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Tracking human genes along the translational continuum

Kyubum Lee ®'*, Mindy Clyne @**, Wei Yu?, Zhiyong Lu'* and Muin J. Khoury®*

Understanding the drivers of research on human genes is a critical component to success of translation efforts of genomics into
medicine and public health. Using publicly available curated online databases we sought to identify specific genes that are featured
in translational genetic research in comparison to all genomics research publications. Articles in the CDC'’s Public Health Genomics
and Precision Health Knowledge Base were stratified into studies that have moved beyond basic research to population and clinical
epidemiologic studies (T1: clinical and population human genome epidemiology research), and studies that evaluate, implement,
and assess impact of genes in clinical and public health areas (T2+: beyond bench to bedside). We examined gene counts and
numbers of publications within these phases of translation in comparison to all genes from Medline. We are able to highlight those
genes that are moving from basic research to clinical and public health translational research, namely in cancer and a few genetic
diseases with high penetrance and clinical actionability. Identifying human genes of translational value is an important step
towards determining an evidence-based trajectory of the human genome in clinical and public health practice over time.
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INTRODUCTION

In spite of ongoing progress in human genomics, only a few
clinical and public health applications have been launched as
promised by the Human Genome Project.' In addition to
technological challenges centered around the availability of
accurate and relatively inexpensive genome sequencing, a major
challenge has been the selection of genes for research studies. It
has been previously observed that most biomedical research on
human genes only concentrates on approximately 2000 genes in
the human genome. Stoeger et al.? recently explored explanations
for this observation by compiling an extensive resource database,
including chemical and biological properties of gene-encoded
proteins, and the published scientific literature on individual
genes. They used machine learning methods to predict the
number of publications on individual genes, the year of the first
publication about them, the extent of funding by the National
Institutes of Health, and the existence of related medical drugs.
They found that biomedical research is primarily guided by the
generic chemical and biological characteristics of genes, rather
than their relevance to human disease.

Could the choice of genes for basic biomedical research guide
or influence further steps along translation to clinical genome
applications and public health impact? Previously, we have
established and characterized four phases of genomics translation
from discovery to population health outcomes (TO: discovery, T1:
“bench to bedside”, T2: evaluation, T3: implementation, T4:
outcomes and population impact®) (Supplementary Fig. 1). We
have also documented that most genomic research is discovery-
based and very little is published in the later phases of translation
(T2-T4).*°

It is important to understand the drivers of research on human
genes, what biases exist regarding those which are studied, and
conversely, to be able to identify currently unstudied or under-
studied genes which have the greatest potential for translational
research success. Specifically, if advances in genomics are going to
have an impact on clinical and public health practice, we need to
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understand the spectrum of translational research in human
genes and why only some genes make it all the way through the
translation highway (T4).

We sought to learn the specific genes that have made it further
along the translational pathway, first to population and clinical
epidemiologic studies (“bench to bedside”: (T1)), and then to the
evaluation, implementation, and impact studies (“beyond bench
to bedside”: T2-T4), respectively. Building on the work of Stoeger
et al,? through our comparative analysis of genes and their
respective publication count within these specified areas of the
translational pathway, we hope this work can help to clarify which
genes and the characteristics of genes that should receive
translational research attention beyond bench to bedside.

RESULTS

We used the Public Health Genomics and Precision Health
Knowledge Base (PHGKB),” a curated suite of genomics databases
maintained by the CDC Office of Public Health Genomics which
tracks the impact and translation of genome discoveries on clinical
practice and public health. We included two databases from
PHGKB in this exercise: (1) the Human Genome Epidemiology
Navigator (HUGE, https://phgkb.cdc.gov/PHGKB/hNHome.action)®”
is a collection of publications on population and clinical
epidemiologic studies of human genes in relation to health
outcomes, corresponding with T1 translation and (2) the Genomics
& Precision Health Database (GPH, https://phgkb.cdc.gov/PHGKB/
translationStartPage.action)® which is a collection of publications
reflecting the T2-T4 stages of translation. These two databases
were compared to all gene-associated Medline/PubMed publica-
tions. The details of the stages T1-T4 are explained in Supple-
mentary Fig. 1 and Supplementary Note 1.

The PubMed articles with associated genes ascertained through
the gene2pubmed file contained 609,633 PMIDs. The HuGE
database and the subset from GPH of original research studies,
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studies on evidence synthesis, and/or guidelines publications
contained 143,417 and 8526 PMIDs, respectively.

