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When aiming to capture a fast-moving target, animals can follow it until

they catch up, or try to intercept it. In principle, interception is the more

complicated strategy, but also more energy efficient. To study whether

simple feedback controllers can explain interception behaviours by animals

with miniature brains, we have reconstructed and studied the predatory

flights of the robber fly Holcocephala fusca and killer fly Coenosia attenuata.

Although both species catch other aerial arthropods out of the air, Holcoce-
phala contrasts prey against the open sky, while Coenosia hunts against

clutter and at much closer range. Thus, their solutions to this target catching

task may differ significantly. We reconstructed in three dimensions the flight

trajectories of these two species and those of the presented targets they were

attempting to intercept. We then tested their recorded performances against

simulations. We found that both species intercept targets on near time-

optimal courses. To investigate the guidance laws that could underlie this

behaviour, we tested three alternative control systems (pure pursuit,

deviated pursuit and proportional navigation). Only proportional naviga-

tion explains the timing and magnitude of fly steering responses, but with

differing gain constants and delays for each fly species. Holcocephala uses a

dimensionless navigational constant of N � 3 with a time delay of �28 ms

to intercept targets over a comparatively long range. This constant is optimal,

as it minimizes the control effort required to hit the target. In contrast, Coenosia
uses a constant of N � 1.5 with a time delay of�18 ms, this setting may allow

Coenosia to cope with the extremely high line-of-sight rotation rates, which are

due to close target proximity, and thus prevent overcompensation of steering.

This is the first clear evidence of interception supported by proportional

navigation in insects. This work also demonstrates how by setting different

gains and delays, the same simple feedback controller can yield the necessary

performance in two different environments.
1. Introduction
After detecting a moving object, animals must choose the appropriate response.

Irrelevant objects ought to be ignored [1] and escape or freeze responses used to

avoid predation [2]. In contrast, a potential mate or prey on the move should be

approached or followed using a swift and precise tactic, such as pursuit or inter-

ception [3–5]. This high performance behaviour is common in aerial [3,6],

terrestrial [7] and aquatic habitats [8,9], and is conducted by species widely

distributed across the phylogenetic tree, from small insects to large mammals.

Nevertheless, all chasers face the need to maximize the probability of success

and minimize effort expended. The task of catching a moving object can be

solved, broadly, by two tactics. A chaser can navigate so that (i) it heads directly
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Figure 1. Predatory attack of two miniature dipteran species. (a) Holcocephala fusca perched. (b) An overlay image of Holcocephala intercepting a dummy target.
(c) Coenosia attenuata with a fruit fly previously caught mid-flight. (d ) An overlay image of Coenosia intercepting a dummy target.
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for the perceived location of the target, a strategy known as

pursuit, or (ii) it moves towards a point ahead of the target’s

current location, called interception. Pursuit navigation

towards moving targets has been reported in houseflies

[4,10], tiger beetles [7], honeybees [11] and long legged flies

[12]. In contrast, species that intercept their targets include

bats [13], hawks [14], falcons [15], hoverflies [3], dragonflies

[6], miniature robber flies [16] and humans [17].

Through interception, a chaser can reach the target faster

than if using pursuit, but in principle interception is a more

difficult strategy. To take an optimal course, the chaser

must gauge how far ahead of a target to aim, a product of

the velocity of both pursuer and prey. However, since minia-

ture dipteran flies (i.e. Holcocephala fusca [16]) with limited

neural capacity can intercept their target, a relatively simple

and robust guidance law is likely in place in some animals.

Indeed, interception can be driven by a simple feedback con-

troller, and this type of controller explains the final approach

in predatory flights of falcons, birds of prey with complex

brains [15]. In addition to a feedback controller, dragonflies

are believed to use a predictive mechanism to reduce lag in
head-tracking the target, i.e. using internal models of both

their own bodies and prey flightpaths, something that

could be used to aid steering an interception course [18].

Small predatory flies tackle what is essentially the same pred-

atory task as that of dragonflies. Have their miniature brains

also evolved a predictive system? Or are feedback controllers

tuned to the requirements of the species sufficient? Here, we

investigate if a feedback controller can explain the aerial

hunts of a North American robber fly (figure 1a) (Holcocephala
fusca, 6 mm body size) and a Mediterranean killer fly

(figure 1c) (Coenosia attenuata, 4 mm body size) towards

objects moving with either constant or erratic velocities

(example behaviours in figure 1b for Holcocephala and

figure 1c for Coenosia). Both of these miniature dipteran

species are sit-and-wait generalist predators [19,20] that

catch their prey in mid-air. However, the two species differ

in visual acuity (i.e. Holcocephala having an acute region

with peak resolution 10� better that of Coenosia [16,21])

