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Neuroimaging studies of GABA in schizophrenia: a systematic
review with meta-analysis
A Egerton1, G Modinos1, D Ferrera1,2 and P McGuire1

Data from animal models and from postmortem studies suggest that schizophrenia is associated with brain GABAergic dysfunction.
The extent to which this is reflected in data from in vivo studies of GABA function in schizophrenia is unclear. The Medline database
was searched to identify articles published until 21 October 2016. The search terms included GABA, proton magnetic resonance
spectroscopy (1H-MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT), schizophrenia
and psychosis. Sixteen GABA 1H-MRS studies (538 controls, 526 patients) and seven PET/SPECT studies of GABAA/benzodiazepine
receptor (GABAA/BZR) availability (118 controls, 113 patients) were identified. Meta-analyses of 1H-MRS GABA in the medial
prefrontal cortex (mPFC), parietal/occipital cortex (POC) and striatum did not show significant group differences (mFC: g=− 0.3, 409
patients, 495 controls, 95% confidence interval (CI): − 0.6 to 0.1; POC: g=− 0.3, 139 patients, 111 controls, 95% CI: − 0.9 to 0.3;
striatum: g=− 0.004, 123 patients, 95 controls, 95% CI: − 0.7 to 0.7). Heterogeneity across studies was high (I2450%), and this was
not explained by subsequent moderator or meta-regression analyses. There were insufficient PET/SPECT receptor availability
studies for meta-analyses, but a systematic review did not suggest replicable group differences in regional GABAA/BZR availability.
The current literature does not reveal consistent alterations in in vivo GABA neuroimaging measures in schizophrenia, as might be
hypothesized from animal models and postmortem data. The analysis highlights the need for further GABA neuroimaging studies
with improved methodology and addressing potential sources of heterogeneity.
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INTRODUCTION
One of the most consistent findings from postmortem studies in
schizophrenia is a reduction in the GABA-synthesizing enzyme,
GAD67 mRNA and protein.1–3 Expression of GAD67 is activity
regulated4,5 and GAD67 is responsible for over 90% of all
(cytosolic) GABA production.6 In contrast to GAD67, inconsistent
findings in schizophrenia are reported for the GAD65 isoform,7–10

which is involved in vesicular, synaptic GABA production during
intense periods of neural activity.11,12 The potential effects
of a reduction in GAD67 on cortical excitatory/inhibitory networks
is a key component in some neurobiological models of
schizophrenia.13 In particular, GABA dysfunction is thought to
lead to the disinhibition of glutamatergic pyramidal neurons and a
loss of synchronous cortical activity.14,15 Postmortem studies also
suggest that schizophrenia is associated with dysfunctional GABA
signalling at the postsynaptic receptor level. Receptor autoradio-
graphy using 3H-muscimol, an agonist at the GABA binding site on
the GABAA/benzodiazepine receptor (GABAA/BZR) complex, has
consistently shown an increase in binding density in the
prefrontal, cingulate and temporal cortices and caudate
nucleus.16–22 In contrast, density of binding to the BZ binding
site of the GABAA/BZR complex has been found unaltered,
increased or decreased postmortem.22–27 Postmortem investiga-
tions of GABAA α subunit expression have found reductions in α1
(refs 28,29) and increases in α2 (refs 29,30) expression in
schizophrenia, but inconsistent results for the α5 subunit.29,31,32

GABA function in schizophrenia can be assessed in vivo using
neuroimaging techniques. Proton magnetic resonance spectro-
scopy (1H-MRS) optimized for GABA detection can measure GABA
concentrations within a voxel of interest. This approach measures
total (intracellular and extracellular) GABA and macromolecules
(denoted GABA+) across all tissue content in a relatively large
voxel. An alternative neuroimaging approach is to use positron
emission tomography (PET) or single photon emission computed
tomography (SPECT) in conjunction with specific radiotracers that
bind to GABA or BZ receptors.33 However, all the PET/SPECT
radiotracers currently available for human use bind to the
BZ rather than to the GABAA site of GABAA/BZ receptors. The
PET/SPECT radiotracers iomazenil and flumazenil have limited
subunit selectivity, binding GABAA/BZ receptors containing α1,
α2, α3 and α6 subunits, whereas Ro15-4513 has more selectivity
for α1 and α5.34

