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The development of large, multifunctional structures from sustainable wood nanomaterials
is challenging. The need to improve mechanical performance, reduce moisture sensitivity,
and add new functionalities, provides motivation for nanostructural tailoring. Although
existing wood composites are commercially successful, materials development has not
targeted nano-structural control of the wood cell wall, which could extend the property
range. For sustainable development, non-toxic reactants, green chemistry and
processing, lowered cumulative energy requirements, and lowered CO2-emissions are
important targets. Here, modified wood substrates in the form of veneer are suggested as
nanomaterial components for large, load-bearing structures. Examples include
polymerization of bio-based monomers inside the cell wall, green chemistry wood
modification, and addition of functional inorganic nanoparticles inside the cell wall. The
perspective aims to describe bio-based polymers and green processing concepts for this
purpose, along with wood nanoscience challenges.
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INTRODUCTION

Bio-based materials are essential for a future sustainable society. With about three trillion trees on
earth, wood is one of the most abundant renewable and sustainable material (Crowther et al., 2015).
The eco-friendly aspect of sustainably sourced wood is related to its biological origin. The living tree
is a renewable resource, and uses solar energy tomanufacture the material and also store atmospheric
carbon dioxide (CO2) in the process. Wood materials with long service life are therefore important
for sustainable development through CO2 storage. In addition, wooden structures are excellent
structural building materials, which can last for thousands of years (Yokoyama et al., 2009).

In pre-industrial age, timber was a key resource for fuel and construction. Despite good
mechanical performance of wood structures, the construction of wooden buildings has in this
perspective declined in the time frame after the 19th century, because of moisture, degradation and
dimensional stability problems, quality variations and flammability challenges compared with
alternative materials. Recently, however, engineered wood is revolutionizing the building sector,
contributing toward sustainable development; the best example is tall wooden buildings in cities
(Cornwall, 2016). Wood has much smaller carbon footprint than steel and concrete, and increased
use may reduce CO2 emissions by 14% (Oliver et al., 2014).

The porosity of wood provides opportunities for new functionalities. It is possible to combine
structural performance with functions to improve energy efficiency of buildings, and add specific
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properties such as magnetic, luminescent, electrical conductivity
and hydrophobicity (Berglund and Burgert, 2018). Another
important challenge for load-bearing wood biocomposites is to
develop truly sustainable biocomposites based entirely on bio-
based fibers and polymers, which are competitive with
composites from fossil-based plastics. Although plant fibers
may substitute synthetic fibers, bio-based polymers generally
do not meet the overall properties and processing
requirements for composites. In this perspective, aspects of
wood nanotechnologies are discussed, as well as the associated
nanoscience challenges and the need for sustainable tailoring
methods.

WOOD COMPOSITES USED IN
LOAD-BEARING STRUCTURES

Wood combines high mechanical performance with cost and
sustainability advantages. The tree is a renewable resource, wood
is available in large volumes at low cost, it has existing
infrastructure for energy-efficient harvesting and processing, it
is lightweight, and biodegradable. Engineered wood products are
widely used for infrastructure applications, carrying substantial
dynamic and static loads. There is a variety of engineered wood-
based products, including solid structural wood products,
laminar and structural composites. Solid-sawn timber is used
for glued laminated beams (glulam) made by parallel assembly of
sawn boards, and cross-laminated timber (CLT) made of layers
assembled crosswise. Since the development of CLT in the 1990s,
wooden buildings are constructed at increasing heights (Foster
and Ramage, 2020). Other wood composites are fabricated from
veneer to produce plywood (made by adhesive bonding of veneer
lamellae stacked at different angles), and laminated veneer
lumber (made of parallel veneers). These materials are
generally used as panels or beams, with little geometrical
complexity.