and environment (i.e. Holcocephala hunts against clear sky,

while Coenosia can hunt against and between foliage). We

have analysed their predatory flights and tested if these can
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Figure 2. Diagrammatic representations of a pure pursuit and proportional navigation controller. (a) Under a pure pursuit controller, the error (d) between pursuer’s
heading (equivalent to direction of velocity vector) (Vp) and line-of-sight (LoS) to the target is minimized through correctional rotation of the heading that alters the
path angle (g). The turns are in proportion to the perceived error, with k as the constant of proportionality. (b) Under a proportional navigation controller, it is
rotation in the LoS that stimulates rotation of the pursuer heading (Vp) about the same axis, magnified by a navigation constant N. Rotation of the LoS is measured
by the angle (l) made between LoS and an exocentric reference frame. (c) Under a deviated pursuit controller, the error (d) value is taken between a fixed
deviation (u) from the LoS and the pursuer’s heading (Vp). Corrective turns are in proportion to this error as in a pure pursuit controller, with k as the constant
of proportionality.
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be predicted with any of the three most probable simple

controllers; (i) pure pursuit, (ii) deviated pursuit or (iii)

proportional navigation. These feedback controllers apply

changes to the heading of the pursuer (equivalent to the

direction of the pursuer velocity vector) corresponding to

different stimuli.

For pure pursuit (figure 2a), a controller measures an error

angle (d) between the pursuer heading (Vp) and the line

formed between pursuer and target, called line-of-sight

(LoS). The controller then aims to minimize this error (d) by

steering to rotate the pursuer heading (Vp). The strength of

steering corrections applied ( _g) being relative to the magni-

tude of the initial error angle (d) and the gain given by an

intrinsic constant (k), as in the equation below.

_g ¼ kd:

A deviated pursuit controller can shorten the pursuer

trajectory by using the same control system as above but

fixing the intended error angle (d) at a positive value (instead

of zero) [22]. This strategy is suitable for animals that can esti-

mate absolute target size, or have this knowledge available

innately, and thus can calculate the optimal error angle

based on the angular size and speed of the target. This is

the case for male hoverflies chasing females [3], but it
would seem unsuitable for the two flies under investigation

in this study, as they are generalist aerial predators and

such size assumptions will not match to all potential prey

items (although see [23] and [24] about heuristic target size

assessment).

Proportional navigation (pro-nav) enables interception

through a different feedback mechanism (figure 2b), and is

the basis of navigation in most modern missiles [22]. A pro-

nav controller aims to keep the direction of LoS constant

across the trajectory, and by minimizing the LoS rate of

rotation ( _l ¼ 0). As a result, at any point during the trajec-

tory, the rotation rate of the pursuer’s heading ( _g) is

proportional to _l, magnified by a gain set by the navigation

constant (N ), as in the equation below:

_g ¼ N _l:

Proportional navigation simplifies the problem for inter-

cepting targets of unknown absolute size and distance, as

only the rotation rate of the LoS needs to be evaluated to ascer-

tain whether the pursuer is going to collide with the target.

The rotation rate is relative to an exocentric reference frame,

achievable by summing together the visually perceived LoS

rotation and known self-rotation. Therefore, pro-nav relies

on the principle of parallel navigation [22], which states that
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if the LoS does not rotate relative to an exocentric reference

frame ( _l) as the range between the target and pursuer

closes, they are on a collision course. Bats [13], goshawks

[14] and Holcocephala [16] have all been shown to be using

the parallel navigation rule to intercept targets (although

given other names: constant absolute target direction for

both bats and hawks, constant bearing for Holcocephala).

Importantly, parallel navigation describes a condition to be

sought ( _l�0), but it does not specify how this condition is

achieved. Pro-nav serves as a parsimonious method to fulfil

parallel navigation within human engineered systems [22].

While pro-nav has been implemented within modern missile

guidance for many decades, its use by animals has been

demonstrated only recently by Brighton et al. [15], on the

terminal attack phase of aerial assaults by peregrine falcons.

It should be noted that a pro-nav controller behaves like a

deviated pursuit controller when the gain N ¼ 1, as it

maintains a fixed initial error angle, however the rates of

pursuer turn are proportional to different stimuli. For

further description of parallel navigation and proportional

navigation, see electronic supplementary material 1.

Here, we have analysed and modelled the attacks of

Holcocephala and Coenosia flights. The results are consistent

with the use of a proportional navigation controller, with

gain and delay adjusted to suit the adaptations of each

species and the environments in which they operate.
2. Method
2.1. Animals and experiments
Holcocephala fusca used in experiments were from wild popu-

lation and left in situ, experimental apparatus being arranged

around their chosen perches. Coenosia attenuata were obtained

either from lab-reared stocks of a captive population held

within the University of Cambridge for experiments involving

dummy targets, or from a wild population and left in situ in

the greenhouse when intercepting ‘natural’ targets. Dummy

target experiments conducted with Coenosia were in laboratory

conditions and under artificial lighting (6.7 KLx upward,

1.2 KLx reflected).

Behavioural data were acquired with a pair of time-synchro-

nized Photron Fastcam SA2’s with overlapping fields of view so

that three-dimensional placement of pursuer and target could be

attained. Cameras were calibrated with known-sized checker

boards. All flights were captured at 1000 frames per second

and the placement of pursuer and target in both frames tracked.

Temporal resolution of 1 ms is retained throughout all analysis.

Raw positional data were smoothed to account for erroneous

small perturbations generated through tracking that could lead

to false measurement of LoS rotation. Further details given in

supplementary information of [16] and for details on trajectory

smoothing, see [25].