Neuroimaging of GABA function is potentially important
because several hypotheses around the role of GABA dysfunction
in schizophrenia can only be tested in vivo. Evidence that
GABA dysfunction has a role in the pathophysiology of
schizophrenia has also led to interest in the therapeutic potential
of pharmacological compounds that act on GABA function,
and data from animal studies suggest that administration
of benzodiazepines can prevent the development of neuro-
anatomical and neurophysiological abnormalities associated with
schizophrenia.35,36
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Although there have been several neuroimaging studies of
GABA in schizophrenia, the nature of GABAergic abnormalities in
schizophrenia in vivo remains unclear. The present study aims to
address this issue by conducting a systematic review and a meta-
analysis of 1H-MRS and PET/SPECT studies of GABA in schizo-
phrenia. In our primary analyses as well as studies of patients with
schizophrenia, we included studies of subjects at high clinical or
genetic risk for the disorder, as GABAergic dysfunction may be a
‘trait’ characteristic, arising through the influences of genetic
variation during development.37 The potential influence of clinical
subgroups,38,39 medication status,38,40 symptom severity,38,40,41

age42,43 and gender44 were investigated using subsequent
moderator analyses and meta-regression.

MATERIALS AND METHODS
Study selection
The meta-analysis and systematic review was performed in
accordance with the guidelines of the PRISMA group.45 The
Medline electronic database was searched to identify journal
articles published from 1 January 1950 until 21 October 2016,
using the following MeSH and freeform search terms: (‘GABA’)
AND (‘MRS’ OR ‘spectroscopy’ OR ‘positron emission tomography’
OR ‘single photon emission tomography’ OR ‘single photon
emission computed tomography’ OR ‘PET’ OR ‘SPET’ OR ‘SPECT’)
AND (‘schizophrenia’ OR ‘psychosis’ OR ‘schizophreniform’ OR
‘psychosis risk’). Reference lists of the returned articles were hand
searched for further relevant publications. Two authors indepen-
dently performed the searches and identified articles for inclusion
(AE and DF).
Inclusion required that articles were published in peer-reviewed

journals in English or English translation. Inclusion also required
that articles reported GABA measures in vivo, in a group with
clinical diagnosis of schizophrenia, schizoaffective disorder or first
episode psychosis, or a group at clinical or genetic risk for
schizophrenia, compared with a healthy volunteer (control) group.
1H-MRS studies were excluded if they reported the GABA signal
only as the combined signal with glutamate (Glx). PET/SPECT
studies were excluded if they investigated translocator protein,
which mediates various mitochondrial functions and was pre-
viously described as the peripheral benzodiazepine receptor.46

Where articles reported overlapping samples, only data from the
article reporting the largest sample was included.

Outcome measures
The primary outcome measure was the control and patient mean
and standard deviation (s.d.) 1H-MRS GABA+ concentration in each
voxel, or GABAA/BZR availability in each region of interest. Where
these values were not reported in the published article, the
authors were contacted or values were estimated from figures
using a freely available ruler for Mac OS X (http://www.pascal.com/
software/freeruler/). Where values were reported in each hemi-
sphere separately, the mean of these values was calculated. For
1H-MRS studies, due to partially overlapping voxel locations and to
provide sufficient data for meta-analysis, data were combined into
the medial frontal cortex (mFC), parietal and occipital cortices and
striatum. All the variables were extracted independently by two
authors (AE and DF) and cross-checked for accuracy.

Meta-analysis
Inclusion in the meta-analyses required availability of data in a
given brain region from five or more studies.47 Where there were
insufficient data for meta-analysis, the findings were summarized.
Where articles included more than one patient or control group,
these groups were entered separately in the analyses. For each
variable, the effect size statistic Hedges’ g was calculated. Hedges’
g is the Cohen’s effect size incorporating a correction for bias from
small sample sizes.48

The meta-analysis for each variable was performed using
STATA/IC, version 14, using the METAN command (StataCorp LP,
College Station, TX, USA). A random-effects inverse-weighted
variance model49 was used to calculate the pooled effect size to
adjust for study heterogeneity. Significance was assessed using
two-sided 95% confidence intervals.
Heterogeneity was measured using the I2 value, which indicates

the percentage variance due to heterogeneity between studies
compared with chance.50 Where I2 values indicated substantial
heterogeneity (I2450%), potential sources of heterogeneity were
investigated by using sensitivity analysis to assess potential
influences of single studies, and Egger’s test51 to investigate
potential publication bias.