Molded, “wood-plastic composites” (WPCs) are prepared by
mixing wood with fossil-based thermoplastics that serves as
continuous matrix phase (polypropylene, polyethylene, etc.)
(Bourmaud et al., 2018), but are insufficient for most major
load-bearing infrastructure applications. There are also
technologies for molded, formaldehyde-based thermoset wood
fiber composites. In general, modulus for molded WPC and
thermoset biocomposites rarely exceeds 7–8 GPa, and the
tensile strength is typically 20–60 MPa. The fiber content in
molded wood composites can be as high as 50–80 wt%, but
the motivation for their use is often low cost. The
performance of molded wood composites is often hampered
by poorly controlled fiber orientation, and low fiber aspect
ratio. The wood fibers tend to be weak, since they are
mechanically damaged during processing. These factors in
combination, result in poor wood fiber reinforcement
efficiency. It is common to add maleic anhydride-grafted
polypropylene or polyethylene coupling agents to melt-
processed composites, to improve fiber dispersion and
interfacial shear strength between the matrix and the wood
reinforcement (Keener et al., 2004).

TARGETS FOR SUSTAINABLE WOOD
NANOTECHNOLOGIES

Increased use of existing, load-bearing forest products, including
sawn timber, glulam, LVL-beams, plywood and oriented strand
boards (OSB), would contribute toward sustainable development
when materials from concrete, gypsum and fossil-based plastics
are replaced. Here, we discuss new woodmodification concepts at
the nanoscale, and possibilities for materials development.

In an attempt to define sustainable wood nanotechnology for
the present purpose, the term is here limited to materials or
components based on cellular wood structures, so that e.g. wood
fiber materials and nanocellulosics are excluded, somewhat
arbitrarily. Sustainable wood nanotechnologies are technologies
related to wood substrate (e.g., veneer) modification by
nanoparticles, and green modification of the wood cell wall
nanostructure by chemical or physical means, to extend the
range of wood properties. An important example is the
impregnation of the wood cell wall by monomers or polymer
precursors, followed by polymerization. Although formaldehyde-
based resins and adhesives in use today can impregnate the cell
wall (Stoeckel et al., 2013; Jones and Sandberg, 2020), which in
principle is a nanotechnology, they are problematic in the context
of sustainable development. Formaldehyde emission is a health
hazard, a technical difficulty, and problematic for the perception
of eco-friendly materials.

Targets for wood nanotechnologies include improved
mechanical performance, since this can reduce the amount of
material needed. Wood modification needs to be based on green
chemistry principles (Anastas, 2007), and the use of bio-based
polymers and nanoparticle technology leading to reduced overall
environmental impact. Besides addressing the inherent
weaknesses of wood, new functionalities such as heat storage,
optical transmittance, fire retardancy and luminescence, can be
integrated in the load-bearing wood structure so that eco-
indicators for the whole building is improved (Li et al.,
2018a). One needs to keep in mind, however, that successful
wood nanotechnology depends on the nanoscience of processing-
nanostructure and structure-property relationships.

In recent years, bio-based and biodegradable polymers have
been considered for replacement of fossil-based polymers in load-
bearing biocomposites. Furfuryl alcohol is a bio-based resin used as
a substitute for phenol formaldehyde resins (Lande et al., 2008),
although the black color and toxicity (monomer and catalysts) are
problematic. Other bio-based polymers considered for plant fiber
composites include thermosets based on vegetable oils (Williams
and Wool, 2000; O’Donnell et al., 2004).

