S differs from the single population model as follows. In a

single herd model, T describes the production of new infec-

tions via within-herd transmission [34]; however, in the

metapopulation model, it represents the production of new

infected herds via movement of infected individuals from an

infected herd to a susceptible one. In a single herd model,

S represents transitions between different disease states; in

the metapopulation model, it represents the transitions

between different states (in this case, different numbers of

infectives) of an infected herd via within-herd transmissions,

recoveries or mortalities, and movement of infectives to

already infected herds.

As above, the matrix S ¼ �S�1 is the matrix of sojourn
times, where the entry Sij is the expected time that a herd cur-

rently observed in state j will thereafter spend in state i.
Because infected herds are assumed to begin with a single

infective (i.e. i ¼ 1), the total expected infectious period, Tinf,

is the sum of the times spent in each state, i.e. the sum of the

entries in column 1, gives

Tinf :¼
XN

i¼1

Si1:

As T is zero everywhere other than the first row, the NGM

of large domain KL ¼ �TS�1 is also zero everywhere except

the first row (in this case, the dominant eigenvalue of KL is

equal to the first entry of KL). The only state-at-infection is I1,
and so K ¼ [KL]11. Thus, R* is given by

R� ¼ K11 ¼ k
XN

i¼1

iSi1:

The expected proportion of time spent by a herd in state i,
having started in state 1, is given by Si1/Tinf. Using this, we

now define the expected prevalence in an infected herd,

Ppos, by

Ppos :¼ 1

N

XN

i¼1

iSi1=Tinf ¼
1

N
R�
kTinf

Rearranging, we obtain

R� ¼ kNPposTinf: ð2:1Þ

Therefore, R*, the expected number of secondary infected

herds, is (intuitively) given by the product of the expected

rate at which infectives leaving a herd (kNPpos), and the dur-

ation of the infection in a herd (Tinf ). This form is instructive,

both because of its close relation to the definition of R0 via b

and g, and because calculating S�1 directly may be computa-

tionally infeasible for even moderately complicated models,

but it can be relatively straightforward to calculate Ppos and

Tinf numerically (see §2 of the electronic supplementary

material).
2.2. Dependence of R* on movement rate, R0,
heterogeneity and implications for control

2.2.1. Features of R*
In this section, we illustrate the features of R* within a metapo-

pulation of herds using SIS model dynamics. We use the

formulation of R0 that reflects the primary infective’s total

capacity to generate secondary cases, irrespective of movement

between herds (see §1.1). Then, for an underlying R0 . 1, R* is

zero in the absence of movements, rises above 1 as the move-

ment rate increases, peaks at an intermediate movement rate,

and then declines to 1 from above (figure 1a). Note that, for

an underlying R0 � 1, R* approaches 1 for large movement

rates from below (not shown). R* provides a threshold for per-

sistence of infection in the metapopulation as indicated by the

quasi-equilibrium proportion of infected herds: zero for R* � 1,

and greater than zero for R* . 1 (figure 1b).

R* initially rises, because the disease multiplies within the

herd before infectives are exported to other herds via move-

ment. However, R* eventually declines as it becomes more

likely that the primary infective leaves the herd before it

has a chance to transmit infection within the herd (or recover

or die). This results in an intermediate peak occurring when

movement is low enough that the disease is sustained

within the herd, but fast enough that it can reach other

herds before being removed by stochastic extinction.

The peak in R* increases in magnitude and shifts to lower

movement rates as R0 increases (figure 2a) with a correspond-

ing shift in the threshold for persistence (figure 2b). In addition,

for the same R0, slowly progressing diseases (i.e. those with a

low recovery rate; figure 2a, red curves) have a higher equili-

brium proportion of infected herds at the same movement

rate than a rapidly progressing disease (i.e. those with a high

recovery rate; figure 2a, blue curves), with corresponding

shifts in the threshold for persistence (figure 2b).
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From the expression for R* (equation (2.1)), we see that

herd size N contributes to R* via the number of movements

out of the herd and also via its potential effect on the preva-

lence when infected, Ppos, and the persistence time, Tinf. The

net result is substantial nonlinear increases in R* with

increased herd size, but relatively little change in the position

of the peak in R* (figure 2c).