Moderator analyses
Potential influences of study characteristics were investigated
using moderator analyses. Subgroup analyses investigated the
following dichotomous characteristics of data sets: (1) clinical
category of subjects (first episode psychosis or schizophrenia
patients versus clinical risk or genetic risk groups); (2) explicitly
stated absence of GABAergic (benzodiazepine or anticonvulsant)
medication at the time of scanning; (3) presence (in 490% of the
sample) or absence (in 100% of the sample) of antipsychotic
medication at the time of imaging. For mFC GABA 1H-MRS studies,
subgroup analyses additionally investigated potential influences
of mFC voxel location (Figure 1).
Meta-regressions were conducted to explore potential influ-

ences of continuous variables relating to patient characteristics
(age, percentage male in sample, illness duration, Positive and
Negative Syndrome Scale total score), voxel grey matter content
and publication year on GABA measures. Symptoms rated using
the BPRS were converted to Positive and Negative Syndrome
Scale scores using the established conversion scale of Leucht
et al.52 Meta-regression analyses were performed in STATA/IC
version 14 using the METAREG command, with Hedges’ g as the
outcome variable. To reduce the likelihood of chance findings,
both subgroup analyses and meta-regressions required a mini-
mum of five data sets. In all cases, the threshold for statistical
significance was Po0.05.

Study quality and methodological characteristics
The methodological characteristics of 1H-MRS and PET/SPECT
studies are summarized in Supplementary Tables 1 and 2,
respectively. Although there are no established criteria for
formal quality assessment of 1H-MRS and PET/SPECT studies, key
factors that may impact on data quality are discussed in the
Supplementary Information.

RESULTS
1H-MRS studies
Nineteen articles describing 1H-MRS studies of GABA+ in
schizophrenia were identified (Supplementary Figure 1). Of these,
the article by Chen et al.53 was excluded due to partial overlap
with the larger sample reported in Kegeles et al.40 Similarly, the
article by Rowland et al.54 was excluded due to overlap with the
larger sample reported in Rowland et al.43 Data from a single study
were reported across two articles55,56 from which data extraction
was combined. The clinical characteristics of the 1H-MRS samples
are provided in Table 1. Data used to calculate effect sizes are
available in Supplementary Table 1. The methodological char-
acteristics are provided in Supplementary Table 2.

Medial frontal cortex
Twelve articles38,40–43,55,57–62 involved 17 data sets for GABA+ in
the mFC, providing data from a total of 409 patients and 495
controls. Meta-analysis returned a summary effect size of g=− 0.3,
which was nonsignificant (95% confidence interval: − 0.6 to 0.1,
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P= 0.1, Figure 2a). The I2 value was 84%, indicating a significant
(Po0.001) and considerable heterogeneity across data sets.50

Visual inspection of the Forrest plot (Figure 2a) shows that one
study61 was clearly an outlier, and that of the remaining studies,
approximately half reported higher GABA+ levels in patients than
controls, while the other half reported the opposite. The
recalculated summary effect size after removal of the outlying
data set was g=− 0.1, which was also nonsignificant (95%
confidence interval: − 0.4 to 0.2, P= 0.5, I2 = 69%). Sensitivity
analyses did not return significant results on any iteration, and the
Eggers test did not suggest publication bias.
Available data sets permitted a series of subgroup

analyses, which involved studies that (i) only included patients
with a first episode of psychosis or schizophrenia (14 data
sets38,40,42,43,55,57–60,62); (ii) explicitly excluded patents taking
benzodiazepine or anticonvulsant medication (eight data
sets38,41–43); (iii) included patients of whom 490% were being
treated with antipsychotic medication (12 data
sets38,40,42,43,55,57,58,60); (iv) excluded subjects who had taken
antipsychotic medication (five data sets38,40,41,62); or (v) included
only 1H-MRS voxels in the medial prefrontal area of the medial
frontal cortex (Figure 1; 10 data sets40–43,57,59,60). All of these
subgroup analyses returned nonsignificant summary effect sizes
and I2 values 450%. Meta-regression did not reveal any
significant relationships between mFC GABA+ and age, illness
duration, symptom severity, percentage grey matter in the voxel
or publication date. There was a significant association with
percentage of males in the sample (17 observations, β=− 0.04;
t=− 2.5; P= 0.03), but this was driven by outlying values from one
study that included only male subjects.61 The effect was no longer
significant when this study had been removed (β=− 0.004;
t=− 0.4; P= 0.7).