THE LIFE CYCLE OF WOOD SUBSTRATE
BIOCOMPOSITES

The present focus is on wood substrate biocomposites where
monomers or thermoset precursors are used to impregnate a
wood substrate, followed by polymerization. The entire life cycle
of the material is illustrated in Figure 1, starting with trees as
renewable resources, from which wood-based material
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components are obtained. They can be modified and processed to
form biocomposite products. Note that the composite material is
often created during processing of the “product”, e.g., a panel of
certain shape. It is used in an application, and after service it can
be recycled, reused, upcycled or disposed in different ways. The
end-of-life management is dependent on the quality and the
possible contaminations of the fiber reinforcement. Sustainable
development means economic growth without depletion of
natural resources, while retaining ecological balance (Ashby,
2016). Thus, materials from renewable resources is not
enough. We need to consider recycling, energy demand from
tree to material or product, greenhouse gas emissions, toxicity
aspects, and end-of-life management (Ashby, 2013). The CED,
cumulative energy demand (sum of energy required during all
processing stages), of the product is an important eco-indicator.
Low CED is needed in high-performance, sustainable lightweight
materials with properties transcending current materials. We
need material components from renewable feedstock
(Narayan, 2011), green chemistry modification, and low-
energy processing.

Lignocellulosic biomass is limited by moisture sensitivity and
incompatibility with hydrophobic polymer systems. For wood,
the substrate needs modification to address these challenges.
Wood contains many different functional groups such as
carboxylic acids, aliphatic alcohols, and phenols, useful for this
purpose. Often, new chemical treatments are attempted based

only on chemical structures of wood biopolymers. This is not
sufficient, since the interior parts of the wood substrate, e.g., the
wood cell wall, are not readily accessible. Chemical complexity
and heterogeneity also means that specific reactions are not
straightforward to achieve. The nature of the reaction system
is important, and will control both chemical and physical
accessibility, for instance by its ability to swell the wood cell
wall into a more accessible gel structure.

WOOD STRUCTURE AND ALTERNATIVES
FOR ECO-FRIENDLY BIOCOMPOSITES

Wood is an excellent substrate for load-bearing applications. By
filling the pore space in wood with reactants (monomers,
thermoset precursors), followed by polymerization, large-scale
biocomposites can be prepared for applications in infrastructure.
An interesting feature of wood for the sake of modification is its
hierarchical structure, which extends from the macroscale to the
nanoscale assembly of the cell wall layers and biopolymers (Fratzl
and Weinkamer, 2007), see Figure 2. Wood cells are elongated
tubular fibers, consisting of a cell wall and a central “lumen” void
space. Wood fibers are a few millimeters in length and around
20–50 µm in diameter. The main biological functions of the wood
tissue are water transport and mechanical support. In softwoods,
fiber tracheids grow thin walls and wide lumen during spring

FIGURE 1 | Life cycle for wood-based biocomposites. Sustainable development requires that cumulative energy demand and carbon dioxide emissions are
decreased, compared with existing materials.
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(earlywood) to provide water transport, and thick wall and
narrow lumen in the autumn (latewood) for mechanical
stability (Figure 2A). In the native tree, the cell wall is itself a
nanocomposite with strong, aligned cellulose fibrils embedded in
a matrix of lignin, hemicellulose and water. Wood cellulose fibrils
consist of axially aligned, extended cellulose chain molecules
(Sacui et al., 2014), and have a diameter of 3–4 nm, with an
estimated Young’s modulus of 140–200 GPa and a tensile
strength of perhaps 7.5 GPa (Nishino et al., 1995; Šturcová
et al., 2005; Dufresne, 2017). The fibrils show preferential axial
orientation in the cell wall layers, see Figure 2C, and provide
strength and stiffness to the cell wall.

The cellulose nanofibrils, CNF, can be disintegrated from
chemical wood pulp fibers and used as reinforcement in
biocomposites via bottom-up approaches (Kontturi et al.,
2018). Disintegration takes place by mechanical means and is
facilitated by chemical pretreatment (Pääkko et al., 2007; Saito
et al., 2007). Lightweight CNF-basedmaterials can be prepared by
a prepreg-approach with potential for semi-structural
applications (Ansari and Berglund, 2018). For random-in-
plane CNF orientation and 50 vol% CNF, the modulus can
approach 10 GPa and the strength exceed 150 MPa. The high
energy demand, however, for extracting nanocellulose from the