NUMBER OF GENES REPRESENTED IN PUBLICATIONS FROM
HUGE AND GPH

While PubMed articles were associated with 24,656 human genes,
HuGE and GPH only identified 11,081 and 1846 genes, respectively
(Table 1), representing 44.94% and 7.49% relative to the genes
that appeared in PubMed (Supplementary Fig. 2). Most of the
genes mentioned in GPH are also in HUGE (n = 1682). However,
164 genes (8.88%) in GPH were not mentioned in HUGE. Over 96%
of these were associated with a publication count of one (n=
158).

The most common genes based on publication count in
PubMed, HUGE and GPH are listed in Table 2. The top 10 most
common genes are represented in 3.50% of all PubMed
publications. The top 10 common genes represented in HuGE
and GPH are 12.13% and 28.31%, respectively (Table 1).

Some genes are significantly more or less popular in HUGE and
GPH than PubMed. Table 2 shows the top 20 most significant
genes in HUGE and GPH compared to PubMed.

Nine of the top 10 genes in GPH are cancer-related genes. These
genes are associated with hereditary breast and ovarian cancer
(BRCAT, BRCA2), Lynch syndrome (MLH1, MSH2, MSH6, PMS2), and
her2/neu mutations in breast cancer (ERBB2). LDLR is one gene
associated with familial hypercholesterolemia. Nine of the 10 top
genes are hereditary single gene disorders.

In contrast, the top 10 genes studied in HUGE include genes
relevant to many disease conditions. The top gene is MTHFR, a
gene associated with defects in folic acid metabolism extensively
studied in relation to birth defects, cancer, cardiovascular disease,
and other conditions, but has yet to be *“translated” into
implementation in practice. Similarly, the APOE gene has been
popularized resulting from the strong association of APOE4 alleles
with Alzheimer’s disease. APOE variation has been studied in
relation to cardiovascular diseases and other outcomes.

CORRELATION BETWEEN THE PUBLICATIONS IN PUBMED,
HUGE, AND GPH DATABASES

Supplementary Figure 3a shows the correlation between all the
publications in PubMed and the publications in HuGE. The
publication count in HUGE is closely and positively related to
the publication count in PubMed (Pearson correlation coefficient
is 0.76). We found that all top 20 most published genes in HUGE
are included in the top 0.5% of the most published genes in
PubMed.

As shown in Supplementary Fig. 3b, the publication count in
GPH is also positively correlated to that of PubMed. However, this
correlation is weaker than the correlation between HuGE and
PubMed results (Pearson correlation coefficient is 0.40). We also
observe that BRCA1, BRCA2, or HER2 have significantly more
publications in GPH compared to PubMed which are far from the
fitted linear regression line. Supplementary Figure 3b also shows
that GPH focuses on only a few selected genes. Only 9 out of the
top 20 genes in GPH are in the top 0.5% of the most published
genes in PubMed. The change by year in the number of
publications in each database for BRCA1, APOE, LDLR, GJB2, and
EGFR are shown in Supplementary Fig. 4. Most of the HUGE and
GPH publications on BRCA1 and EGFR genes are cancer-related.
The figure also shows that GJB2 and LDLR publications are mostly
describing rare diseases and heart, lung, blood, and sleep (HLBS)
disorders, respectively.
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Table 1. Overall number of genes mentioned and gene-specific
publication count categorized by (1) rank of top most common and (2)
overall percentage of publications in PubMed, HUGE, and GPH

PubMed HuGE GPH
Total # of genes 24,656 11,081 1846
Top 5 genes 2.16% 7.18% 19.36%
Top 10 genes 3.50% 12.13% 28.31%
Top 20 genes 5.54% 19.54% 37.64%
Top 30 genes 7.25% 24.36% 43.19%
Top 50 genes 10.17% 31.16% 49.14%
Top 100 genes 15.17% 41.83% 57.67%
Top 200 genes 21.56% 53.59% 66.98%
Top 400 genes 29.80% 65.16% 76.86%
Top 500 genes 32.83% 68.76% 79.74%
Top 1000 genes  43.55% 79.54% 88.81%
Top 2000 genes  56.28% 88.79% 100.00% (1846 genes)
Top 1% genes 23.83% 43.54% 36.23%
Top 5% genes 47.21% 70.50% 56.61%
Top 10% genes  60.44% 81.05% 65.84%