Parietal/occipital cortex
Meta-analysis of GABA+ in the parietal/occipital cortex included
seven observations across six articles,39,55,57,59,63,64 providing data
from a total of 139 patients and 111 controls. The summary effect
size was nonsignificant (g=− 0.3; 95% confidence interval: − 0.9 to
0.3, P= 0.3, I2 = 80%; Figure 2b) with no indication of publication
bias. Limiting the analysis to observations in first episode
psychosis or schizophrenia (six observations39,55,57,59,63,64) also
returned nonsignificant summary effect sizes. There were
insufficient data to investigate further subgroups. All meta-
regression analyses were nonsignificant.

Striatum
Five data sets reported GABA+ in the striatum across four
articles.39,41,55,58 The summary effect size was not significant
(123 patients, 95 controls, g=− 0.004; 95% confidence interval:
− 0.7 to 0.7, Po1.0, I2 = 82% Figure 2c), with no indication of
publication bias. There were insufficient data for subgroup
analyses and meta-regression returned nonsignificant findings.

Other brain regions
One study40 examined GABA+ in the dorsolateral prefrontal
cortex, one42 examined GABA in the centrum semiovale and one65

examined GABA+ in the left hippocampus (Table 1, Figure 2d).
There were insufficient data for meta-analysis and no significant
group differences in GABA+ were reported for these brain regions.

GABAA/BZR availability
Ten articles were initially identified, which reported GABAA/BZR
availability in schizophrenia.66–75 Of these, three were excluded:
one because it was a conference abstract rather than a paper,66

Tayoshi et al., 2010
Marenco et al., 2016
Rowland et al., 2016 
Brandt et al., 2016 
Ongur et al., 2010
Rowland et al., 2013 
Marsman et al., 2014
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Menschikov et al., 2016
Yang et al., 2016 
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Figure 1. Voxel locations in medial frontal cortex GABA 1H-MRS studies. Numbers provide effect sizes (Hedge’s g) for the difference in 1H-MRS
GABA level between patients and control participants for each study. Negative effect sizes indicate lower GABA in patients; positive effect
sizes indicate lower GABA in controls. Subgroup membership was defined by voxel locations primarily in the Brodmann Areas (BA) BA4 and
BA24 (posterior medial frontal cortex), BA24 and BA32 (medial prefrontal cortex) or BA24 and BA11 (ventromedial prefrontal cortex). 1H-MRS,
proton magnetic resonance spectroscopy.
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one because it presented previously published data69 and one
because it did not include a control group68 (Supplementary
Figure 1). The clinical and methodological characteristics of the
remaining seven articles67,70–75 are provided in Table 2 and
Supplementary Table 3, respectively. There were not sufficient ROI
data to permit meta-analyses in any brain region. None of the
individual ROI studies detected any significant differences in
regional GABAA/BDZ receptor availability between patients and
controls (Figure 3).67,71,72,75 Of the voxel-wise studies, one
reported significantly lower GABAA/BZR availability in clinical
high-risk subjects in the right caudate nucleus,73 one reported
lower GABAA/BDZ receptor availability in the left precentral gyrus
in schizophrenia,70 and one reported decreased GABAA/BDZ
receptor availability in the subgenual cingulate cortex and left
temporal pole, but increased GABAA/BDZ receptor availability in
the right inferior occipital gyrus in schizophrenia.74

Frankle et al.75 compared antipsychotic-naive and antipsychotic-
exposed schizophrenia, finding elevated baseline GABAA/BZR
availability in the antipsychotic-naive group across all brain regions

investigated. Lee et al.74 compared patients with schizophrenia
currently taking aripiprazole or risperidone, and detected lower
GABAA/BZR availability in the right medial, dorsolateral prefrontal,
frontal polar and right premotor cortices in the aripiprazole group.
Three articles examined the relationship between GABAA/BZR

availability and symptom severity.70,71,75 None of these found
significant associations. One article reported inverse relationships
between positive symptoms and receptor binding in the medial
temporal lobe, and between negative symptoms and binding in
the medial frontal region.67 Another article reported an inverse
relationship between receptor binding in the prefrontal cortex
and hippocampus and negative symptom severity.72

Frankle et al.75 also examined the change in [11C] flumazenil VT
following administration of the GABA transporter inhibitor
tiagabine to increase GABA levels. This study detected no
difference between the overall schizophrenia group compared
with controls, but a smaller tiagabine-induced change in VT (GABA
increase) in antipsychotic-naive patients, but not in antipsychotic-
exposed patients, compared with controls.75

