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Background: Chronic obstructive pulmonary disease (COPD) is a major global health concern, and while traditional pulmonary 
function tests are effective, recent radiomics advancements offer enhanced evaluation by providing detailed insights into the 
heterogeneous lung changes.
Purpose: To develop and validate a radiomics nomogram based on clinical and whole-lung computed tomography (CT) radiomics 
features to stratify COPD severity.
Patients and Methods: One thousand ninety-nine patients with COPD (including 308, 132, and 659 in the training, internal and 
external validation sets, respectively), confirmed by pulmonary function test, were enrolled from two institutions. The whole-lung 
radiomics features were obtained after a fully automated segmentation. Thereafter, a clinical model, radiomics signature, and radiomics 
nomogram incorporating radiomics signature as well as independent clinical factors were constructed and validated. Additionally, 
receiver-operating characteristic (ROC) curve, area under the ROC curve (AUC), decision curve analysis (DCA), and the DeLong test 
were used for performance assessment and comparison.
Results: In comparison with clinical model, both radiomics signature and radiomics nomogram outperformed better on COPD 
severity (GOLD I–II and GOLD III–IV) in three sets. The AUC of radiomics nomogram integrating age, height and Radscore, was 
0.865 (95% CI, 0.818–0.913), 0.851 (95% CI, 0.778–0.923), and 0.781 (95% CI, 0.740–0.823) in three sets, which was the highest 
among three models (0.857; 0.850; 0.774, respectively) but not significantly different (P > 0.05). Decision curve analysis demonstrated 
the superiority of the radiomics nomogram in terms of clinical usefulness.
Conclusion: The present work constructed and verified the novel, diagnostic radiomics nomogram for identifying the severity of 
COPD, showing the added value of chest CT to evaluate not only the pulmonary structure but also the lung function status.
Keywords: chronic obstructive pulmonary disease, radiomics, computed tomography

Introduction
Chronic obstructive pulmonary disease (COPD) is a common and prevalent respiratory disorder, which also ranks the top 
3 leading cause of global mortality. According to the latest epidemiological data, COPD was diagnosed in approximately 
300 million people (4% of the global population) in 2021, resulting in 3.2 million deaths annually.1 The gold standard for 
diagnosing and evaluating COPD is the pulmonary function test (PFT),2 which yields the forced expiratory volume in 
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1 second per forced vital capacity (FEV1/FVC) and FEV1 percentage of predicted (FEV1% predicted). According to 
FEV1% predicted, COPD severity was classified into mild, moderate, severe and very severe.

The epidemiological characteristics of COPD severity is varied in each severity classification. A research in UK 
indicated that the distribution of COPD patients among different severities was 26.8% for GOLD I, 50.3% for GOLD II, 
19.2% for GOLD III and 3.8% for GOLD IV.3 The same trends are also found in another research (GOLD I: 40.1%; 
GOLD II: 51.3%; GOLD III: 7.7% and GOLD IV: 0.9%).4 The severity of COPD is related to the exacerbation risk, 
mortality and complications. Increasing severity of COPD would result in increased frequency of exacerbation,5 a major 
contributor to the mortality. John et al demonstrated that patients with mild COPD had a mean of 0.82 exacerbation 
per year, and the rates increased to 1.17, 1.61, and 2.01 in patients with moderate, severe, and very severe disease, 
respectively.6 Moreover, COPD presents with systemic manifestations or comorbidities, including cardiovascular disease, 
lung cancer, and sarcopenia. These pulmonary or extrapulmonary manifestations can induce dyspnea, functional decline, 
reduced exercise capacity, decreased quality of life, and increased mortality.7,8 Previous study has revealed significantly 
higher complication rates in severe/extremely severe COPD patients with non-small cell lung cancer (NSCLC) when 
compared to the mild-to-moderate COPD patients with NSCLC.9 In addition, the treatment varies with the severity of 
COPD.10 Therefore, evaluating the severity of COPD is of great significance.