wood pulp fiber cell wall, combined with numerous composite
preparation steps (CNF filtering, controlled drying, thermoset
precursor impregnation, prepreg stacking and elevated
temperature molding), and lack of recycling methods
constitute major obstacles to the sustainability of CNF
biocomposites. Cumulative energy demand, green-house gas
emissions and water depletion indicators are unfavorable for
CNF as compared with wood or wood fibers (Oliaei et al.,
2021). From a sustainability and processability perspectives,
CNF fibrils are problematic for large-scale building materials,
but are better suited for films, coatings, aerogels, hydrogels, high-
technology devices, or as minor additives in packaging materials.

Wood fibers are generally more eco-friendly than CNF for
semi-structural applications, in terms of the eco-indicators
mentioned previously. Optically transparent paper and
biocomposites are examples of functional materials with
good mechanical properties. These materials can be
prepared from bleached wood pulp fibers, and offer
recyclability potential (Yano et al., 2014; Ansari et al., 2015;
Yang and Berglund, 2020b; Yang and Berglund, 2020a). One
advantage of wood fiber biocomposites is the possibility to
achieve high fiber volume fraction (>50 vol%) for complex,
molded geometries by the use of existing processing methods

FIGURE 2 | (A) Illustration of softwood microstructure andmajor cell wall components, the starting tissue for nanostructural modification. The cell wall is dominated
by the middle lamella, and the thick secondary wall. The cellulose nanofibrils are reinforcing a hydrated mixture of hemicellulose and lignin polymers in the cell wall. (B)
Wood substrate before and after delignification treatment. Porosity is generated also at nanoscale inside the cell wall. (C) Illustration of wood cell wall swelling, which
facilitates chemical modification.

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 6828834

Montanari et al. Sustainable Wood Nanotechnologies

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


for composites. The main disadvantage is that it is difficult to
control fiber orientation in wood fiber biocomposites
(Keplinger et al., 2019). If wood substrates are used as the
reinforcement, this problem is solved since fibers are highly
oriented in the original wood tissue.

FUNCTIONALIZED WOOD COMPOSITES
WITH CONTROLLED NANOSTRUCTURE

Wood substrates, such as veneer, are suitable for sustainable
wood composites development. The basic idea is to use the

structure of wood as a substrate and reinforcement in wood
composites (Berglund and Burgert, 2018), rather than fibers or
fibrils. Although fibers and fibrils are suitable for geometrically
complex molded composites, wood composites are better for very
large load-bearing structures with low eco-indicator values (CED,
greenhouse gas emissions, etc.). Top-down modification
approaches take advantage of the existing cell wall
nanostructure and hierarchical porosity (microscale pore
channels at the center of fiber cells, and nanopores inside the
cell wall), while preserving the anisotropy of oriented fibers (Chen
C. et al., 2020). This porosity provides opportunity for a great
variety of functionalization approaches, at different scales. Since

FIGURE 3 | (A) Chemical modification strategies for wood substrate functionalization. (B) Life cycle of fully bio-based transparent wood biocomposites. The bio-
based transparent wood was prepared via green delignification treatment (peracetic acid) followed by solvent-free succinylation (succinic anhydride derived from bio-
based succinic acid). A bio-based limonene acrylate monomer, designed from renewable limonene oxide (derived from limonene) and acrylic acid (derived from lactic
acid), was impregnated and polymerized inside the wood substrate (Montanari et al., 2021).
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the native cell wall is virtually non-porous in the dried state,
accessibility is a challenge.