Table 1. 1H-MRS GABA data sets: clinical characteristics of the samples

Region First author
(reference)

Year Patient group g Sample size SCZ
%M

SCZ age
mean

%AP %BZ PANSS DOI

C SCZ

mFC Goto55,56 2009 FEP − 0.2 18 18 50 29 100 NR 68 0.5
Öngür57 2010 SCZ 0.5 19 21 67 39 95 76 51 21
Tayoshi58 2010 SCZ − 0.3 29 38 53 34 100 42 51 21
Kegeles40 2012 SCZ unmed 0.7 11 16 69 32 0 19 71 7
Kegeles40 2012 SCZ med 0.2 11 16 69 32 100 19 57 9
Rowland42 2013 SCZ young 0.0 10 11 82 30 100 0 63 7.7
Rowland42 2013 SCZ old − 1.0 10 10 70 51 100 0 57 25.5
Marsman59 2014 SCZ − 0.8 19 13 76 28 100 35 53 6.5
De la Fuente Sandoval41 2015 CHR 0.7 24 23 65 21 0 0 NR —

Brandt60 2016 SCZ 0.3 24 24 79 38 100 17 NR NR
Marenco38 2016 Siblings − 0.7 61.3 31 55 30 0 0 NR —

Marenco38 2016 SCZ unmed − 0.4 61.3 25 72 28 0 0 NR 6.0
Marenco38 2016 SCZ med − 0.3 61.3 70 71 31 100 36 NR 9.5
Menschikov61 2016 CHR − 4.1 26 21 100 NR NR NR NR —

Rowland43 2016 SCZ young 0.0 40 29 69 26 93 0 NR 5.6
Rowland43 2016 SCZ old − 0.7 37 31 61 48 90 0 NR 24
Yang62 2016 FEP 0.8 23 22 41 26 0 NR 69 1.6

POC Goto55,56 2009 FEP 0.2 18 18 50 29 100 NR 68 0.5
Öngür57 2010 SCZ 0.4 19 21 67 39 95 76 51 21
Yoon63 2010 FEP/SCZ − 2.6 13 13 85 28 62 NR 73 NR
Kelemen64 2013 FEP − 0.7 20 28 64 25 0 0 88 0.8
Marsman59 2014 SCZ 0.3 19 15 76 28 100 35 53 6.5
Thakkar39 2016 Sibling 0.0 12 23 53 31 0 0 NR —

Thakkar39 2016 SCZ − 0.5 12 21 71 36 100 24 49 14

Striatum Goto55,56 2009 FEP − 0.8 18 18 50 29 100 NR 68 0.5
Tayoshi58 2010 SCZ − 0.2 29 38 53 34 100 42 51 21
De la Fuente Sandoval41 2015 CHR 1.3 24 23 65 21 0 0 NR —

Thakkar39 2016 Sibling − 0.3 12 23 53 31 0 0 NR —

Thakkar39 2016 SCZ − 0.1 12 21 71 36 100 24 49 14

dlPFC Kegeles40 2012 SCZ unmed − 0.1 11 16 69 32 0 19 71 7
dlPFC Kegeles40 2012 SCZ med − 0.4 11 16 69 32 100 19 57 9
Hippocampus Stan65 2015 SCZ − 0.2 16 18 78 42 61 28 NR NR
CSO Rowland42 2013 SCZ younger 0.2 10 11 82 30 100 0 63 7.7
CSO Rowland42 2013 SCZ older −0.7 10 10 70 51 1000 0 57 25.5