COPD is characterized by the heterogeneity of the whole-lung. However, PFTs reflect the global condition,11,12 and it 
cannot reflect the regional change of the lung tissue. Moreover, PFT requires the patients’ cooperation to a large extent 
and may be inconvenient. Especially during the severe respiratory distress syndrome caused by COVID-19, PFT is more 
challenging. Imaging plays a great role in the focal structure and functional changes of COPD. It has been reported that 
different severity of COPD has the different CT morphological features. CT findings of COPD include large airway 
inflammation, emphysema, and non-emphysematous obstruction caused by small airway disease.13 Moreover, the 
presence of worse emphysema, airway wall thickening, and/or bronchiectasis observed on chest CT images are 
associated with COPD development.14 Except for the visual and qualitative analyses, some studies have used quantitative 
imaging for assessing COPD severity and achieved promising results. Cho et al15 demonstrated that quantitative 
pulmonary vascular features turned out to be associated with COPD severity and emphysema extent. Estrella et al16 

reported an automatic quantification algorithm to assess the association of tracheal shape with COPD severity. Although, 
quantitative computed tomography (QCT) has various potential applications in the clinical setting, most studies focus on 
only one or two aspects of the lung density, airways, and pulmonary vessels. As we know, COPD is a highly 
heterogeneous disease, the comprehensive evaluation from all the aspects of pathological changes including lung density, 
airways and pulmonary vessels, is very important.

Significant progress has been achieved in applying artificial intelligence in chest diseases.17 Radiomics has emerged 
as a technology that extracts high-throughput information from quantitative imaging features and correlates these factors 
with clinical information in different disorders.18–20 In general, radiomics features should be extracted from the region of 
interest (ROI) of the chest CT images. However, the diffuse and heterogeneous characteristics of COPD makes it difficult 
to determine a focal and representative ROI. Some studies on COPD severity mainly focus on focal ROIs or model- 
interpretation methods.18,21 Our team has found that whole-lung radiomics can differentiate the malignant lung nodules 
from benign ones, and the lung cancer radiomics derived from the one-stop chest CT can evaluate the lung function 
status.22,23 Therefore, we hypothesize that the whole-lung radiomics features derived from chest CT could identify the 
severity of COPD. If CT-based whole-lung radiomics can identify COPD severity in a routine clinical setting, it would 
add the value of chest CT, especially for patients difficult to perform the PFT, not only providing the morphological 
information but also the lung function status. In order to make it easy to use in clinical settings, the present study focused 
on developing and validating a radiomics nomogram to identify COPD severity in a two-center COPD cohort.

Materials and Methods
Patients
This multicenter study included patients with COPD from two centers, and the study protocols were approved by the 
ethics committee of the respective institutional centers and registered on clinical trial (ChiCTR2300069929). Due to the 
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retrospective nature, the informed consent was waived. Full inclusion and exclusion criteria are detailed in the 
Supplementary material 1. A total of 1099 patients with COPD who underwent PFT between September 2015 and 
April 2023 were retrospectively collected in the CSD-COPD cohort. The Global Initiative for Chronic Obstructive Lung 
Disease (GOLD) guidelines were first published in 2001 and have been updated annually. The diagnosis and severity of 
COPD was based on clinical history and spirometry criteria according to the GOLD guidelines. COPD was regarded as 
the ratio of post-bronchodilator FEV1 to FVC < 0.7. In this study, the severity of COPD was divided into two stages, 
namely, mild-moderate airflow obstruction (GOLD grade I–II, FEV1 ≥ 50% of predicted) and severe/very severe airflow 
obstruction (GOLD grade III–IV, FEV1 < 50% of predicted) according to GOLD criteria.2 Demographic, including age, 
gender, height, weight, BMI, smoking status and pack-year smoking history, were derived from medical records. 
However, pack-year smoking history was not available for the majority of patients (greater than 50% missing values) 
and therefore could not be analyzed. For model training and verification, patients from Center 1 were randomly divided 
into the training and internal validation sets in a ratio of 7:3. Figure 1 displays the subject screening process according to 
the eligibility criteria.