The challenge of cell wall accessibility can be addressed by
partial removal of cell wall components. Delignification
treatments enable full or partial removal of lignin and
hemicelluloses while preserving the oriented wood cellular
structure and fibrils (Yano et al., 2001; Frey et al., 2018), see
Figure 2B. The remaining lignin content is usually around 1–2%
(Keplinger et al., 2020). Hemicelluloses are also affected by
delignification and the hemicellulose content is reduced.
Delignification generates porosity in the cell wall, and the
wood substrate can reach specific surface areas up to 300 g/m2

for swollen cell walls, which is favorable for cell wall accessibility
(Stamm and Millett, 1941). A swelling agent, such as acetic acid,
can expand the cell wall and further facilitate impregnation of
molecules or nanoparticles (Figure 2C). Chemical modification
effects can then be improved, such as graft density of polymer
chains chemically linked to the interior of the cell wall. (Olsén
et al., 2020). The delignified cell wall is mesoporous and highly
sensitive to drying methods. Drying from water can completely
collapse the structure, due to capillary effects. For preservation of
porosity and specific surface area, solvent-exchange fromwater to
more non-polar liquids, followed by drying, is a successful
approach (Grönquist et al., 2019; Han et al., 2019; Vitas et al.,
2019). Although sequential solvent-exchange procedures are
helpful (Yamasaki et al., 2019), solvent exchange is not
suitable for industrial processing and increases eco-indicator
values, but is a valuable tool in nanoscience investigations.

The delignified porous wood substrate has poor mechanical
properties, because the lignin has been removed, which has an
important role for inter-fiber bonding. Filling the lumen with a
polymer matrix, see Figure 3A, improves mechanical properties
compared with wood (Jungstedt et al., 2020). Densification
methods show that strong, anisotropic, homogenous materials
can be made from delignified substrates (Yano, 2001; Zhu et al.,
2017; Song J. et al., 2018; Frey et al., 2018; Fu et al., 2020; Li et al.,
2020). Resin impregnation of the lumen porosity in delignified
substrates reduces moisture sensitivity and improves mechanical
performance. Frey et al. produced biocomposites with wood
content of up to 80 wt%, tensile strength up to 600 MPa and
elastic modulus of 70 GPa (Frey et al., 2019). Conducting
polymers, metals, and other stimuli-responsive polymer
systems have also been successfully infiltrated into lumen
space of wood cells to add functionalities (Trey et al., 2012;
Keplinger et al., 2016; Wan et al., 2017).

The chemical functionalization philosophy is to target cell wall
biopolymers. Hydroxyl groups in particular, can be readily
replaced by other functional groups via esterification,
etherification or graft polymerization. Functionalization can be
carried out inside the cell wall, on the inner cell wall surface
(lumen-cell wall interface), or in the lumen space (Figure 3A).
Cell wall modification has been extensively used to improve
dimensional stability and moisture stability. For example, cell
wall hydroxyls can be substituted by less polar groups, such as
acetyls or even silanes (Donath et al., 2004; Hill, 2006).
Acetylation with acetic anhydride is an industrial process,
which aims to reduce hydrophilicity of wood by substitution

of hydroxyls by acetyl functionalities (Fuchs, 1928; Stamm and
Tarkow, 1947; Rowell, 2006). It is a bulking treatment, since the
space occupied by water in the native tree is reduced by
introduction of acetyls. Another bulking approach relies on
the impregnation of monomers or oligomers inside the cell
wall (Stamm and Seborg, 1939).

The wood substrate can then be impregnated by monomers,
either in the lumen space only or also inside the cell wall
(Figure 3A). Various in-situ polymerization or grafting
polymerization approaches are used to anchor polymer chains
within the cell wall (Bach et al., 2005; Cabane et al., 2014;
Ermeydan et al., 2014; Burgert et al., 2015; Keplinger et al.,
2015). Surface-initiated radical polymerization is a good
grafting technique (Cabane et al., 2016), since it is not
sensitive to residual moisture. Polymer grafting or cell wall
modification can also be used to improve molecular
interactions with other polymers in biocomposites (Roy et al.,
2009; Carlmark et al., 2012; Herrera et al., 2020). In an unusual
cell wall modification procedure, dissolution−regeneration of
cellulose nanofibers in lumen space was used to design porous,
soft, compressible wood substrates which can serve as aerogels, or
compressible materials (Chen et al., 2018; Garemark et al., 2020;
Sun et al., 2020).