2.2. Visual stimulus
To elicit predatory behaviour, flies were presented with dummy

targets. These targets took the form of silvered beads of variable

diameters (1.3, 2.9 and 3.9 mm) on fishing line. To get the targets

to pass in a straight line and at set speeds, the fishing line was

passed around a U-frame with wheels at all four corners and a

central stepper motor that controlled bead movement (see [16]).

To move targets erratically for Holcocephala, and thus generate

unpredictable changes in the LoS to the target, a single target

was hung from a length of fishing line tied to a 30 cm long

thin wooden stick. These targets could then be moved by an
operator in front of the flies and produce variable, nonlinear

trajectories where both the bearing and speed of the target

varied greatly. To move targets erratically for Coenosia, fruit

flies (Drosophila melanogaster) were released from a vial near a

perched Coenosia.

Linear Holcocephala targets were tested across a speed range

of 0.03–1.05 ms21, a mean speed variation within flights of

0.12 ms21+ s.e. 0.01 ms21 (n ¼ 109) and a mean target heading

deviation from initial conditions of 18.88+ s.e. 3.08 (n ¼ 109)

within flights. For Coenosia, linear targets had a speed between

0.10–0.79 ms21, a mean speed variation of 0.01 ms21+ s.e.

0.00 ms21 (n ¼ 59) within flights and a mean target heading

deviation of 0.98+ s.e. 0.18 (n ¼ 59) within flights. Holcocephala
erratic targets travelled between 0.07–0.73 ms21, had a mean

variation in speed of 0.42 ms21+ s.e. 0.05 ms21 (n ¼ 17) within

flights and heading deviation of 62.48+ s.e. 7.98 (n ¼ 17)

within flights. Coenosia erratic targets had a speed between

0.54–1.23 ms21, an average variation in speed of 0.26 ms21+
s.e. 0.10 ms21 (n ¼ 8) within flights and a mean heading

deviation of 35.48+ s.e. 8.58 (n ¼ 8) within flights.

2.3. Data analysis
All analysis of captured data was conducted in MATLAB 2016b

with custom written scripts.

Only flights where contact with the target was made were

included in the analysis. This is because in the attacks that

were abandoned before the target was caught (Coenosia 43%

and Holcocephala 36%), it was not clear at which point the flight

motivation switched from interception to avoidance. The early

part of the pursuer’s trajectory, at the beginning of the hunt,

was not included in the analysis as this reflected take-off

dynamics (e.g. high accelerations). Hence, when models were

being tested and applied, the start point was taken at 20% of

the way through the flight course. Likewise, analysis was

stopped 1 cm before the pursuer hit the target, as the final

approach is dominated by ballistic movements. Individuals

could not be tagged due to limitations related to field-based

research and animal size. Hence, some flights may be from the

same individuals. For Holcocephala, the flight data are from

female and male flies, although the sex of the subject was not

noted for each flight. For Coenosia, the flight data are from

females. Male Coenosia were not used in this study as they are

far less abundant in the colony than females and frequently

take-off even when targets are not being presented.

To test for parallel navigation, range vector correlation is

used as a measure of LoS parallelism, a measure that ties in

with existing work (i.e. [16,18]) (see electronic supplementary

material 1c.). The correlation value is given by (i) the angle differ-

ence between successive LoS vectors and (ii) the difference of

their magnitudes. A value of 1 indicates that LoS are parallel

and getting longer (i.e. the target is increasing range from pur-

suer), a value of 0 means that distance to the target is

maintained but LoS are rotating and a value of 21 indicates

that LoS are parallel and the range to the target is decreasing

(i.e. perfect parallel navigation). Flight time was normalized to

a percentage of flight complete so that all flights could be

overlaid.

Optimum heading analysis was conducted by taking the

properties of fly speed and the three components of motion of

the target and solving a pair of simultaneous equations to distri-

bute fly speed into the three components such that it will meet

the target in X, Y and Z at the same time, signalling connection

with the target. The equations are as follows:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

px þ V2
py þ V2

pz

q

rx � (t� Vtx)

Vx
¼

ry –(t� Vty)

Vy
¼ rz –(t� Vtz)

Vz
,
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where S is pursuer speed. Vpx, Vpy and Vpz are pursuer velocity

components in three dimensions, of unknown magnitude. rx, ry

and rz are the range vectors between target and pursuer. Vtx,

Vty and Vtz are target velocity components of known magnitude.

t is an unknown time-to-contact.

Analysis was conducted in the full three-dimensions

recorded, except for investigation into correlation between the

rotation of LoS and pursuer velocity. In this case, flights were

flattened to a two-dimensional engagement plane. Flattening to

two-dimensions allows a polarity to be given to the rotation of

both LoS and pursuer heading. This plane was defined by

three points, the starting positions of fly and target and the great-

est displacement of target from its origin. This gave the least

amount of information loss about the flight course when the

third dimension was removed (electronic supplementary

material 2).
 erface
15:20180466
2.4. Feedback controllers and flight simulations
We simulated three models on recorded successful flights: pure

pursuit, deviated pursuit and proportional navigation. These

models are described in the introduction. To run the simulation,

the forward speed of the predator during the actual flight was

fed into the simulation. A fixed time delay, acquired from corre-

lations in the entire dataset of each species, was also fed into the

model. The temporal resolution of the models was equal to that

of the flight (1 ms), which is well below the predicted reaction

time of these flies (between 10 and 30 ms). These simulations

then output the rotation in heading according either to (i) error

between LoS and fly heading (Pure Pursuit) or (ii) rotation of

LoS (pro-nav and N ¼ 1 proxy for fixed angle of deviated pur-

suit). The simulations started at the same position and with the

same heading as the fly at the beginning of the navigation

phase of the flight, but after this point the LoS rate and error

angle were measured with regards to the model alone, and not

taken from the true flight.