CT Image Acquisition and Pulmonary Function Test
The participants underwent non-contrast chest CT with one of the following scanners, Siemens Force, Philips Brilliance 64 
(Philips Healthcare), Philips Brilliance 256 (Philips Healthcare) or United Imaging uCT760 (United Imaging Healthcare) 
scanner. Image smoothing was applied to decrease the number of mis-registrations of noisy images, ie removing high- 
frequency noise and ensuring the result reliability. CT machine parameters are detailed in Supplementary material 2. PFT 

Figure 1 Flowchart showing patient screening.
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was performed using CHEST Multifunction Spirometer HI-801 (Japan). The interval of Chest CT and PFT was within 
2 weeks.

Whole-Lung Segmentation
The automatic segmentation based on our previous studies was utilized.24–26 Briefly, a publicly accessed deep-learning 
model, U-net (R231) (https://github.com/JoHof/lungmask), was used to automatically segment the right lung and left 
lung. The same segmentation process and assessment method was used throughout the study.25,26

Extraction of Radiomics Features
Open-source software PyRadiomics (version 3.0.1, https://pyradiomics.readthedocs.io/en/latest/) was utilized for extracting 
radiomics features. Prior to feature collection, image preprocessing was carried out to correct diverse pixel spacings of CT 
image volumes from cases obtained from two centers. Standard image preprocessing was detailed in Supplementary material 
3,27–29 which is related to reducing image noise and ensuring result reliability. The Dice coefficient was calculated to analyze 
the consistency between manually delineated whole-lung regions and automatically delineated ones. The first-order, shape, 
and texture features were then collected and normalized using Z-score normalization.30

Radiomics Feature Screening and Model Establishment
Optimal radiomics features were selected using the following approach. First, redundant features whose correlation 
coefficient with other features is greater than 0.90 were removed. After highly reproducible and reliable features were 
determined, the remaining features from different hospitals were harmonized using the combat method. Harmonized 
features were subsequently applied to construct and validate the radiomic model. During training, feature engineering 
was conducted to select the most predictive features and exclude redundant ones. Second, irrelevant and redundant 
features were eliminated using the minimal Redundancy Maximal Relevance (mRMR) algorithm. Then, 10 cross- 
validations were conducted to adjust the penalty parameter, and the best feature with a non-zero coefficient was selected. 
Finally, the products of all chosen features with their corresponding coefficients were summed up to calculate the rad- 
score, based on LASSO logistic regression coefficients. Thereafter, the radiomics features-based logistic regression 
models were constructed. Radiomics feature selection and model establishment were carried out using a training set.

Risk factors with statistical significance were acquired using univariate logistic regression, which was then incorpo
rated into multivariate regression for establishing the clinical and combined models. Last, a nomogram was constructed 
to visualize the combined model and graphically evaluate variable importance while calculating the prediction accuracy. 
Nomogram calibration was assessed by plotting calibration curves (Hosmer–Lemeshow test), while nomogram clinical 
practicability was assessed using a decision curve.

Statistical Analysis
Results were examined using R software (version 4.1.0 https://www.R-project.org). The classified data were analyzed 
using the chi-square test or Fisher’s exact test, whereas continuous data were analyzed using the Mann–Whitney U-test 
and independent t-test for comparing baseline patient features. The ROC curve was analyzed to evaluate model 
prediction accuracy. AUCs among diverse models were compared using the DeLong test. P-values were normalized 
by the false-discovery rate for multiple comparisons. p < 0.05 was considered significantly significant.31 The formulas for 
calculating Dice coefficient, accuracy, sensitivity, specificity, and AUC were provided in Supplementary material 4.

Results
Patient Characteristics and Construction of Clinical Model
Table 1 displays the clinical features of all the datasets. Among the 1099 patients with COPD (837 males, 262 females; age 
ranging from 25 to 93 years with an average age of 67.31 ± 9.83 years), 838 patients were mild-moderate COPD and 261 ones 
were severe/very severe COPD. The training set included 308 patients, including 233 in the GOLD I–II group and 75 in the 
GOLD III–IV group. The internal validation set included 132 patients, including 104 in the GOLD I–II group and 28 in the 
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GOLD III–IV group. 659 COPD patients from Center 2, including 501 in the GOLD I–II and 158 in the GOLD III–IV, were used 
as the independent external validation set. There was significant difference in gender between the GOLD I–II and GOLD III–IV 
groups in the training set and two validation sets (p < 0.05, Table 1). However, there were no significant differences in age and 
weight (P > 0.05). Height did not significantly differ between GOLD I–II and GOLD III–IV patients in the internal validation set. 
Besides, there were significant differences between two groups in variables of BMI and smoking status only in the external set (P 
< 0.05).