Table 2.
and GPH

Genes ranked by publication count in PubMed, HUGE,

Statistical significance
of the publications
compared to PubMed

Publication count

Rank  PubMed HuGE GPH HuGE GPH

1 TP53 APOE BRCAT1 MTHFR BRCA1
2 TNF MTHFR BRCA2 APOE BRCA2
3 EGFR TNF EGFR HLA-DRB1 PMS2

4 VEGFA EGFR ERBB2 GSTM1 MSH6

5 IL6 HLA-DRB1  KRAS KRAS MSH2

6 APOE TP53 TP53 ACE LDLR

7 TGFB1 ACE BRAF GSTT1 MLH1

8 MTHFR IL6 MLH1 CcOMT ERBB2
9 ESR1 KRAS MSH2 BRAF KRAS
10 AKT1 GSTM1 LDLR IL10 PALB2
11 HIF1A IL10 MSH6 CYP2C19 BRAF
12 NFKB1 GSTT1 PMS2 VDR EGFR
13 IL10 CcOMT CYP2C19  SLC6A4 NRAS
14 BRCA1 BRAF PIK3CA CYP3A5 CYP2C19
15 ERBB2 SLC6A4 CYP2D6 ABCB1 CYP2D6
16 MMP9 BRCA1 NRAS EGFR PCSK9
17 HLA-DRB1  ABCB1 ALK CYP2C9 CHEK2
18 IL1B VDR CFTR GSTP1 ALK

19 ACE BRCA2 CHEK2 CYP2D6 PIK3CA
20 APP BDNF PCSK9 TNF VKORC1

The ranking of “Publication count” column is simply sorted by the number
of appearances in each database, and the other column is calculated and
ranked using the z-score of each gene representing the significance of the
publication count difference compared with PubMed

DISCUSSION

Using well established and curated publically available publication
databases, we have extended the analysis of Stoeger et al. on the
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overall publications on human genes to publications in transla-
tional phases. Our overall goal is to describe which genes have
been more likely to be studied epidemiologically (T1) or evaluated
and implemented in clinical and public health practice (T2-T4). We
observed that translational studies focus on only a small number
of human genes, and the farther along the continuum, the smaller
the number.

Stoeger et al.® reported that most of the research focuses on
only around 2000 genes in PubMed. In our analysis, we found that
epidemiology and translational studies focus on an even much
smaller number of genes. First, the number of genes and the
number of publications represented in HUGE and GPH are a
significantly small proportion of all PubMed articles, and only a
limited number of genes are the main focus in epidemiology and
translational studies.

It is evident from this analysis through the observation of top
genes that the “action” in translation beyond bench to bedside is
in the field of cancer, including genes associated with hereditary
breast and ovarian cancer and Lynch syndrome. These two
hereditary cancers have emerged as conditions with important
clinical applications in large part due to the demonstration
through clinical and epidemiologic studies of the clinical validity
and utility of genetic testing shown to reduce morbidity and
mortality from these cancers.' The two conditions are also part of
the CDC tier 1 classification schema for genomic implementation
in practice.'" Briefly, this three-tier classification system was
developed by CDC to describe the current status of genomics in
practice based on evidence of validity and utility, as well as
recommendations by guideline groups such as the US Preventive
Service Task Force'” and others. Another top gene on the list in
GPH database is LDLR which is gene for familial hypercholester-
olemia, another common autosomal dominant condition asso-
ciated with premature heart disease, with evidence of clinical
utility for testing patients and relatives, and aggressive treatment
with cholesterol-lowering drugs."®

The smaller number of genes and publications identified in
HuGE and GPH might be expected considering that most research
further along the translational continuum requires large-scale
clinical and population studies, which could be challenging
especially for rare diseases. Only the genes that are thoroughly
researched and understood, and genes on which there is a
sufficient amount of information are more likely to be used for
epidemiology, translational, and implementation studies. Other
than single gene disorders, given the complexity of human
diseases involving genetic and environmental risk factors, most of
the studied genes have not made it to clinical or public health
purposes. These include most pharmacogenomic traits, HLA gene,
as an example. There is also a direct influence on translational
research based on what initial basic discovery work is conducted.