2.2.2. Implications for control
To simulate the effect of control measures, we define, for any

set of individuals selected to move, p to be the proportion of

infectious individuals that are treated or prevented from

bringing the disease into another group. This interception

occurs at the point of movement, therefore, only the remain-

ing proportion 1 2 p of individuals successfully carry the

infection to another herd. We therefore obtain the effective

reproduction ratio in the presence of control, R*( p), which is

R�ðpÞ :¼ ð1� pÞR�:

This leads to an important result. Disease can spread in the

presence of control only if R*( p) remains above 1, leading

to ‘islands’ of persistence (figure 3b).

Using our metapopulation model (see §2 of the electronic

supplementary material), we calculated R*( p) for a range of

levels of disease intervention and the corresponding equili-

brium proportion of infected herds in the metapopulation.

Near the R* peak (intermediate movement rate), even high

levels of disease intervention may fail to control the disease

(figure 3a, yellow curve), but when the movement rate is
high even low levels of control may be sufficient to reduce

R*( p) to below 1 and prevent the disease from spreading.

Consequently, for a range of intermediate values of the

movement rate the infection persists in the meta-population

for a given level of control, but at higher or lower movement

rates, infection cannot persist under the same level of control

(e.g. figure 3b, yellow curve). The range of values of the

movement rate for which disease persists depends on the

level of control applied.
3. Next-generation matrix approach for
heterogeneous systems

In this section, we demonstrate how R* may be constructed

for the more complex disease systems and explore the

impact of such heterogeneity on R*.
3.1. Multiple disease categories
Consider a disease with two possible infectious states: types

A and B (e.g. a regular shedder and a supershedder). As

above, we assume the herd size N is constant, so the herd

has potential disease states xa,b, where a and b correspond

to the number of individuals in a herd in categories A and

B, respectively; here 0 � aþ b � N, and the disease-free

state is S ¼ x0,0. The state space x(t) is obtained by enumerat-

ing over all the possible infected herd states, and then the

NGM with large domain KL needed to calculate R* may be

constructed by proceeding as before. Here, we illustrate the

process.

Because infection in a herd is initiated by one individual,

a disease with a single infectious category has one entry

point x1, whereas with two infectious categories, there are

two entry points: x1,0 and x0,1, depending on which type

of infective first enters the disease-free herd. Therefore, in

this case, the transmission matrix T (and hence also KL)

has two rows with non-zero entries, and therefore, K is a

2 � 2 matrix.

Any given herd state can be reached by a limited number

of adjacent states via the various event types, and each row in

S will have as many entries as possible transitions (e.g. here

under the constraint of fixed herd size N there are four, cor-

responding to increases in A and B due to infection, and

decreases owing to recovery or mortality). The matrix

S ¼ �S�1 of sojourn times is dense, but as above we exploit

the fact that the columns corresponding to the entry points

determine the total infection duration Tinf, which now

depends on which entry point is reached (i.e. we must now

consider both TA
inf and TB

inf).

Extracting the elements of KL relating to the entry points,

we obtain the reduced NGM K, which has entries:

K ¼
kNPA

posðAÞTA
inf kNPB

posðAÞTB
inf

kNPA
posðBÞTA

inf kNPB
posðBÞTB

inf

 !

¼
KAA KAB

KBA KBB

� �

where, for example, PA
posðBÞmeans the expected prevalence of

B given entry point A, and TA
inf is the expected duration of the

infection in the herd given entry point A.

Here, KBA is the number of secondary herds initially

infected by a class B individual that are caused by a primary
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infected herd initially infected by a class A individual. This is

convenient, as it means that the entries in K may be com-

puted via simulation of a single herd, by seeding an

infection with an infective of category j, and approximating

each entry Kij as the number of category i infectives moving

to susceptible herds (averaged over a sufficiently large

number of repeated simulations).