The measure of fit between simulations and true trajectories

was an angular error between the heading of the model and the

heading of the true fly trajectory. To independently test which

gain (navigational constant) provided the best fit, we sequen-

tially fitted gains across a range (from 1 to 10, incrementing by

0.1). We define the best fitting gain as the one that resulted in

the lowest mean error across the navigation phase of the flight.

We used this method (instead of a distance measure between

fly and model at all time points), because it provides a metric

for how well the simulation matched the shape of actual pursuer

trajectory, even if the position at which it did so differed from the

real position of the fly. Time delays used in model fitting were

taken from best fitting correlations of LoS rotation and pursuer

velocity rotation (28 ms for Holcocephala and 18 ms for Coenosia).

Pro-nav models are depicted with an arbitrary +30% of fitted

gain to demonstrate the sensitivity of flightpath to the chosen

gain. Pure pursuit models are depicted with a 10� gain range

from 10 to 100 s21 to demonstrate a wide range of gains do not

improve model fit. This range was chosen to encompass the

gains described in the aerial pursuit of other insects [4,12].

We also tested for the advantage of using a pro-nav controller

(tuned to either of the two fly species), versus a pure pursuit con-

troller by carrying out flight simulations. Advantage was

quantified as the percentage difference in time-to-contact

between a pure pursuit and pro-nav. The difference was tested

at different target speeds but with the same starting positions

and headings. For the pure pursuit simulation, we used the

mean starting positions for each species (acquired from the

data) and set the trajectory starting from the pursuer’s origin.

For the pursuit course simulation, when flight-time exceeded

that of the true flightpath, and the fly had not reached the

target, target velocity and fly speed were extrapolated from the
last available values. Similarly, a separate pro-nav model was

also set off from the origin to test whether it had a similar advan-

tage, over the pure pursuit model, as the true flights. The

navigational constants for the pro-nav controllers (N ¼ 3 for

Holcocephala and N ¼ 1.5 for Coenosia) in the simulations were

taken from the best fitting correlative data in this study. The

pursuit model took the constant value (k ¼ 20 s21) from recorded

work for the housefly Fannia canicularis [4].
2.5. Tests for optimal take-off distance
We tested whether the timing of the predatory fly at take-off

was time-optimal (i.e. whether it allowed the animal to inter-

cept prey in the shortest possible time). For this analysis

targets were simulated travelling left to right. Target movement

was presented across a range of increasing altitude, spanning

both approaching and receding distances. Targets were pre-

sented above a pursuer that sets off vertically from the origin.

The pursuer is steered by a pro-nav model with its navigation

constant matched with that particular to each species

(for Holcocephala N ¼ 3, delay ¼ 28 ms, for Coenosia N ¼ 1.5,

delay ¼ 18 ms). The speeds for target and pursuer used in the

simulations were taken from the means from the recorded

flight data for each species. Time-to-contact was measured

and normalized for each target altitude. This allowed us to

find the time/location along the target’s horizontal flightpath

where the fly should take-off to produce minimal time-to-

contact. To compare the timing of the simulated (optimal) pred-

atory take-off versus the timing of the real take-off, a common

reference frame was necessary. To obtain it, the recorded flights

were rotated until the linear target trajectories were aligned to

the horizontal axis. We then noted the position of the target

as the pursuer took off.
3. Results
3.1. Flight parameters
Flights of both fly species were reconstructed in 3D

(figure 3a). Both Holcocephala and Coenosia use similar mean

average flight speeds (0.71+ s.e. 0.02 ms21 (n ¼ 109) and

0.69+ s.e. 0.02 ms21 (n ¼ 59)) and accelerations (mean peak

7.3 ms22 for Holcocephala and 9.3 ms22 for Coenosia) to inter-

cept targets, even though their mean wingbeat frequencies

differ substantially (Holcocephala ¼ 130+STD 10 Hz (n ¼
10); Coenosia ¼ 306+STD 19 Hz (n ¼ 10)). Holcocephala
pursues targets at much greater range than Coenosia (81–

788 mm for Holcocephala; 23–212 mm for Coenosia). To test

for parallel navigation, range vector correlation (an indicator

of LoS parallelism), was calculated for both species. Holcoce-
phala (figure 3b(i)) shows near-parallel navigation (parallel

navigation ¼ correlation value 21), with a strong correlation

appearing early in the flight (correlation 20% into the

flight ¼ 20.8) as already described in [16]. Coenosia
(figure 3b(ii)) also trended towards parallel navigation as

the flight progressed, but at a slower rate (correlation at

20%, 50% and 90% of the flight ¼ 20.57, 20.58 and 20.80,

respectively). The mean error from optimum heading was

14.18+STD 7.48 for Holcocephala (figure 3b(iii)) and 25.08+
STD 11.28 (figure 3b(iv)) for Coenosia. Together, the data indi-

cate that Holcocephala has a more optimal controller, or that it

may implement turning commands more accurately. Alterna-

tively, the closer range of Coenosia flights could simply result

in lower performance. Next, we investigated if the pursuer

heading rotations within flights are supporting of a pure
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pursuit, a deviated pursuit or a pro-nav controller. As high-

lighted by [15], models that predict turning behaviour

would be most informative when tested against turning

targets. For this reason, both fly species were tested with

linear and with erratically moving targets (with changing

speed and direction).

