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Abstract

Visceral leishmaniasis (VL) is a neglected vector-borne disease associated with socioeco-

nomic and environmental issues. In Brazil, epidemics of VL have occurred in major cities

since 1980. Applied models for medical and epidemiological research have been used to

assess the distribution and characteristics of disease endpoints and identify and character-

ize potential risk factors. This study described the demographic features of VL and modeled

the spatio-temporal distribution of human VL cases and their relationship with underlying

predicitve factors using generalized additive models. We conducted an ecological study

covering an 18-year period from the first report of an autochthonous case of VL in Campo

Grande, state of Mato Grosso do Sul, in 2001 to 2018. The urban area of the city has 74

neighborhoods, and they were the units of analysis of our work. Socioeconomic and demo-

graphic data available from Brazilian public databases were considered as covariables. A

total of 1,855 VL cases were reported during the study period, with an annual mean inci-

dence rate of 13.23 cases per 100,000 population and a cumulative crude incidence of

235.77 per 100,000 population. The results showed the rapid transition from epidemic to

endemic and the centrifugal dispersal pattern of the disease. Moreover, the model

highlighted that the urban quality of life index, which is calculated based on income, educa-

tion, housing conditions, and environmental sanitation data, plays a role in VL occurrence.

Our findings highlighted the potential for improving spatio-temporal segmentation of control

measures and the cost-effectiveness of integrated disease management programs as soon

as VL is difficult to control and prevent and has rapid geographical dispersion and increased

incidence rates.
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Introduction

Leishmaniases constitute the third group of major importance among vector-borne diseases,

with an estimated 1.4 million disability-adjusted life years lost behind only malaria and dengue

[1]. Moreover, leishmaniases are considered neglected diseases once they are endemic in low-

income populations, with unacceptable morbidity and mortality indicators and reduced

investments in research, drug production, and control actions [2, 3].

Visceral leishmaniasis (VL) is the most severe clinical form and is characterized as a chronic

and systemic disease that, when left untreated, is lethal in more than 95% of cases [4]. The

main etiological agent of VL in Brazil and Latin America is Leishmania infantum, whose vec-

tors are Lutzomyia longipalpis [5] and Lutzomyia cruzi [6, 7] sandflies.

In Brazil, epidemics of VL have been observed in major cities since 1980, when the first evi-

dence of urbanization of the disease was recorded [8, 9]. This continuous increase in incidence

in various regions of Brazil may be triggered by environmental changes promoted by rural

exodus and other migratory movements, lack of planning and sanitation in urban areas, as

well as the adaptation of the vector to domestic reservoirs [5, 10–12]. This context and the ter-

ritorial spread of the disease represent some of the challenges for disease control in urban

areas [13, 14], as observed in the city of Campo Grande, state of Mato Grosso do Sul, where

the disease was reported in 2001; it spread rapidly throughout the urban areas of the city and

became endemic in a few years [15]. A recent report—which compared the underlying VL risk

using a spatio-temporal explicit Bayesian hierarchical model with the risk classification cur-

rently in use by Brazil’s Ministry of Health—showed that Campo Grande remains a high-risk

area for L. infantum transmission [16].

Applied models for medical and epidemiological research have been used to assess the dis-

tribution and characteristics of disease endpoints and identify and characterize the effect of

potential risk factors on these endpoints [17–20]. Understanding the spatial dynamics of the

disease and its relationships with socioeconomic and environmental predictors can provide

support for the implementation of more effective strategies for the control of infectious dis-

eases [21]. Due to the spatial nature of health events, the application of geostatistical methods

is an essential part of the analysis and interpretation of these data [22]. The reason lies in the

fact that any data linked to a geographical location may have characteristics associated with its

location; that is, the variables may have some location-related correlation structure [22].

Among several methods, generalized additive models (GAMs) [23] were recently used to

study the relationship between cutaneous leishmaniasis occurrence and possible risk factors

[18] and to predict the potential distribution of Leishmania vectors [24]. GAMs are semi-

parametric regression methods that relate the response variable to smoothed functions of

potential explanatory variables via a link function [23, 25]. Thus, this study aimed to describe

the demographic features of human VL and model the spatio-temporal distribution of

reported cases of VL using GAM, covering an 18-year period from the first report of an

autochthonous case in 2001 to 2018 in an urban area endemic for VL. We also assessed the

relationship between the disease and a few underlying predictor factors related to socioeco-

nomic status.