Note that because R* is a function of all entries in K, it is

possible that a disease with multiple infectious categories

may have multiple R* peaks (this phenomenon is just

distinguishable in the curve for BHV in figure 5).
3.1.1. Example illustrating the impact of within-herd
heterogeneity in infectiousness

Consider a livestock infection such as E. coli O157, which

exhibits substantial heterogeneity between individuals in

transmissibility [37–39]. Here, we characterize this heterogen-

eity using a simple low shedder–high shedder version of an

SIS model which we call the SLHS model (see §1.2 of the elec-

tronic supplementary material). We assumed that susceptibles

S become either supershedders H (high) or regular infectives L
(low), with probabilities p and 1 2 p, respectively, and that

supershedders are h times more infectious than regular infec-

tives. To illustrate the effect of heterogeneity on R*, we chose

h, p and a normalizing constant (see §1.2 of the electronic sup-

plementary material) to ensure that R0 remains constant as we

vary the relative contributions to transmission from the low

and high shedders.

We calculate R* by simulating herds where the initial

infection is either a low or high shedder, and each case
populates a column in the NGM

K ¼
kNPL

posðLÞTL
inf kNPH

posðLÞTH
inf

kNPL
posðHÞTL

inf kNPH
posðHÞTH

inf

 !
,

as described in §3.1.

The highest R* comes from the most homogeneous

disease transmission (figure 4a). The explanations for this are

a combination of (i) susceptible depletion, i.e. while R0 (which

ignores susceptible depletion) remains constant, the initial

supershedder, when highly infectious, is unable to reach its

full potential owing to a lack of susceptibles and (ii) an

increased chance of stochastic extinction when the majority of

the transmission is due to the relatively rare supershedders.

3.2. Between-herd heterogeneity
We now consider the case of an SIS disease with heterogen-

eity in herd size N and movement rate k. Suppose the

population consists of n herd types where a proportion pj

of herds have Nj individuals and per capita movement rate

kj. The mean herd size is kNl ¼
P

j pjNj, and the mean move-

ment rate is kkNl ¼
P

j pjkjNj. Here the state vector is of size

M ¼
P

j Nj, representing the numbers of infectives for each

herd size fI1
1 , . . . ,I1

N1
, . . . ,In

1 , . . . ,In
Nn
g, where Ij

i is the number

of herds of type j with i infectives.

The transmission matrix T is of size M �M, but has only

n entry points, corresponding to I1
1 to In

1 and is therefore com-

posed entirely of zeros except for n rows. The transition

matrix S is an M �M block matrix, where each diagonal

block is a tridiagonal submatrix of size Nj � Nj (because the

only state change is to increase or decrease the number of
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infectives by 1), and each off-diagonal block is an Ni � Nj

zero submatrix (because herds do not change size). S is tri-

diagonal, and so S ¼ �S�1 has dense diagonal blocks.

Consequently, KL is size M �M, and K is n � n.

As above, we avoid calculation of T and S ¼ �S�1 and

proceed by direct calculation of the elements of K. Because

herd ‘susceptibility’ and ‘transmissibility’ are independent

of who is infecting whom, each entry Kij only requires com-

putation of the expected persistence time and the expected

prevalence when infected for each herd type j denoted by

Tj
inf and Pj

pos, respectively. Then, each Kij is the number of sec-

ondary infections in a herd type i corresponding to entry

from a herd of type j. Because

tj
out :¼ kjNjP

j
posT

j
inf,

infectives leave herds of type j, and enter disease-free herds of

type i with probability

si
in :¼ pikiNi

kkNl
,

this gives

Kij ¼ si
intj

out ¼
pikiNi

kkNl
kjNjP

j
posT

j
inf,
and so

K ¼
s1

int1
out � � � s1

intn
out

..

. . .
. ..

.

sn
int1

out � � � sn
intn

out

0
BB@

1
CCA

¼
s1

in

..