Univariable and multivariable analysis identified that age [odds ratio (OR) 1.04; 95% confidence interval (CI) 
1.00–1.07; p = 0.025] and height (OR 1.06; 95% CI 1.02–1.10; p = 0.004) were independent predictors of the severity 
of COPD, and that these were also effective factors for clinical model construction. (Table 2)

Agreement Assessment Between Manual Segmentation and Fully Automatic 
Segmentation
Assessment of segmentation was performed using Dice index, an objective metric that quantifies the spatial overlap 
between two contours.32 The mean Dice coefficient between the manual and automatic segmentation was 0.97 ± 0.06.

Feature Selection and Radiomics Signature Building
There were altogether 1,218 radiomics features obtained based on CT images from every COPD case. Of all the 1218 
features, 100 features were original features, 430 features were processed applying Laplace of Gaussian filter and 688 
features were processed applying Wavelet filter. More details about the extracted whole-lung radiomics features were in 
Supplementary material 5. At first, after Pearson’s correlation analysis (absolute value of Pearson correlation coefficients 

Table 1 Patient Features of Three Datasets (Mean ± Standard Deviation)

Characteristics Training Set  
(N = 308)

Internal Validation set  
(N = 132)

External Validation set  
(N = 659)

GOLD I–II 
(N = 233)

GOLD III–IV 
(N = 75)

p value GOLD I–II 
(N = 104)

GOLD III–IV 
(N = 28)

p value GOLD I–II 
(N = 501)

GOLD III–IV 
(N = 158)

p value

Age 67.4±9.6 69.7±9.6 0.075 65±10.3 68.7±8.9 0.084 70.18±0.5 70.39±0.7 0.827

Gender 0.025 0.001 <0.001

Male 182(78.1) 68(90.7) 82(78.8) 26(92.9) 340(67.9) 139(88.0)

Female 51(21.9) 7(9.3) 22(21.2) 2(7.1) 161(32.1) 19(12.0)

Height 162.5±7.6 165±6.3 0.010 163.5±8.1 163.6±8.1 0.967 163.2±0.4 167.1±0.6 <0.001

Weight 63.6±11.3 65±10.7 0.365 62.6±11.6 61.9±12.6 0.776 65.9±0.5 66.6±0.9 0.490

BMI 24±3.6 23.8±3.7 0.703 23.4±3.5 23±3.4 0.590 24.7±0.2 23.8±0.3 0.031

Smoking status 0.08 0.713 <0.001

Current Smoker 68(29.2) 18(24.0) 33(31.7) 11(39.3) 112(22.4) 53(33.5)

Former Smoker 38(16.3) 21(28.0) 18(17.3) 5(17.9) 54(10.8) 28(17.7)

Non-smoker 127(54.5) 36(48.0) 53(51.0) 12(42.9) 335(66.9) 77(48.7)

Table 2 Univariable and Multivariable Logistic Regression Analysis for Radiomics Nomogram

Characteristics Univariate Regression Multivariate Regression  
(Clinical Model)

Multivariate Regression  
(Radiomics Nomogram)

OR [95% CI] P-value OR [95% CI] P-value OR [95% CI] P-value

Age 1.03 [1.00, 1.06] 0.08 1.04 [1.00, 1.07] 0.025 1.03 [0.99, 1.07] 0.107

Height 1.05 [1.01, 1.09] 0.01 1.06 [1.02, 1.10] 0.004 1.01 [0.96, 1.06] 0.691
Gender 0.37 [0.16, 0.85] 0.02 – – – –

Radscore 3.32 [2.44, 4.51] <0.001 – – 3.32 [2.43, 4.54] <0.001
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> 0.9 were eliminated), a total of 241 stable radiomics features were retained. Second, irrelevant and redundant features 
were removed by mRMR, with 30 being preserved. Thereafter, LASSO was carried out for choosing the optimal feature 
subset for constructing the eventual model. Afterwards, optimal radiomics features with non-zero coefficients were 
selected by optimal λ obtained from LASSO regression via 10-fold cross-validation (Figure 2). At last, we chose thirteen 
radiomics features for constructing a radiomics signature. Radscore was calculated by the formula in Supplementary 
material 6.