3.2. Pure pursuit, pro-nav, and deviated pursuit
correlations and flight simulations

3.2.1. Pure pursuit test and simulations
A strong positive correlation between pursuer heading angu-

lar error from the LoS and rotation rate of the pursuer

heading would be expected for a pure pursuit navigation

system. However, we did not find such correlation with

either linear or erratic targets and for both Holcocephala and

Coenosia (figure 4a). The best fitting linear regression

models for both flies had little explanatory value (for Coeno-
sia, with linear targets k ¼ 10.2, R2 ¼ 0.02 and with erratic

targets k ¼ 8.4, R2 ¼ 0.04. For Holcocephala, with linear tar-

gets k ¼ 22.3, R2 ¼ 0.04 and with erratic targets k ¼ 2.4,

R2 ¼ 0.01). For the linear targets, the fit of time constants con-

tinually increased to the maximum tested at 50 ms for both
species, whereas with the erratic targets this value was

22 ms for Holcocephala and 15 ms for Coenosia (figure 4b).

Regardless, the flight simulations with a pure pursuit control-

ler model do not match the trajectories taken by either species

of predator (figure 4c). In the experiments both fly species

steer ahead of the target’s position, but in the pursuit simu-

lation the pursuer undershoots the target trajectory and

must enter a tail-chase towards the target, only catching it

once its linear speed exceeds that of the target. We ran the

same simulation with a wide range of constant values

(10 to 100 s21), but this did not improve the fit of the

model (figure 4c). Thus, a pure pursuit controller is not

supported by the data.

3.2.2. Pro-nav test and simulations
For interception of targets moving at a constant velocity, we

found a correlation between rotation rate of the pursuer

heading and rotation rate of LoS, for both Holcocephala and

Coenosia. For Holcocephala, the correlation was stronger for

the erratic targets. (For linear, N ¼ 2.56; R2 ¼ 0.23, n ¼ 109

flights. For erratic, N ¼ 3.04, R2 ¼ 0.59, n ¼ 17 flights

figure 5a.) For Coenosia, the strength of the correlation was

similar for linear and for erratic targets (N ¼ 1.4; R2 ¼ 0.65,
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n ¼ 59 flights versus N ¼ 1.2; R2 ¼ 0.57, n ¼ 8 flights, respect-

ively, figure 5a.). This correlation is the hallmark of a

proportional navigation control system. These results were

obtained with a best-fit temporal delay for linear-erratic

targets of 29–27 ms for Holcocephala 19–17 ms for Coenosia
(figure 5b). Even though the targets were presented with

similar velocities to both species (see Methods section 2.2),

for linear targets the mean rotation of the LoS in Holcocephala
was an order of magnitude less than that of the Coenosia
(33.48 s21+ s.e. 0.38 s21 as opposed to 333.88 s21+ s.e.

3.18 s21). The mean rotation of the LoS in Holcocephala
for the erratic flights was also less than that of Coenosia
(60.98 s21+ s.e. 1.08 s21 as opposed to 228.28 s21+ s.e.

8.78 s21). For any relative movement of prey normal to the

LoS from the reference frame of the predator, the resulting

rotation of the LoS is proportional to the inverse tangent

of 1/range between target and pursuer. Thus, the higher

rotation rates in Killer flies likely arise from the shorter

target range on take-off.

The pro-nav steering model results in well-fitted simu-

lated flight trajectories, for both species when intercepting

both linear and erratic targets (figure 5c), despite not taking

account of any potential biomechanical limitations nor

environmental perturbations. When the model was tested
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with sequential fitting of constants incrementing from N ¼ 1

to 10, similar peak gain fittings to the correlative measure

were found for the navigational constant of both species.

For linear targets, the mean best fitting gains were N ¼
3.4+ s.e. 0.1 (n ¼ 109) for Holcocephala and N ¼ 1.6+ s.e.

0.1 (n ¼ 59) for Coenosia. For erratic targets they were N ¼
3.9+ s.e. 0.1 (n ¼ 17) for Holcocephala and N ¼ 1.4+ s.e. 0.2

(n ¼ 8) for Coenosia (electronic supplementary material 3).

For linear target intercepts by Holcocephala, the simulation

showed a mean distance from the true flightpath of

5.8 mm+ s.e. 0.5 mm and angular error of 7.48+ s.e. 0.68.
For linear target intercepts by Coenosia, the mean distance

between the simulation and the true flightpath was

3.86 mm+ s.e. 0.5 mm and mean angular error 7.08+ s.e.