.

sn
in

t1
out � � � tn

in

0
BB@

1
CCA:

Because K is the outer product of two vectors, and so all

rows of K are linear multiples of each other, there is just one

non-zero eigenvalue, given by the sum of the diagonal

elements of K, i.e.

R� ¼ TraceðKÞ

¼
Xn

i¼1

si
in � ti

out

¼ 1

kkNl

Xn

i¼1

pikiNi � kNiPi
posT

i
inf

¼
kkN � kNPposTinfl

kkNl
:

ð3:1Þ

This form has natural parallels with the expression for R0 on a

random network:

R0 ¼
kkinkoutl

kkinl
,

where kin and kout refer to the number of infectious in and out

links per node [40]. In our expression, the number of outward

infectious links also captures the within-node disease dynamics

via the terms Pi
pos and Ti

inf for the expected on farm prevalence

while infected and the expected duration of infection.

Note that to maintain herd sizes, we assume that move-

ment in kin equals movement out kout. However, in more

complex scenarios, such as asymmetric cattle movement,

this restriction may be relaxed, relying on within herd

dynamics to maintain herd size. This would lead to more

complex expressions for si
in and tj

out, however this is beyond

the scope of this paper.

3.3. Heterogeneity in herd size N and movement rate k
Now using the NGM method described in §3.2, we

examine how R* in the SIS model depends on heterogeneity

in herd size N and movement rate k. Heterogeneity is created

by keeping a fixed mean, but varying the variance-to-

mean ratio of a gamma distribution (discretized in the case of

herd size).

R* is higher in populations with greater heterogeneity in

herd size (figure 4b), but lower in populations with greater

heterogeneity in movement rate (figure 4c), which can be

explained heuristically as follows. Larger herds are associated

with a lower chance of stochastic extinction [41] and there-

fore, a larger Tinf. Thus, larger herds will have a greater N
and Tinf and therefore contribution disproportionately to R*.

If each herd has its own per capita movement rate ki, then

each herd will contribute differently to R*. As there is a move-

ment rate k* that maximizes R*, the highest R* should occur in

the homogeneous case where ki ¼ k* for all herds. Any hetero-

geneity in ki should reduce R*, as some herds will contribute

less to R*. Consider the extreme case, where the population is

composed of two groups, a small number of herds with high
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ki, which contribute R* � 1, and a large number of herds with

low ki, which contribute R* � 0. Therefore, R* is maximized by

homogeneous movement, and this result is indeed shown in

figure 4c.
4. R* in four important livestock disease systems
We consider four important and epidemiologically different

cattle diseases: BVDV, BHV, Mycobacterium avium ssp

paratuberculosis (ParaTB, the pathogen responsible for Johne’s

disease), and Escherichia coli O157 (E. coli O157). Models

and parameters for the first three are based on non-spatial

deterministic models described by Carslake [42], whereas

those for E. coli O157 are based on [37,43], (see §1 of the elec-

tronic supplementary material).

We calculated R* for each model by populating the NGM K

directly, obtaining each entry KYX by simulation, introducing a

single individual of infectious type X to a susceptible herd, and

counting the number of infectious type Y leaving the herd via

movement until the infection died out in the primary herd. To

find the associated quasi-equilibrium proportion of infected

herds, we also simulated a metapopulation of n ¼ 100 herds

each with N ¼ 50 individuals. Our assumption of a homo-

geneous metapopulation means that we assume undirected

movement between herds, and that movements are equally

likely between any herds.