Individualized Radiomics Nomogram Construction
Based on univariate regression analysis, Radscore (P < 0.05) was identified as another independent predictor of COPD 
severity. Multivariate regression was also carried out to develop the prediction model by integrating Radscore, age and 
height (Table 2).

Figure 3A shows the radiomics nomogram. The formula for calculating the nomoscore can be found in the 
Supplementary material 7. Calibration curves (Figure 3B–D) demonstrated that the nomogram exhibited good calibration 
across all three datasets. An example of application of the nomogram is shown in Figure 4.

Performances of Clinical Model, Radiomics Signature, and Nomogram
Table 3 displays the performance of the clinical model, radiomics signature, and nomogram in the diagnosis of training, 
internal, and external validation sets, respectively. Figure 5A–C display the ROC curves for the three models across the 
three datasets.

The AUC of the clinical model for identifying the severity of COPD of the training set was 0.624, while the AUC for 
radiomics signature was 0.857, and for the nomogram, it was 0.865. The AUCs for the three models of the internal 
validation set were 0.556, 0.850, and 0.851, respectively, and those of the external validation set were 0.642, 0.774, and 
0.781, respectively. The AUC value of the training set increased in radiomics signature compared to that of the clinical 
model (P < 0.001) and in nomogram relative to the clinical model (P < 0.001). Besides, both the AUC values of 
radiomics signature and nomogram markedly increased relative to clinical model in the internal and external validation 
sets (P < 0.001). The differences of AUCs between radiomic nomogram and radiomics signature in training (p = 0.08), 
internal (p = 0.97) and external validation sets (p = 0.25) were not statistically significant.

Figure 5D displays DCA for the three models. According to our DCA results, when the threshold probability for one 
case was >5%, the use of radiomics nomogram for identifying mild-moderate from severe/very severe cases was more 
beneficial than clinical model.

Figure 2 Optimal hyperparameter λ was chosen through LASSO regression by 10-fold cross-validation, and the lowest value indicated the feature best matched the real 
observations (A); Radiomics features of non-zero coefficients were identified by LASSO regression models (B); 11 radiomics features together with associated coefficients 
following dimensionality reduction via LASSO regression (C).
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Discussion
We constructed and validated the radiomics nomogram to identify the severity of COPD by the chest CT-based whole- 
lung radiomics signature incorporating age and height, showing the potential of clinical application feasibility. Moreover, 
radiomics signature could stratify the COPD severity independently, indicating the added value of chest CT to evaluate 
not only the pulmonary structure but also the lung function status.

The pretherapeutic assessment of COPD severity is of great importance, because it contributes to determining patient 
prognosis directly. It has been proven that the significantly higher complication rates in severe/extremely severe COPD 
patients were found in comparison with the mild-to-moderate COPD patients.9 Therefore, early, rapid, economically 
feasible, and convenient diagnostic methods are in desperate demand. A series of studies have reported that CT 
morphological changes, such as bronchial wall thickening, trachea shape alterations as well as total lung emphysema 
percentage, are related to severe COPD patients. Pu et al33 used lung function parameters to analyze emphysema together 
with airway wall thickening and found emphysema was closely related to FEV1/FVC (related to COPD diagnosis), and 
FEV1%predicted (associated with COPD severity).

Except for CT morphological research, several studies21,34–36 suggest that CT-based radiomics can be used for 
quantifying COPD and uncovering the underlying disease mechanism. The radiomics signature is the easy decision- 
making support system. Lafata et al34 analyzed the possibility of using CT images-extracted radiomics features for 
quantifying alterations of lung function and the underlying association with the spirometry test. Yang et al21,35,36 used 
hybrid methods to combine deep learning and traditional machine learning approaches based on chest CT radiomics for 