Our study has several strengths and limitations. We were able to
use curated and well characterized databases and automated
methods to quickly correlate the massive amount of biomedical
literature on human genes. In particular, the inherent database
linkages between HuUGE and GPH allowed us to rapidly
characterize the translational trajectory of human genes from
discovery to clinical practice. However, this analysis is limited by
our inability to utilize full text of articles for the identification of
genes, and the potential for missing gene information especially
from genome-wide HuGE publications. We also recognize
potential errors in extraction of data through the
computational tools.

These data and the online databases from which they are
derived provide baseline information on translation of human
genes are made available to other investigators to conduct
analyses on specific genes or classes of genes of interest. Future
research in this area should be focused on predictors of
translation, utilizing bioinformatics tools and available databases.
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Analyses such as ours are inherently limited by the inability to
identify a chain of causality in the association between the
numbers of early discovery research articles and later translational
research publications. It is entirely possible the more genes are
studied, the more the likelihood at establishing clinical validity
and utility for later translational and implementation studies. It is
also unclear what classes of mediating and confounding factors
(funding, popular interest, etc.) influence publication rates for
individual genes at each translational phase. Although our work
establishes a baseline approach for tracking the translational
trajectory of human genes into clinical and population health
impact, future analyses will have to develop models of translation
trajectories for specific genes and their associated diseases.

METHODS
Collecting overall publications on human genes

To obtain the publication count specific to each gene, we collected Gene-
PubMed identifier (PMID) data separately from the three databases. For
publications on genes indexed in PubMed, we used the “gene2pubmed”
file obtained from the NCBI gene website, as similarly done in the study of
Stoeger et al2 Human data (Taxonomy ID is 9606) from the “gene2-
pubmed” file was used here, providing gene-PMID crosslinking informa-
tion, which is either manually curated by indexers from the National
Library of Medicine or integrated from other public databases.

The publications in translational research T1 and T2-T4 phases were
downloaded from HUGE and GPH databases, respectively. The selected
articles downloaded from the GPH were previously identified as original
research studies, studies on evidence synthesis, and/or guidelines
publications. Excluded from GPH for this analysis were reviews, commen-
taries, and methods articles. The gene-PMID data from HuUGE and GPH
were ascertained using an automated literature annotation tool, Pub-
Tator'*'> PubTator provides gene-PMID information collected using
automated named-entity recognition tools and third-party resources. We
found genes mentioned in each abstract of the publication in HUGE and
GPH, and used them to count publications for each gene.

Gene ranking based upon number of publications

To compare the publication count on genes in HUGE and GPH to the entire
literature in PubMed, we ranked the genes for those with the most
publications with resulting top most common genes. Additionally, results
were calculated using the z-score of each gene representing the
significance of the publication count difference between two datasets
(PubMed vs HUGE or GPH) for top percentage of genes. The statistical
significance of resulting z-scores were calculated for all genes having equal
to or greater than five publications. Longitudinal publication count data
(from 2000 to 2017 for PubMed and HuGE and 2011 to 2017 for GPH) for a
few selected top genes was also performed. To understand disease
association of these publication changes, we also added the numbers of
HLBS disorders, cancer, and rare disease related publications obtained
from our former research.'®'”

Correlation analysis

To explore the correlation in publication count for genes between
PubMed, HUGE, and GPH, we obtained Pearson correlation coefficients and
Spearman’s rank correlation coefficients. We drew a linear regression line
in correlation figures. Correlation coefficients, and linear regression line
was performed using SciPy python library.'®

Reporting Summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

All data generated or analyzed during this study are publicly available at Public
Health Genomics and Precision Health Knowledge Base website, PubMed FTP (ftp://
ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz) and PubTator FTP (ftp://ftp.ncbi.
nlm.nih.gov/pub/lu/PubTator/). The organized data are also available as Supplemen-
tary data file.

npj Genomic Medicine (2019) 25


https://phgkb.cdc.gov
https://phgkb.cdc.gov

np)

K. Lee et al.

4

Received: 3 June 2019; Accepted: 3 September 2019;
Published online: 16 October 2019

REFERENCES

1.

Khoury, M. J. No shortcuts on the long road to evidence-based genomic medi-
cine. JAMA 318, 27-28 (2017).

. Stoeger, T., Gerlach, M., Morimoto, R. I. & Nunes Amaral, L. A. Large-scale inves-

tigation of the reasons why potentially important genes are ignored. PLoS Biol.
16, e2006643 (2018).