We considered movement rates k between 0.0001 and 100

per year (see §2 of the electronic supplementary material for

details on the methods used). Cattle typically move around

one to four times during their lifetime, which has a mean

of around 3 years [44]. Consequently, the range of move-

ments of most interest is around k ¼ 1 (one movement per



2.5
2.0
1.5
1.0
0.5

0

1.0
0.8
0.6
0.4
0.2

0

1.0

200

p = 0
p = 0.2
p = 0.4
p = 0.6
p = 0.8
p = 1.0

150

100

50

0

0.8
0.6
0.4
0.2

0

1.0
0.8
0.6

pr
op

or
tio

n 
of

in
fe

ct
ed

 h
er

ds
pr

op
or

tio
n 

of
in

fe
ct

ed
 h

er
ds

R*

R*

0.4
0.2

0

1.0
0.8
0.6
0.4
0.2

0

10–4 10–3 10–2 10–1

movement rate, k (years–1) movement rate, k (years–1)
1 10 102 10–4 10–3 10–2 10–1 1 10 102

10–4 10–3 10–2 10–1 1 10 102 10–4 10–3 10–2 10–1 1 10 102

2.0

1.5

1.0

0.5

0

20

15

10

5

0

(b)(a)

(c) (d )

Figure 6. R* and proportion of infected herds against movement rate k for (a) E. coli O157, (b) ParaTB, (c), BHV and (d ) BVDV. n ¼ 100 herds were simulated (see
§1 of the electronic supplementary material for full details). While not intended as an exact representation of reality, the vertical dashed line at k ¼ 1 represents
the area roughly closest to real life movement rates. Higher k would make E. coli O157 and BVDV more persistent, while lower k would favour ParaTB. The highest
R* is seen in ParaTB (Tinf is extremely high for low k, and the value give for R* here is only a lower bound), and this corresponds to ParaTB being difficult to treat
when k is low. Note the double peak for R* in BHV (c), and the green line dips below 1 around k ¼ 1; while the proportion of infected herds is calculated at t ¼
20, the disease may ultimately be unable to persist for longer time periods.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160531

9

animal per year). However, these models are intended to

expose the range of behaviours of R*, rather than make pre-

cise predictions, and thus we consider a wider range of

movement rates than is typically recorded.

For each of the exemplar diseases, R* reaches an intermedi-

ate peak above 1 for some intermediate movement rate

(figure 5). The slowly progressing ParaTB has a peak at low

movement rates, whereas the rapidly progressing BVDV has

a peak at high movement. BHV and E. coli O157 have inter-

mediate transmission rates, and thus peak at intermediate

movements; however, the two categories of infective for BHV

lead to a double peak.

Comparing R* with the proportion of infected herds

(figure 6) shows that while all diseases achieve the maximum

proportion of infected herds for high movement rates in the

absence of disease intervention, even a relatively weak control

effort ( p ¼ 0.2, indicating that 20% of infected individuals are

identified and treated, blue lines) is sufficient to control the dis-

ease at high movement rates. With low movement rates,

ParaTB is difficult to control (even a high control effort fails

to control infection), but with greater movement effective

control becomes easier.
5. Discussion
The work reported here is motivated by the desire to control

disease in regional and national livestock populations and

addresses the lack of suitable metrics for determining the
level of effort required when movement-based disease control

is used to reduce disease transmission that is primarily driven

by movement (trading) of livestock.

We describe a novel formulation of the threshold for dis-

ease spread in a structured population, R*, that explicitly

captures group to group transmission via animal movements.

While a number of previous studies have addressed the impact

of group structure on disease invasion, some analytically

[29,30,45] and some via statistical and simulation methods

[19,24], this is the first demonstration of a threshold parameter

for disease invasion in a metapopulation that captures within-

group stochastic dynamics coupled with the explicit movement

of infected individuals between groups.

Following Diekmann and Heesterbeek, we use an NGM

approach to calculate R* and show how this may be used

for disease systems with heterogeneities and multiple infec-

tious states. We show for a simple disease system that R* is

given by the intuitive expression R� ¼ kNPposTinf, where k

is the movement rate, N is the herd size, Tinf is the expected

persistence time and Ppos is the expected prevalence in an

infected herd. Note that this factorization of R* is non-trivial

and accounts for the fact that prevalence and persistence time

may be correlated. Pellis et al. [46] make a similar observation

about their factorization of R* for household models.

A key feature is the presence of a peak in R* at intermedi-

ate movement rates. This novel observation arises, because

we have explicitly modelled the herds’ gain and loss in infec-

tives that occurs when disease is spread by livestock

movements. In household models where the contact process
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resulting in disease transmission is captured phenomenologi-

cally, there would be no such peak [30,32].