Figure 3 Radiomics nomogram constructed for predicting COPD severity (A); Calibration curve for the nomogram ((B–D) training, internal and external validation sets, 
separately).
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identifying COPD cases and severity of COPD. All of the AUC values from these models were greater than 0.85, similar 
to ours in the training and internal validation sets. These studies emphasized on the algorithms and provided a good 
reference for us. To our best knowledge, there is a paucity of research applying whole-lung radiomics in COPD,24–26 

which could evaluate the heterogeneity of COPD comprehensively. Previous works focused on differentiating between 
COPD patients and non-COPD patients,26 differentiating whether COPD patients have cardiovascular disease,24 and 
differentiating between patients with preserved ratio impaired spirometry (PRISm) and COPD,25 including those with 
FEV1/FVC ≥0.70 and FEV1 <80% predicted. These studies aim to identify patients with PRISm, a precursor condition to 
COPD, and comorbid COPD patients, in order to prevent or delay the onset of COPD through primary prevention 
measures and to improve the prognosis of COPD patients.

To enhance its applicability in routine clinical practice, we developed a nomogram utilizing whole-lung radiomics. 
This tool demonstrated commendable performance in differentiating the severity levels among patients with an estab
lished diagnosis of COPD. Such a methodology not only refines the categorization within the COPD cohort but also 
facilitates the formulation of tailored treatment plans and augments the prediction accuracy of patient outcomes. Among 
the 13 features most related to the severity, 9 wavelet features, 2 log-sigma features and 2 original features were 
identified. The wavelet features accounted for a large proportion. Wavelet features are a method based on wavelet 
transformation that can decompose images into sub-images with different scales and directions, thereby extracting local 

Figure 4 An example of the nomogram in clinical practice. (A) The nomogram was used to calculate the scoring process of risk of the severity of COPD. (B) Thin-section 
chest CT image of a 62-year-old female patient with mild-to-moderate COPD. Her clinical features were analyzed as follows: Height = 158 cm, Rad-score = −4.51. The 
nomogram showed that this patient had a total of 98.2 points after summing all points, which corresponds to a close to 0.4% probability of severe COPD. Pulmonary 
function test showed that the FEV1/FVC = 69.18%; FEV1% predicted = 93.7%. (C) The nomogram was used to calculate the scoring process of risk of the severity of COPD. 
(D) Thin-section chest CT image of an 80-year-old male patient with severe COPD. His clinical features were analyzed as follows: Height = 172 cm, Rad-score = 2.89. The 
nomogram showed that this patient had a total of 195 points after summing all points, which corresponds to a close to 98.3% probability of severe COPD. Pulmonary 
function test showed that the FEV1/FVC = 53.30%; FEV1% predicted = 37.5%.
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Table 3 Diagnostic Performances of the Three Models in Three Sets

Model Accuracy Accuracy Lower Accuracy 
Upper

Sensitivity Specificity AUC (95% CI) p-value of DeLong-Test

vs Radiomics vs Nomogram

Clinics Training set 0.65 0.59 0.70 0.51 0.69 0.624 (0.552–0.696) <0.001 <0.001

Internal validation set 0.56 0.47 0.65 0.36 0.62 0.556 (0.432–0.681) <0.001 <0.001
External validation set 0.59 0.55 0.63 0.69 0.56 0.642 (0.596–0.688) <0.001 <0.001

Radiomics Training set 0.77 0.72 0.81 0.83 0.75 0.857 (0.808–0.906) – 0.08

Internal validation set 0.71 0.63 0.79 0.86 0.67 0.850 (0.779–0.921) – 0.97
External validation set 0.77 0.74 0.80 0.56 0.84 0.774 (0.731–0.817) – –

Nomogram Training set 0.78 0.73 0.82 0.84 0.76 0.865 (0.818–0.913) – –

Internal validation set 0.77 0.69 0.84 0.48 0.95 0.851 (0.778–0.923) – –
External validation set 0.75 0.71 0.78 0.77 0.67 0.781 (0.740–0.823) 0.25 –
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features and patterns from the image. By analyzing the coefficients after wavelet transformation, texture, edges, structure, 
and shape information can be extracted from the image, providing a more abundant feature description for disease 
diagnosis and prediction. Previous studies have demonstrated the crucial role of radiomics in COPD.18,21,22,37 Li et al37 