Wood can be functionalized by nanoparticle impregnation.
Inorganic nanoparticles dispersed in water can diffuse inside the
nanoporous cell wall for improved wood preservation against
microorganisms (e.g., copper carbonate), and against UV
degradation (e.g., titanium dioxide) (Evans et al., 2008; Nikolic
et al., 2015). Wood mineralization and impregnation approaches
using inorganic nanoparticles have also been explored for fire-
retardancy applications (Merk et al., 2015; Fu et al., 2017; Zhang
et al., 2021). Magnetic particles can be attached on the inner side
of the cell wall, at the lumen-cell wall interface, to produce
magnetic wood materials for e.g., electromagnetic shielding
applications (Merk et al., 2014; Trey et al., 2014; Segmehl
et al., 2018). Carbonization strategies followed by nanoparticle
infiltration is used to provide electrical properties for energy-
storage applications (Chen C. et al., 2017; Luo et al., 2017; Song H.
et al., 2018;Wang Y. et al., 2018; Tang et al., 2018; Zhu et al., 2018;
Peng et al., 2019; Garemark et al., 2020). Since wood is designed
for liquid transport in the tree stem, it can also be functionalized
and serve as a membrane for water treatment or oil-water
separation purposes (Chen F. et al., 2017; Vidiella del Blanco
et al., 2017; Fu et al., 2018a; Guan et al., 2018; Vitas et al., 2018;
Ding et al., 2020; Goldhahn et al., 2020; Kim et al., 2020).

THE CASE OF TRANSPARENT WOOD

Transparent wood biocomposites were recently developed for
structural applications, to combine optical transmittance and
structural integrity (Li Y. et al., 2016). Transparent wood is
obtained by first removing light-absorbing chemical groups
from wood via delignification or bleaching treatments (Zhu
et al., 2016b; Li et al., 2017a). Then a polymer matrix,
commonly acrylates or epoxies, with a refractive index similar
to the wood cell wall, is impregnated in monomer form into the
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porous delignified wood substrate and polymerized to provide
optical transmittance. Transparent wood biocomposites are
interesting architectural load-bearing structures owing to good
mechanical performance, low density (1.2 g/cm3), high optical
transmittance (≈90%), low thermal conductivity (0.15W m−1

K−1), and potential for industrial scaling (Li T. et al., 2016; Li et al.,
2018c; Wang X. et al., 2018; Mi et al., 2020). Tensile strength up to
≈270 MPa and elastic modulus of ≈20 GPa could be achieved for
transparent wood based on high-density wood species (Jungstedt
et al., 2020). The optical properties of transparent wood are
attractive because it provides both high transmittance and
high haze (≈80%), which is advantageous for diffused lighting
and solar cell applications (Zhu et al., 2016a; Li et al., 2017b; Li
et al., 2019).

It was recently shown that haze, forward-scattered light, can be
tuned by controlling scattering effects within the composite using
chemical treatments (e.g., acetylation, bleaching) to improve
compatibility at the wood-polymer interfaces (lumen-cell wall
and inside the cell wall) or by reducing cellulose content (Li et al.,
2018c; Jia et al., 2019; Höglund et al., 2020). Multifunctional
transparent wood composites, which combine optical
transmittance with other functions, have been reported for
applications such as photochromic, electrochromic, heat-
shielding, magnetic, and thermal energy storage (Gan et al.,
2017a; Lang et al., 2018; Montanari et al., 2019; Qiu et al.,
2019; Wang et al., 2019; Samanta et al., 2021). Multifunctional
transparent wood composites have been designed by the addition
of a functional third-phase component to the polymer matrix
and/or the cell wall. For example, quantum dots were added to the
polymer matrix to obtain luminescent structures useful in load-
bearing lighting applications (Gan et al., 2017b; Li et al., 2017b).
The main challenge for multifunctional wood composites is to
successfully achieve diffusion of the active component into the
cell wall. For instance, nanostructured and multifunctional
transparent wood could be prepared by impregnation of a
phase-change material inside the cell wall to maximize heat-
storage performance (Montanari et al., 2019).