. Khoury, M. J,, Jones, K. & Grosse, S. D. Quantifying the health benefits of genetic

tests: the importance of a population perspective. Genet. Med. 8, 191 (2006).

. Schully, S., Benedicto, C., Gillanders, E, Wang, S. & Khoury, M. Translational

research in cancer genetics: the road less traveled. Public Health Genomics 14, 1-8
(2011).

. Roberts, M. C,, Kennedy, A. E., Chambers, D. A. & Khoury, M. J. The current state of

implementation science in genomic medicine: opportunities for improvement.
Genet. Med. 19, 858 (2017).

. Clyne, M. et al. Horizon scanning for translational genomic research beyond

bench to bedside. Genet. Med. 16, 535-538 (2014).

. Yu, W. et al. A knowledge base for tracking the impact of genomics on population

health. Genet. Med. 18, 1312 (2016).

. Lin, B. K. et al. Tracking the epidemiology of human genes in the literature: the

HuGE Published Literature database. Am. J. Epidemiol. 164, 1-4 (2006).

. Yu, W., Gwinn, M., Clyne, M., Yesupriya, A. & Khoury, M. J. A navigator for human

genome epidemiology. Nat. Genet. 40, 124 (2008).

. Khoury, M. J. et al. From public health genomics to precision public health: a 20-

year journey. Genet. Med. 20, 574 (2018).

. Dotson, W. et al. Prioritizing genomic applications for action by level of evidence:

a horizon-scanning method. Clin. Pharmacol. Therapeutics 95, 394-402 (2014).

. Jin, J. The US Preventive Services Task Force. JAMA 315, 1804-1804 (2016).
. Knowles, J. W., Rader, D. J. & Khoury, M. J. Cascade screening for familial

hypercholesterolemia and the use of genetic testing. JAMA 318, 381-382 (2017).

. Wei, C-H., Kao, H.-Y. & Lu, Z. PubTator: a web-based text mining tool for assisting

biocuration. Nucleic Acids Res. 41, W518-W522 (2013).

. Wei, C. H,, Allot, A, Leaman, R. & Lu, Z. Y. PubTator central: automated concept

annotation for biomedical full text articles. Nucleic Acids Res. 47, W587-W593 (2019).

. Mensah, G. A. et al. HLBS-PopOmics: an online knowledge base to accelerate

dissemination and implementation of research advances in population genomics
to reduce the burden of heart, lung, blood, and sleep disorders. Genet. Med. 21,
519-524 (2019).

. Khoury, M. J. & Yu, W. Introducing the Rare Diseases Genomics and Precision Health

Knowledge Base. https://blogs.cdc.gov/genomics/2019/04/04/introducing-the-
rare-diseases/ (2019).

. Jones, E., Oliphant, T. & Peterson, P. SciPy: Open Source Scientific Tools for Python.

http://www.scipy.org (2001).

npj Genomic Medicine (2019) 25

ACKNOWLEDGEMENTS

This research was supported by the NIH Intramural Research Program, National
Library of Medicine.

AUTHOR CONTRIBUTIONS

MJK, Z.L. and M.C. conceived the idea. K.L, M.C. and M.JK. drafted the manuscript.
W.Y. and KL. collected the data. KL. and Z.L. designed and performed the data
analysis. M.C. and MJ.K. interpreted results. Z.L. and M.J.K. supervised the study. All
authors reviewed and approved the final version of the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/
s41525-019-0100-0.

Correspondence and requests for materials should be addressed to Z.L. or MJK.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

This is a U.S. government work and not under copyright protection in the U.S,; foreign
copyright protection may apply 2019

Published in partnership with CEGMR, King Abdulaziz University


https://blogs.cdc.gov/genomics/2019/04/04/introducing-the-rare-diseases/
https://blogs.cdc.gov/genomics/2019/04/04/introducing-the-rare-diseases/
http://www.scipy.org
https://doi.org/10.1038/s41525-019-0100-0
https://doi.org/10.1038/s41525-019-0100-0
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Tracking human genes along the translational continuum
	Introduction
	Results
	Number of genes represented in publications from HuGE and GPH
	Correlation between the publications in PubMed, HuGE, and GPH databases
	Discussion
	Methods
	Collecting overall publications on human genes
	Gene ranking based upon number of publications
	Correlation analysis
	Reporting Summary

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