Materials and methods

Study area

Located in the central region of the state of Mato Grosso do Sul, Brazil, Campo Grande (20˚

26’ 34” S, 54˚ 38’ 47” W, Gr) has a total area of 8,118.4 km2 (Fig 1), of which the urban area

occupies 359.03 km2 and is divided into 74 neighborhoods (units of analysis used in this
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study) [26]. In 2019, according to estimates by the Brazilian Institute of Geography and Statis-

tics (IBGE) [27], Campo Grande had an estimated 895,982 inhabitants. The population density

is 97.22 inhabitants/km2, and 98.66% of this population lives in urban areas [28]. Moreover,

92.3% of the buildings in Campo Grande are masonry houses with cladding, and 61.5% of the

economically active population earns up to two minimum wages. Concerning sanitation, 44%,

90%, and 98.8% of the population has access to sewage treatment, treated water, and garbage

collection, respectively [29].

In the Köppen climate classification system, the climate of Campo Grande is tropical mon-

soon (Am), characterized by irregular rainfall distribution with a well-defined dry season dur-

ing the coldest months of the year and a rainy season during the summer months [30].

Fig 1. Study area. Jockey and Noroeste neighborhoods are highlighted due to the behavior of their relative smoothed risk distinct from the other

neighborhoods, as shown in the results. Data sources: shapefiles from the Brazilian Institute of Geography and Statistics (IBGE) and Municipal Department of

Environment and Urban Development of Campo Grande (PLANURB).

https://doi.org/10.1371/journal.pone.0240218.g001
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Study design and data sources

We conducted an ecological study based on reported and autochthonous human cases of VL.

The analysis was carried out in two steps: first, the occurrences of the disease were used to cal-

culate the incidence and describe the demographic features. In the second step, the reported

cases were geocoded and grouped by neighborhood to estimate the smoothed relative risks

and assessed according to the area data analysis using GAM to study the spatio-temporal dis-

tribution of the disease.

We considered all confirmed autochthonous human cases of VL reported in the urban

perimeter of Campo Grande from January 2001 to December 2018. These data were extracted

from the Brazilian Notification Disease Information System (SINAN) [31].

The covariables listed in Table 1 describe the demographic and socioeconomic charac-

teristics of the Campo Grande neighborhoods and were used as covariates to mode the

occurrences of LV. These data were extracted from the databases of the IBGE, the Munici-

pal Department of Environment and Urban Planning of Campo Grande [29], and the

study Campo Grande social exclusion profile [32]. We have considered in our analysis all

variables related to the socioeconomic factors available for the study area. More details

and the characterization of these covariables through descriptive measures are presented

in the S1 Table.

The grid of the neighborhoods of Campo Grande used in this study was made available in

shapefile format (ESRI–Environmental Systems Research Institute) by the Municipal Depart-

ment of Environment and Urban Planning of Campo Grande.

Table 1. Covariates assessed in the study.

Source Variable

IBGE

Number of permanent private households

Total number of residents per permanent private household

Average number of residents in permanent private housing units

Income–value of median monthly nominal income of persons�10 years of age

Proportion of the population with a toilet at home

Proportion of the population with household water supply

Proportion of the population with regular garbage collection by a public cleaning service

PLANURB

Education index

Income and poverty index

Environmental sanitation index

Housing and living conditions index

Urban quality of life index

Sauer et al. [32]

Social exclusion index

Poverty of the persons responsible for permanent private housing units

Income inequality

Literacy rate

Years of education of persons responsible for permanent private housing units

Abbreviations: IBGE, Brazilian Institute of Geography and Statistics; PLANURB, Municipal Department of

Environment and Urban Planning of Campo Grande.

https://doi.org/10.1371/journal.pone.0240218.t001
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Statistical methods

The crude incidence per year and age-sex-specific incidence rates were calculated. In addition,

the proportions of notifications by age and sex were calculated per year (available as supple-

mentary data). To compare male and female occurrences by age categories, Poisson regression

was used to estimate incidence ratios with 95% confidence intervals. The rates were described

using descriptive statistics and presented in the tables and figures.