0.68. For erratic targets intercepts by Holcocephala, the simu-

lation had a mean 8.47 mm+ s.e. 1.79 mm distance and

9.78+ s.e. 1.468 error from the true course. For Coenosia inter-

cepts of erratic targets, the simulation had a mean 8.3 mm+
s.e. 2.5 mm distance and 9.08+ s.e. 1.88 of error from

recorded flight paths.

Thus, these results support pro-nav as the underlying

feedback controller system.
3.2.3. Deviated pursuit test
A third possibility is that the two predatory species employ a

deviated pursuit control controller, which aims to maintain a

fixed error angle between pursuer heading and LoS. To main-

tain a fixed error angle, a rotation in LoS must be exactly

matched by a rotation in pursuer heading (1 : 1). Thus, one

may suspect a deviated pursuit controller may be in place

if the best fit gain constant for a pro-nav controller yields

N � 1. However, a deviated pursuit controller correlation

(N ¼ 1) performed poorly when fitted to Holcocephala flights

towards linear (deviated pursuit R2¼ 0.14) and erratic

(deviated pursuit R2¼ 0.03) targets (figure 5a) and is there-

fore unlikely to be the underlying system. For Coenosia, the

deviated pursuit correlation was also lower for deviated

pursuit than for pro-nav, towards both linear (R2¼ 0.48)

and erratic (R2¼ 0.54) targets (figure 5a), but this difference

is not striking, and thus, insufficient on its own to ignore

deviated pursuit as the controller for Coenosia. A secondary

measure of a deviated pursuit controller is not whether it

successfully maintains a fixed angle, but whether it turns in

proportion to the error from that fixed angle. For this we

would expect a linear correlation between the pursuer head-

ing error from the LoS and rotation rate of the pursuer

heading to be a positive linear correlation, but with a positive,

non-zero intercept. As seen for both Holcocephala and Coenosia
(figure 4a) there are no such trends in the data (see pure

pursuit test), and on this basis a deviated pursuit controller

is unlikely to be driving predatory flights in these species.
3.3. Effect of neural delay and proportional gain on
performance of flight simulation

To individually test the effects of differing gain and time

delay between the two species, we took four trajectories

from each species and ran pro-nav simulations, with the

best fit gain and time delay interchanged. Simulating a Holco-
cephala flight with the delay and gain observed in Coenosia
(d ¼ 18 ms and N ¼ 1.5; figure 6a(i)), results in a longer

route to the target. Most of this effect arises from the lower
gain (figure 6a(ii)), with the shorter delay having little effect

(figure 6a(iii)). Simulating a Coenosia flight with Holcocephala
delay and gain (d ¼ 28 ms and N ¼ 3; figure 6b(iv)) also

results in a longer path to the target. In this case, both,

longer time delays (figure 6b(ii)) and higher gain

(figure 6b(iii)) result in additional over-compensating turns

by the pursuer and much longer routes to the target.

The effect of the navigation constant on resulting flight-

path is dependent on the ratio of pursuer speed to the

closing rate between pursuer and target (Vp/Vc ratio). Both

Holcocephala and Coenosia have Vp/Vc ratios of near 1. (For

linear targets 0.99+ s.e. 0.02 and 1.08+ s.e. 0.13 respectively

and for erratic targets 1.01+ s.e. 0.06 and 1.34+ s.e. 0.60.)

Thus, the effective navigational constant N0 approximates N
[22], the importance of this similarity is described in the

discussion.

3.4. Efficiency of pro-nav versus pure pursuit controller
on real flight conditions

To quantify the relative efficiencies of investing in

proportional navigation over pure pursuit, the relative

time-to-target advantage was calculated for both species

(figure 7a). For this, we used the data from interception of

linear targets i.e. by feeding in the starting positions and vel-

ocities of both target and predator, then letting the pure

pursuit model steer the predator through the simulation

flight until contact with target (Holcocephala n ¼ 109, Coenosia
n ¼ 59 flights). We then calculated the flight time difference

between the pure pursuit simulation and the real flight. The

greater the speed of the target relative to the pursuer, the greater

the time advantage of the fly trajectories over a pursuit control-

ler (figure 7a(i–iii)). Time-to-contact differences of actual flights

versus the pure pursuit model are matched by the time advan-

tages of a theoretical pro-nav controller (with gain matched

to the flies, respectively), demonstrating that the change in

controller is responsible for time-to-contact savings.

Time-to-contact is also affected by the initial attack angle

on take-off (angle between initial LoS and target flight-path).

Our flight simulations demonstrate that there is an attack

angle which uses minimal time-to-contact for the controller

tunings and mean flight-speeds (figure 7b). This value is

398 for Holcocephala (figure 7b(i)) and 358 for Coenosia
(figure 7b(ii)). Both species of fly took off after targets near

to this optimum attack angle, with mean attack angles of

32.88+ s.e. 1.78 for Holcocephala and 37.08+ s.e. 1.98 for

Coenosia.