Abbreviations: %AP, percentage of SCZ group currently taking antipsychotic medication; %BZ, percentage of SCZ group currently taking benzodiazepine or
anticonvulsant medication; C, control; CHR, clinical high risk; CSO, centrum semiovale; dlPFC, dorsolateral prefrontal cortex; DOI, mean duration of illness in
years; FEP, first episode psychosis; g, Hedge’s g effect size; %M, percentage of male in the SCZ sample; mFC, medial frontal cortex area; NR, not reported; PANSS,
Positive and Negative Syndrome Scale mean total symptom score; POC, parietal/occipital cortex; SCZ, schizophrenia or schizophreniform disorder; sibling,
healthy siblings of patients with SCZ. Age is expressed in years (mean).
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Figure 2. (a–d) Forest plots showing effect sizes (Hedge’s g) for 1H-MRS GABA studies in schizophrenia versus control. Error bars represent 95%
confidence intervals. Black squares indicate data from clinical patient samples (FEP or SCZ) while white squares indicate data from CHR or
sibling samples. CHR, clinical high risk; FEP, first episode psychosis; 1H-MRS, proton magnetic resonance spectroscopy; SCZ, schizophrenia or
schizoaffective disorder; sibling, unaffected siblings of patients with schizophrenia; med, currently receiving antipsychotic medication; unmed,
currently unmedicated with antipsychotics.
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DISCUSSION
The main finding of this article is that meta-analyses of 1H-MRS
studies found no evidence for significantly altered GABA+
concentrations in patients with schizophrenia compared with
healthy volunteers in the medial frontal cortex, parieto-occipital

cortex or striatum. Analyses revealed a substantial level of
heterogeneity across studies, which may relate to differences in
patient samples and 1H-MRS methodological characteristics.
Although there were insufficient studies of GABAA/BZR availability
to perform meta-analysis, a systematic review of these studies

Table 2. PET/SPECT GABAA/BDZ receptor availability data sets: clinical characteristics of the samples

First author Year Patient group Sample size SCZ
%M

SCZ
age
mean

%AP %BZ PANSS DOI

C SCZ

Busatto67 1997 SCZ 12 15 93 29 60 NR NR 6.5
Verhoeff70 1999 SCZ 24 25 100 41 80 0 NR NR
Abi-Dargham71 1999 SCZ 16 16 100 44 69 0 NR NR
Asai72 2008 SCZ 11 12 55 33 0 0 90.4 NR
Lee74 2013 SCZ 18 17 47 29 100 0 60.5 4.1
Kang73 2014 CHR 15 11 66 19 18 0 NR —

Frankle75 2015 SCZ 22 17 65 28 0 NR 83 NR

Abbreviations: %AP, percentage of SCZ group currently taking antipsychotic medication; %BZ, percentage of SCZ group currently taking benzodiazepine or
anticonvulsant medication; C, control; CHR, clinical high risk; DOI, mean duration of illness in years; %M, percentage of male in SCZ sample; NR, not reported;
PANSS, Positive and Negative Syndrome Scale mean total symptom score; SCZ, schizophrenia. Age is expressed in years, mean; regional effect sizes are
provided in Figure 2.

Year Region g
Busatto 1997 mFC -0.1
Frankle 2015 mFC 0.6
Abi-Dargham 1999 FC -0.3
Asai 2008 PFC -0.0
Frankle 2015 dlPFC 0.5

Abi-Dargham 1999 Cing. Ctx. 0.0
Asai 2008 ACC 0.1
Frankle 2015 ACC 0.7
Frankle 2015 OFC 0.5

Abi-Dargham 1999 PAR 0.0
Frankle 2015 PAR 0.6
Abi-Dargham 1999 OCC -0.1
Frankle 2015 OCC 0.5

Busatto 1997 mTC 0.0
Abi-Dargham 1999 TC -0.1
Asai 2008 TC -0.2
Frankle 2015 EC 0.3

Abi-Dargham 1999 Hip -0.1
Asai 2008 Hip -0.6
Kang 2014 Hip 0.1
Frankle 2015 Hip 0.4
Kang 2014 ParaHip -0.3
Frankle 2015 ParaHip 0.6
Abi-Dargham 1999 ParaHip -0.1

Asai 2008 Insula -0.4

Abi-Dargham 1999 Amygdala 0.1
Asai 2008 Amygdala -0.4
Frankle 2015 Amygdala 0.4

Abi-Dargham 1999 Striatum -0.2
Asai 2008 Caudate 0.5
Kang 2014 Caudate -0.7
Asai 2008 Putamen 0.6
Kang 2014 Putamen -0.1
Kang 2014 NAc -0.7