High optical transmittance becomes increasingly difficult as
thickness is increased. The reason is that an increased fraction of
incoming light is scattered at interfaces between phases of
different optical properties. The polymer matrix needs well-
matched refractive index to the wood substrate. Chemical
treatments can reduce the problem, e.g., by facilitating
monomer diffusion into the cell wall so that the defects
(nanoscale voids, interface debonds) are minimized (Li et al.,
2018b; Chen H. et al., 2019; Chen et al., 2020 H.). To circumvent
thickness limitations from processing challenges (incomplete
monomer impregnation), laminated plywood structures
provide advantages, and can combine high optical
transmittance with mechanical performance (Fu et al., 2018b).

GREEN ASPECTS OF WOOD
FUNCTIONALIZATION

In a long-term perspective, wood functionalization needs to meet
the criteria of green chemistry. The 12 green principles (GPs) are:

Waste prevention GP-1.
Atom economy GP-2.
Less hazardous chemical synthesis GP-3.
Designing safer chemicals GP-4.
Safer solvents and auxiliaries design GP-5.
Energy efficiency GP-6.
Use of renewable feedstock GP-7.
Reduce derivatives GP-8.
Catalysis GP-9.
Design for degradation GP-10.
Real-time analysis for pollution prevention GP-11.
Inherently safer chemistry for accident prevention GP-12.

Wood and cellulose substrates for composites are from
renewable resources, but this is not enough (Onwukamike
et al., 2019), for sustainable development. Bio-based polymer
systems are needed as well as green concepts for composites
processing (Curzons et al., 2001). Figure 3B shows the life cycle of
a sustainable transparent wood biocomposite, implementing
green chemical modification treatments (delignification,
succinylation) and impregnation by bio-based monomer. All
reactions are carried out without solvent and comply with
GP-1–10.

Biomass as feedstock for chemicals is attractive since CO2

becomes an intrinsic part of the biomass/biopolymer structures
during biosynthesis. Bio-based polymers and chemicals can serve
as building blocks for synthesis of chemicals and polymeric
materials (Gallezot, 2007). Waste materials from food,
agricultural or forest industries (roots, branches) are
particularly interesting feedstock (GP-7). The cumulative
energy demand for materials and chemicals from biomass
waste can be dramatically lower than for petrochemical
alternatives. If roots and branches are left in the forest, they
will degrade and emit carbon dioxide. If they are burnt, the high
moisture content leads to low efficiency, and carbon dioxide
emissions. Several bio-based chemicals are industrially produced
and commercially available and can be used for large-scale wood
functionalization (GP-7) (E4tech et al., 2015; Ögmundarson et al.,
2020). In the example in Figure 3B, all reactants are from
renewable feedstock; green peracetic acid was used for
delignification, succinic anhydride from bio-based succinic
acid was used for moisture stabilization and compatibilization,
while lactic acid and limonene are bio-based building blocks for
the limonene acrylate monomer.