4. Discussion
The two species in this study see with differing spatial resol-

utions, but they set out to solve the same challenge, to catch

other aerial arthropods. We raised the question as to whether

they have evolved the same means of navigating to their

target. Holcocephala fusca and Coenosia attenuata are unlike

other studied insect navigational systems [3,4,7,10–12] with

the potential exception of dragonflies [6]. This is because

they intercept targets without needing knowledge of target

properties, implementing pro-nav that turns them towards

a near time-optimal course to the target. Given the correlation

between the rotation of pursuer heading and LoS, and the

agreement of modelled flightpaths with fly trajectories

(figure 4 and electronic supplementary material 4), we find
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the most parsimonious explanation of interception behaviour

in both species to be proportional navigation. We firmly rule

out pure pursuit navigation, as found in many other studied

insect systems, because there is neither correlative evidence

nor agreement with model simulation. We also rule out

deviated pursuit navigation (which would yield identical be-

haviour to pro-nav with a constant fixed at N ¼ 1), as this

explains the correlative data less well than a pro-nav control-

ler and deviated pursuit simulations do not match flight

trajectories. Harder to rule out are alternative models

that employ rotation of LoS as a measured cue (such as the

constant bearing model put forward in humans [17]) and
result in flightpaths with similar curves to those obtained

from a pro-nav controlled simulation. However, due to its

simplicity, pro-nav stands out as still the most parsimonious

controller that can explain interception flights as the constant

bearing model affects angular acceleration rather than angu-

lar velocity and incorporates a damping term. Proportional

navigation engenders near identical results with fewer

input variables and is simpler to implement, and thus we

suggest much more likely.

Correlative and simulation fitting methods produced con-

sistent results: Holcocephala appear to use a control gain of N
�3 to steer their flightpath. This value matches the lower end
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of the envelope of gain constants used in human mechanis-

ations of pro-nav, such as in guided missiles (3 � N � 5)

[22]. Additionally, the terminal attack phase of the peregrine

falcon, Falco peregrinus, is modelled well by proportional

navigation with mean gain of N ¼ 2.6 [15], which is similar

to the gain found in Holcocephala. The efficacy of the navigation

constant is also dependent on target motion, and to describe

this, the effective navigation constant (N0) is used, where:

N0 ¼ N
Vp

Vc
:

Vp being the predator speed and Vc the closing speed

between pursuer and target. For intercepting a non-

manoeuvring target, the control optimum N0 is 3, ensuring

zero-miss with minimal cost of control (integral square of lat-

eral accelerations) (for detailed work-through see [22,26]). For

near-stationary targets the Vp/Vc ratio is 1 but for intercept-

ing moving targets, as with the two flies in this investigation,

N0 may potentially vary from N. We found that for both flies

N0 � N and thus Holcocephala uses near the optimum control

gain of N0 ¼ 3. Coenosia use a low gain of near N ¼ 1.5. This is

below the optimal control level and below the range used in

missiles [22]. This could represent limitations given by the

high LoS rates they experience through close target proximity

and the necessary neural lag between stimulus and reaction.

We demonstrate in figure 6 that given the proximity to target

at which Coenosia hunt, employing an optimal control gain or

longer time delay would frequently cause overcompensation

in the turning response, and thus longer paths to the target.

Coenosia maintains a course further from optimal than Holco-
cephala does. By only studying flight traces and range vector

correlation, it would be easy to conclude that that they are not

attempting to fulfil parallel navigation, as previously

reported for dragonflies [18]. However, simply because

killer flies do not successfully maintain near parallel LoS, it

does not mean that they do not use pro-nav, as demonstrated

by the model’s accurate description of their behaviour.

We suggest that the difference in gain intimately reflects

the differences in physiology and predation tactics of the

two species. The higher acuity of Holcocephala vision enables

them to spot suitable targets at greater range [16], and thus

encounter lower LoS rates and use the optimal control gain

to steer into targets. The lower acuity vision of Coenosia [21]

results in close proximity attacks that create high rotations

in LoS and necessitate a short time delay and lower gain.

Most significantly, this study can be compared with the

only other described use of proportional navigation in an

animal, that of the peregrine falcons [15]. It is remarkable

that peregrines, operating at much greater speeds and with

radically different flight morphology use the same system

as miniature predatory flies, and with a very similar near-

optimal gain tuning to that of Holcocephala. This demonstrates

that proportional navigation could well underlie interception

behaviours across further animal taxa (e.g. [6,13,14]). More-

over, the comparison between Holcocephala and Coenosia
needs to be augmented by further species that are physiologi-

cally dissimilar and hunt in differing habitats. Such studies

would give evidence to explanations for the distinct control

gains or present diverse specializations of the control

system to reflect the variation between differing groups’

tasks, physiology or geometry of interaction.

An alternative explanation of the lowered gain of Coenosia
involves the parasitic attitude loop. This effect should be
familiar to biologists in principle, although not by this

name. To rotate its heading, the fly must rotate its body.

This rotation potentially affects the measurement of LoS

rate of the target and could create instabilities in tracking.

These can be prevented by reducing the navigation constant

[27]. It is unlikely that the parasitic attitude loop is respon-

sible for the gain differences found in this study, as flies

(like other animals) are most likely capable of accounting

for rotations of their own bodies to stabilize vision

[18,28,29]. This accounting can either be conducted predic-

tively [18,30] or reactively [31,32] to separate self-induced

rotation of the pursuer body from actual rotation of the LoS

relative to the exocentric reference frame.

Correlative evidence for pro-nav in Holcocephala was

weakest for interceptions of linearly travelling targets.