Abi-Dargham 1999 Thalamus -0.3
Asai 2008 Thalamus -0.6

Abi-Dargham 1999 Cerebellum -0.1
Asai 2008 Cerebellum 0.1

Figure 3. Illustration of effect sizes (Hedge’s g) for PET/SPECT studies of regional GABAA/BDZ receptor availability in schizophrenia versus
control. Error bars represent 95% confidence intervals. ACC, anterior cingulate cortex; Cing. Ctx, cingulate cortex; dlPFC, dorsolateral prefrontal
cortex; EC, entorhinal cortex; FC, frontal cortex; Hip, hippocampus; 1H-MRS, proton magnetic resonance spectroscopy; mFC, medial frontal
cortex; mTC, medial temporal cortex; NAc, nucleus accumbens; OFC, orbitofrontal cortex; ParaHip, parahippocampus; PFC, prefrontal cortex;
TC, temporal cortex. Studies reporting only voxel-wise analyses70,74 are excluded from the figure.
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found no consistent evidence for altered GABAA/BZR availability in
schizophrenia.
To our knowledge, this is the first meta-analysis of 1H-MRS

GABA studies in schizophrenia. Postmortem studies in schizo-
phrenia find reductions in GAD67,1–3 which is responsible for the
majority of basal GABA synthesis in the cortex.6 The 1H-MRS GABA
signal may reflect the entire GABA content of the voxel (that is,
intracellular and extracellular, and involved in metabolism or
neurotransmission). Recent work argues that the 1H-MRS GABA
signal predominantly relates to extracellular, extra-synaptic GABA
providing tonic inhibitory tone, rather than GABA involved in
phasic synaptic neurotransmission.76,77 Theoretically, the 1H-MRS
GABA signal should therefore be sensitive to GAD67 reduction.
However, our meta-analysis of in vivo 1H-MRS GABA studies in
schizophrenia found that, although in cortical regions the
summary effect sizes were consistent with lower GABA levels,
these effect sizes were small and nonsignificant.
An absence of large, detectable differences in GABA concentra-

tions in schizophrenia in vivo could reflect normalization by
compensatory mechanisms at the cellular or network level,15 and
it is unknown whether GAD67 reduction in schizophrenia is
primary, or secondary to other pathological mechanisms such as
glutamatergic dysfunction.78,79 Furthermore, one limitation of
1H-MRS is that it measures total GABA concentrations within a
relatively large voxel (mean 30 ml in the studies included in this
article), which is determined a priori, and cannot discriminate
between GABA levels in different cell types. This limits the
application of 1H-MRS in addressing the cell- and network- specific
GABA abnormalities hypothesized to occur in schizophrenia.15

The 1H-MRS meta-analysis also reflects several limitations in the
currently available literature. Sixteen studies contributed to the
meta-analysis, but there were relatively few investigations in each
brain region, with non-overlapping voxel placements (for example
in the mFC), variability between clinical samples and 1H-MRS
methodological approaches and high heterogeneity. Meta-
analysis revealed substantial variability in the findings across
studies. For example, there were approximately equal numbers of
studies reporting increases of GABA+ in the medial frontal cortex
in schizophrenia as there were studies reporting reductions
(Figure 2a), and all meta-analyses were associated with significant
and high levels of heterogeneity. This may reflect between-study
differences in patient samples, methodological approaches or
relate to inconsistency in 1H-MRS GABA measurement. Regional
brain GABA levels in schizophrenia may vary with the stage of the
disorder, as has been reported in some individual studies,38,40,42,43

and appears to be evident for brain glutamate levels.80 Our
analysis was limited in that there were too few studies to perform
meta-analyses of all patient subgroups in all regions. However,
exclusion of data sets from ‘at risk’ participants (and thus
restricting the analysis to patients with schizophrenia) did not
change our findings. Similarly, the findings in the mFC remained
nonsignificant and heterogeneous when the analysis was limited to
either antipsychotic unmedicated or treated patients, or restricted
to the prefrontal part of the medial frontal region. Moreover, meta-
regression found no effect of duration of illness, participant age or
symptom severity on GABA effect sizes. Nevertheless, there are
several other clinical and methodological variables that might
contribute to heterogeneity, such as the duration of treatment, time
off medication or substance use, which we were not able to
investigate in this meta-analysis. It is also possible that more
complex relationships exist between two or more study variables on
the GABA effect size, for example the location of GABA dysfunction
within the mFC may vary with age or illness stage.
Owing to limited data availability, our meta-analysis did not

account for the several methodological differences between
studies that may have impacted on data quality. Differences in
field strength, voxel size and acquisition times will translate to
large between-study differences in the signal to noise ratio, and it

was not possible to evaluate spectral quality in 7 of the 16
included articles (see Supplementary Information). Only two
recent studies included methodology to isolate the GABA signal
from macromolecule contamination,39,43 which is a key area for
future methodological development. Therefore, while the meta-
analyses did not indicate differences in regional GABA levels
between patients and controls, this interpretation is limited
pending publication of further individual studies. Future studies
should directly compare different patient samples, maximize
signal to noise ratio, address macromolecule contamination and
include detailed and transparent reporting of spectral quality. On
the basis of postmortem evidence, we suggest that key regions for
investigation include the dorsolateral prefrontal cortex, anterior
cingulate cortex and hippocampus.3,10,17,81–83