The R* peak depends on the interaction between movement

rate k, the within-herd disease persistence time Tinf, and the

expected prevalence Ppos in an infected herd. Movement con-

tributes directly to R*, but crucially also removes infectives

from the herd, and therefore can reduce Tinf and Ppos. It is

this trade-off that leads to the characteristic intermediate

peak. Theoretically, for very high movement rates, an infective

animal would arrive on farm and then immediately leave with

virtually no opportunity to make infectious contacts, recover or

die; for this reason R* tends to 1 at high movement rates.

The peak in R* has important consequences for control

directed at livestock moving between herds. The degree of con-

trol effort required also peaks at intermediate movement rates,

and consequently a given level of control may be sufficient to

prevent persistence at low or high movement rates, but be insuf-

ficient over a range of intermediate movement rates. This

phenomenon arises, because increased movement exposes

more animals to testing, with the consequence that controls

need to be less effective at identifying infected animals at high

movement rates to achieve a given reduction in prevalence.

R* increases dramatically with increased herd sizes that

substantially increase the persistence of infection. In addition,

rather modest values of R0 can, depending on the disease

system, be associated with values of R* that are orders of

magnitude larger. This finding indicates that for some disease

systems control directed at reducing R0 may be more effective

than controls directed at animals moving between holdings.

We also demonstrated that R* is maximized when there is

the least heterogeneity between farms in movement rates and

when there is the least individual variation in infectiousness;

conversely, increasing heterogeneity in herd size increases R*.

Our exemplar disease models and their parametrizations

were selected, not to give precise predictions, but to provide

a range of R* behaviours across four important livestock dis-

eases. The different disease dynamics result in quite different

R* profiles, leading to potential trade-offs between the control

of different diseases. All the exemplar diseases have low R*

near the intermediate per capita movement rate of one move-

ment per year, but our predictions indicate that ParaTB and

BVDV would have much higher R* at lower movements for

ParaTB and at higher movements for BVDV. ParaTB (Johne’s

disease), a slowly progressing disease which persists in a

herd for a long time, has an R* that peaks at low movement

rates indicating that it might prove difficult to control if move-

ment rates were reduced; however, increasing movement rates

slightly could expose it to sufficient intervention that it would

be unable to spread between herds.
In contrast, E. coli O157, a rapidly progressing disease

with an R* peak at higher movement rates may be better

able to persist in the face of movement-based controls at

higher movement rates. BHV, which can also persist in

herds for long periods is able to invade at lower movement

rates than would be needed for invasion by E. coli O157 or

BVDV. These findings concur with the observations that

chronic diseases are more likely to invade than acute diseases

with the same R0 [29].

The consequence of the differing R* profiles is that if, for

example, movement restrictions were put in place to reduce

E. coli O157, ParaTB could become more difficult to control

via movement-based controls. On the other hand, if move-

ment rates increased, ParaTB could be easier to control via

movement-based controls, at the cost of increased prevalence

of E. coli O157. Overall, our results indicate that at current

livestock movement rates, disease control implemented at

the point of between-farm movement alone can be sufficient

to control some pathogens, but for infections such as ParaTB

control at herd level is likely to be needed in addition.

Inevitably, the models analysed in this paper include a

number of simplifying assumptions; nevertheless, our meth-

odology (a key result of this paper) is applicable to more

realistic scenarios. The extensive explorations presented in

this paper indicate that the following results will hold in

more complex scenarios: R* will peak and decline, leading

to ‘islands’ of persistence when control is implemented.

In addition, we anticipate that different diseases will have

different R* profiles, potentially leading to conflicting

requirements when controlling multiple diseases.

In summary, our formulation of R* provides novel theor-

etical insights into the likely effectiveness of alternative

control strategies and an important addition to the selection

of tools available to epidemiologists to be used in conjunction

with R0 for disease control in livestock systems.
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