These flights had relatively low LoS rates, meaning any

noise in tracked positions of target and fly will more easily

mask the effects of the control system, thus resulting in a

lower sensitivity to constant fitting. When LoS rates were

increased by using erratically travelling targets, the corre-

lation of LoS rate and pursuer turning rate of Holcocephala
showed stronger evidence for a pro-nav controller. The anat-

omy of Holcocephala suggests some potential clues to their

implementation of pro-nav. Their highly specialized fovea

seems likely to track the target, resulting in rotation of the

head relative to the body as in the gimbal seeker of a missile.

By maintaining target fixation and using either visual or iner-

tial cues for rotation of the head, the fly can measure rotations

in the LoS relative to the exocentric reference frame and thus

conduct pro-nav. The use of pro-nav does not exclude the

possibility that internal models are used to maintain gaze

fixation on the target, reducing tracking lag as found in

dragonflies [18] (likely through a corollary discharge), only

that the rotation of fixated gaze is fed into the pro-nav

controller.

Thus, we raise the question, not why both Holcocephala
and Coenosia use a proportional navigational controller to

attack targets, but why other described species of fly use a

pursuit controller? Proportional navigation is likely to have

a higher cost of implementation than a pursuit controller,

or a narrower applicability. Most of the work hitherto com-

pleted on dipteran aerial tracking used the approach to

conspecific targets (e.g. [4,11,12]). This is a fundamentally

different problem than the one faced by a predator. While

predators are subject to strong selective pressure to success-

fully grapple with targets, social engagements involving

pursuit may not be selected for success of aerial interception,

instead simply following a potential mate or chasing away a

rival may count as a ‘success’ without need for actual contact.

In cases of conspecific interception, innate knowledge of the

target allows for biasing of any potential control system

given that assumptions can be made about rough flight

speeds and target sizes. Just such biasing underpins initiation

of aerial interception of female hoverflies by males [3]. We

have discounted sexual motivations in flights for both

species; female Coenosia chase all conspecifics with canniba-

listic purpose (males need to out manoeuvre females to

initiate mating) and male Holcocephala search for stationary

(perched) females before attempting to copulate. It is there-

fore unlikely that the recorded behaviour towards moving

dummy targets was other than predatory in function.

The relative simplicity of aligning axis of motion directly

along the LoS to the target may have lower physiological and
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computational requirements than the variable coupling of

thrust axis and LoS required for proportional navigation. To

investigate further, knowledge of the head–body relationship

during flight would be required, which is challenging for the

two species studied in this work due to their small size.

Robber flies (Asilidae) are a large family of flies, containing

genera with much greater body size than Holcocephala
(i.e. Microstylum or Laphria). These groups would make

head–body relationships a more tractable question, should

they also use pro-nav to intercept targets. This is our current

line of work, assisted by electrophysiological work into the

relationship between target stimuli and the motor commands

transported to steering muscles down the descending neurons.

However, robber flies are a large family of flies with extremely

diverse hunting methods. Many are not sit-and-wait predators

like Holcocephala, instead actively foraging for prey [33]. The

results of this study with Holcocephala fusca should not be

taken to transfer across to other species of robber fly. Just as

the different hunting habits of Coenosia and Holcocephala
have resulted in different gains on their control systems, the

difference in other robber fly hunting styles may mean their

target-navigation systems are entirely different.

Both predatory fly species here studied, Coenosia attenuata
and Holcocephala fusca, take-off while targets are in the time-

optimum catch window. This does not necessarily suggest

that flies wait for targets to reach this window, but that they

might simply apply a filter to their target selection preferences

or align their body orientation for this purpose. For instance,

Holcocephala most often sit with their body at 30–508 in

elevation, potentially aligning their visual axis along the opti-

mum take-off window. If most targets are likely to be flying

roughly parallel to the ground, a fly then need only give prefer-

ence to targets coming towards it, with the time-optimum point

for take-off coinciding with the target moving into the centre of

its visual field. Additional work is needed to elucidate the exact

cues that trigger the predatory behaviour at a particular time for

both species, which would demonstrate how these animals

take-off while targets are in the optimum catch window.
5. Conclusion
By studying the behaviour of the small flies Holcocephala fusca
and Coenosia attenuata, we demonstrate that intercepting
prey by flying a near time-optimal course need not be under-

pinned by forward prediction of target path. Instead, the

behaviour of both species is explained by proportional navi-

gation, the basis of predatory behaviour in peregrine falcons

and underpinning guidance in modern missiles. Holcocephala
uses a higher, optimal gain of near N � 3 to steer into targets

over long ranges, similar to findings in falcons. In contrast,

Coenosia uses a lower gain of near N � 1.5, potentially over-

coming high rotations in LoS created by their proximity to

targets at take-off. Both species have short time delays on

their control systems, Holcocephala at 28 ms and Coenosia at

18 ms. The simplicity of implementation and energetic

savings of proportional navigation mean that there is a

wide applicability and suggest it may underpin predatory

interception in other organisms. Studying such biological

implementations may improve our general understanding

as the organisms studied may demonstrate energetic saving

tactics and such innovations could lead to improved human

produced proportional navigation controlled systems.
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