selected 42 non-overlapping ROIs at random in 11 axial CT sections in every patient and extracted radiomics features 
with the AUC of 0.799 and 0.797 based on SVM and LR, respectively, the performance is inferior to ours. Due to the 
diffuse characteristics, single or several ROI(s) of concern could not fully explain pulmonary changes. Therefore, the 
whole-lung radiomics analysis outperformed, just as our results with an AUC of 0.857, 0.850 and 0.774, in the training 
set and 2 validation sets, respectively. If clinical risk factors (such as age and height) were used in combination, the 
radiomics nomogram achieved a good discrimination effect, with AUCs of 0.865, 0.851, and 0.781 for training and 
validation sets, respectively. Although the radiomics nomogram showed a better performance than radiomics signature, 
no significant difference was found between it and radiomics signature (DeLong test, p > 0.05), indicating the value of 
radiomics signature for the severity assessment of COPD just based on the CT images independently, then adding the 
value of chest CT for both structure and function evaluation simultaneously.

Besides, clinical features like height and age independently predicted the risk of COPD severity. COPD severity is previously 
ascertained by the decrease of FEV1% predicted for age and height.38 Our study showed age and height were also the predictive 
factors of COPD severity, which was consistent with the prior work.39 Notably, radiomics nomogram has been frequently applied 

Figure 5 ROC curves for radiomics model, clinical model, and combined model in the prediction of COPD severity for training (A), internal (B) and external validation sets 
(C). DCA of clinical and combined models in the prediction of COPD severity (D).
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in guiding the clinical decision-making in many diseases due to the easy to use in clinic. Recent reports and recommendations 
suggest that patients with severe COPD should be admitted for treatment.40 Moreover, COPD is a chronic condition that needs 
long-time treatment to achieve persistent efficacy41; the quantitative radiomics nomogram can facilitate post-treatment follow-up 
alterations in COPD cases. Therefore, we built the nomogram incorporating the clinical and radiomics signatures. To assess the 
clinical practicability of radiomics nomogram, we also employed DCA, which sheds more light on clinical outcomes based on 
threshold probabilities, taking into account the net benefits (which were deemed to be true positive proportion minus false- 
positive proportion, weighted by relative harm of false-positive and false-negative results). DCA exhibited the increased overall 
net benefits of nomogram compared to that of the clinical model in predicting COPD severity among diverse threshold 
probabilities for diagnosing COPD. The nomogram can be used to distinguish the severe/very severe COPD from mild- 
moderate cases conveniently, guiding prompt treatment and improved prognosis. By enhancing the precision in assessing and 
categorizing COPD severity, healthcare providers can optimize treatment plans and forecast patient outcomes more accurately. 
This level of understanding facilitates exacerbation management, tailors therapeutic interventions, and ensures timely control of 
symptoms, potentially slowing disease progression.

Certain limitations must be noted in this work. First, pack-year smoking history were excluded due to greater than 
50% missing values. Future investigations pay more attention to this variable. Second, the sample size of GOLD III–IV is 
small, although it is consistent with the epidemiological characteristics. Patients with different stages were not equally 
distributed, with relatively few cases of GOLD III–IV, thus probably skewing the results. Stratified sampling may reduce 
data bias. We will continue to collect more patients with GOLD III–IV and update the database in the future. Third, with 
the fast technological progresses of AI, the comparison between different AI models, including deep learning models, 
machine learnings, traditional CT features and CT quantitative parameters should be performed and compared in the 
future to understand the role of chest CT in the COPD evaluation comprehensively. Finally, due to the chronic nature of 
COPD, the relationship between COPD severity and prognosis with whole-lung radiomics was not investigated because 
of short follow-up. We will continue the follow-up of these cohorts.

Conclusion
In conclusion, this study constructed an easy-to-use radiomics nomogram for identifying the severity of COPD. By 
randomly selecting two patients and utilizing dynamic nomograms, we have illustrated the nomogram’s potential clinical 
use. This model may function as a promising tool for guiding timely treatment and showing the added value of chest CT 
to evaluate the lung function status using only one-stop chest CT scanning besides the morphological assessment. Future 
research will focus on incorporating quantitative features, leveraging deep learning techniques, and employing multi- 
machine learning approaches to further optimize the model.
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