Our systematic review of PET/SPECT studies examining GABAA/
BZR availability also suggested an overall lack of evidence for
differences in patients compared with controls, with no significant
regional group differences in four out of seven studies.67,71,72,75

However, the three voxel-wise studies all reported lower GABAA/
BZR availability in patients compared with controls, but there was
no consistency across studies in the regions where these
differences were detected.70,73,74 All identified studies applied
PET/SPECT radiotracers with affinity at the BZ site of the GABAA/
BZR complex, and postmortem autoradiography studies of
availability of BZ binding sites have also produced inconsistent
results.22–27 This contrasts with reports of increases in availability
of the GABA binding site on the GABAA/BZR in schizophrenia
postmortem,16–22 for which in vivo radiotracers are currently
unavailable. A further consideration is that several PET/SPECT
studies estimated regional GABAA/BZR availability relative to white
matter,67,72–74 which may be confounded by the presence of
white matter abnormalities in schizophrenia (see ref. 84).
In contrast to 1H-MRS, GABAA/BZR PET imaging may be able to

measure changes in synaptic GABA concentrations. Frankle et al.75

used this approach to examine the increase in GABA following
administration of the presynaptic GABA reuptake inhibitor
tiagabine. Although they found no difference between patients
with schizophrenia and controls, when the analysis was restricted
to the subgroup of patients that were antipsychotic-naive, the
increase in GABA following tiagabine was significantly diminished.
Tiagabine-induced increases in cortical GABA are not detectable
using 1H-MRS,85,86 which is consistent with the view that the GABA
1H-MRS signal principally reflects nonsynaptic GABA. Pharmaco-
logically induced alterations in synaptic GABA may be more
sensitively imaged with [11C]Ro15-4513 PET, because it is a
GABAA/BZR inverse agonist with greater selectivity for intra-
synaptic receptors.87 In the future, combination of this approach
with 1H-MRS in the same subjects, and potentially during the same
scanning session on combined PET-MR platforms, might investigate
dysfunction of synaptic versus nonsynaptic GABA in schizophrenia.
Cluster analyses of postmortem data find that GABAergic

deficits are not present in all schizophrenia patients, but
characterize a patient subgroup of approximately 50% of the
postmortem sample.88,89 This postmortem ‘Low GABA Marker’
(LGM) phenotype89 does not readily relate to illness severity,
psychoactive medication or substance use at the time of
death.88,89 If a LGM subgroup could similarly be identified using
in vivo biomarkers, this might lead to a stratified approach to
treatments that address GABAergic dysfunction. It is possible that
the heterogeneity in 1H-MRS studies may also reflect GABAergic
subgroups of patients, either within- or between-study samples,
which are again not readily identifiable by clinical variables.
However, unlike postmortem studies, GABA imaging studies did
not show consistently higher variability in GABA measurements in
the patient compared with the control group (Supplementary
Table 2). Combination of GABA 1H-MRS or GABA PET/SPECT
with electroencephalogram gamma-band oscillations in
schizophrenia,53,75,90 which reflect on parvalbumin neuron
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activity,91 may help determine whether such GABAergic sub-
groups of patients are identifiable in vivo.
In conclusion, at present, the neuroimaging literature suggests

that brain GABA function, as indexed by 1H-MRS GABA
concentrations and GABAA/BZR BZ site availability, does not
provide a consistent pattern of alteration in schizophrenia.
However, the total number of studies completed in this field is
still relatively small, and most studies to date have involved small
patient samples (typically 15–30 patients), and varying data
quality (see Supplementary Information for discussion). It remains
unclear if the absence of overall differences reflects confounding
effects of age, stage of illness, medications or other unknown
factors. Further studies using larger and more homogeneous
samples may therefore be useful, as would studies directly
comparing specific patient subgroups. Advances in both 1H-MRS
and PET methodologies may reveal specific aspects of GABA
dysfunction in vivo in schizophrenia within the next few years.
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