Wood modification is motivated by moisture stability,
compatibilization with polymers and the opportunity to
integrate new functions. Green chemistry means reactants
from renewable resources (GP-7), selective modification (GP-
1, GP-2, GP-8, and GP-9), nonhazardous (GP-3, GP-4, GP-5,
and GP-12), high atom economy (GP-2), mild reaction
conditions (GP-6, and GP-9), energy efficiency (GP-6), and at
least the same performance as for non-sustainable pathways
(Trost, 1991; Anastas and Warner, 1998; Anastas and Eghbali,
2010). Solvents should be replaced by environmentally friendly
alternatives (GP-5, and GP-7), recycled, reduced, or completely
removed in order to minimize waste and environmental impact
(DeSimone, 2002; Capello et al., 2007; Prat et al., 2013). Here
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(Figure 3B), a selective and green functionalization using cyclic
anhydrides (e.g., succinic anhydride) (GP-1–5, 6, 7, 10) was
demonstrated under solvent-free conditions for reduced
hygroscopicity and facile monomer impregnation (Montanari
et al., 2020). This is important, since solvent-assisted monomer
impregnation should be avoided in sustainable industrial
production of wood composites. The fully bio-based
transparent wood biocomposites showed improved optical and
mechanical properties, due to high polymer modulus and
excellent matching of the refractive index of cellulose
(Montanari et al., 2021). Other functionalization strategies
have been used to tailor plant fiber properties. For example,
green polymer grafting approaches were applied to wood fiber
and CNF surfaces through surface-initiated ring-opening
polymerization of bio-derived lactones (Lönnberg et al., 2006;
Herrera et al., 2020; Olsén et al., 2020). Green delignification
treatments for wood substrates were explored such as peracetic
acid, ionic liquids, and deep eutectic solvents (GP-4, GP-5, and
GP-7) (Miyafuji, 2015; Chen Z. et al., 2019; Montanari et al.,
2020). When the purpose of delignification is to remove light-
absorbing components, eco-friendly bleaching processes can be
employed to remove chromophores while retaining most of the
lignin (Li et al., 2017a).

Scientific challenges remain for the development of wood
composites with polymers from renewable resources (GP-7)
(Mohanty et al., 2018). Sustainability of the final product is
affected by factors such as feedstock, embodied energy,
durability and disposal (Álvarez-Chávez et al., 2012). To be
used in high-performance applications, bio-based polymers
should offer long-service life for use in structural
infrastructures. For scalable technologies, monomers need to
be suitable for existing impregnation and polymerization
methods for composites processing. Acrylates meet this need,
and free radical polymerization is not sensitive to moisture or
heterogeneous chemical environments. The bio-based
transparent wood biocomposite design in Figure 3B
exemplifies the impregnation and polymerization of a bio-
derived monomer into a functionalized wood substrate. The
limonene acrylate monomer can diffuse into the modified cell
wall and polymerizes readily, resulting in high optical
transmittance, low haze, and a high strength composite
(Montanari et al., 2021). The resulting biocomposite product
is a good candidate for sustainable wood nanotechnology.

CONCLUSION

Sustainable wood nanotechnologies for wood composites are
interesting for infrastructure applications. Wood-polymer
composites are structurally efficient by combining high

mechanical performance with anisotropy and lightweight. By
controlling the composite nanostructure and use lamination to
produce large structures, we can extend the property range of
wood and add new functions.

Potential wood nanotechnologies are analyzed, where the
intrinsic nanostructure is modified. The fact that wood and
cellulose are from renewable resources, however, is not enough
for wood composites to qualify as truly eco-friendly materials.
Excessive energy demands for the processing steps, greenhouse
gas emissions, and water depletion effects can be compromising
factors. Green chemistry principles are therefore discussed, as
guidance for wood composites design and processing. An
example of a fully bio-based transparent wood nanocomposite,
prepared by a top-down approach, is provided. This improves
energy efficiency, since there is no need for nanocellulose
disintegration and bottom-up materials preparation. Veneer
substrates are instead subjected to green delignification, followed
by moisture stabilization by bio-based molecules, impregnation with
bio-based monomers in a solvent-free process, and final curing.
Optical and mechanical properties are excellent, because of the
molecular and nanoscale tailoring. For future work, thermoplastic
polymers are desirable, since this would facilitate composites
recycling. Future research development should henceforth focus
on sustainable tailoring, with systematic implementation of the
green chemistry principles and life-cycle assessment with
estimations of cumulative energy demand and CO2 emissions.
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