Considering that the incidence rates do not consider possible differences between the

observation units (neighborhoods, in the case of this work), such as the age distribution of

individuals and the number of occurrences of VL cases per unit area, the estimate of the rela-

tive risk was used for the temporal-spatial analysis. Considering further that the relative risk

does not take into account the possible uncertainty associated with unusual incidence rates in

counties with relatively small populations at risk [33], the smoothed relative risk (SRR) pro-

posed by Clayton and Kaldor [34] was used to assess the spatial distribution of VL, which

allowed us to compare the results between neighborhoods. To estimate the SRR, the observed

number of cases was geocoded and grouped by neighborhood, and indirect standardization

[35] was used to compute the expected number of cases for each neighborhood. The SRR then

follows as the ratio of the observed number of events (reported cases of VL) over the expected

number:

SRRi ¼
Oi
Ei

where Oi is the observed or reported number of VL cases in the area (neighborhood) i, and Ei
is the expected number of VL cases for the area i.

To assess the relationship between the disease occurrences in the neighborhood and the

period investigated with the demographic and socioeconomic variables, we employed a GAM

considering the spatio-temporal interactions. According to Wikle, Zammit-Mangion, and

Cressie [36], in general, a GAM model considers the transformation of the mean response to

have an additive form in which the additive components are smooth functions (e.g., splines) of

the covariates, where the functions themselves are generally expressed as basis-function expan-

sions. GAMs can approximate the relationship between the predictors (inputs) and the out-

come variable (output) and express the relationship mathematically. The proposed model can

be written as the transformed mean response additively as:

gðY ðs; tÞÞ ¼ xðs; tÞ0b þ f ðs; tÞ þ nðs; tÞ;

where Y(s; t) is the response (SRR or case counts), g(�) is a specified monotonic link function, x
(s; t) is a vector of covariates for spatial location s and time t, β is a vector of parameters, the

function f(s; t) is a random smooth function of space and time, and ν(s; t) is a spatio-temporal

white-noise error process; following the notation adopted by Wikle, Zammit-Mangion, and

Cressie [36].

To avoid the effects of multicollinearity, at the beginning of the modeling process, the cor-

relations were assessed using the Pearson correlation coefficient, and one of the covariables

between the pairs with a correlation greater than 0.8 was excluded. After the adjustment, the

correlations between the estimated coefficients were verified, excluding the covariables with a

correlation between coefficients greater than 0.7 as suggested by Seber and Lee [37]. Then, the

stepwise backward method (p-value < 0.05) was adopted to select the model’s explanatory var-

iables [38]. In the last step, cross-validation was adopted to define the parameters of the time-

space effect (node parameters). Data from 2018 were not included in the estimation process;

they were used only in the cross-validation process, that is, the mo

PLOS ONE Spatio-temporal modeling of visceral leishmaniasis in Midwest Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0240218 October 2, 2020 5 / 20

https://doi.org/10.1371/journal.pone.0240218


del estimated with data from 2001–2017 was used to predict the year 2018, with the model

that presented the lowest mean squared error chosen as the final model. This process was

repeated to adjust the soft risk (with gamma response) and occurrences (with Poisson and neg-

ative binomial response) [39]. The residues were checked to assess whether the model ade-

quately captured the spatial and temporal variability in the data. Considering Henebry’s

approach [40], Moran’s I test was used to test the spatial dependence, and the Durbin-Watson

test was used for temporal dependency [41].

Statistical analyses of the data, generation of the maps, and modeling were performed using

R 3.6.1. The ggmap package [42] was used to perform the geocoding, and ggplot2 [43] was

used to plot the maps. The smooth relative risks were estimated using the Dcluster package

[44], and the binomial negative GAM was estimated using the mgcv package [45]. The ape

[46] and lmtest [47] packages were used respectively for the Moran’s I and Durbin-Watson

tests. Scatter plots and matrix correlations were built using the PerformanceAnalytics package

[48].

Ethics statement

This study was approved by the Research Ethics Committee of the Federal University of Mato

Grosso do Sul (CAAE: 02617218.8.0000.0021) and registered under number 3.030.880. Per-

sonally identifiable information (patient name and information included on the case report

form) was available only to surveillance officers and was not used in this study.

Results

From 2001 to 2018, a total of 1,855 cases of VL were reported in Campo Grande, with an

annual average incidence rate of 13.23 cases per 100,000 population and a cumulative crude

incidence of 235.77 per 100,000 population for the period. The distribution of cases by sex and

age group is shown in Tables 2 and 3. Regarding age, children between 0 and 5 years and adults

over 40 years of age were the most affected by the disease. It is noteworthy that since the begin-

ning of the epidemic in 2001, children had a high risk of illness. Regarding sex, in general, the

highest incidence was recorded in men. When analyzing sex and age, although the incidence

of VL in men was higher in almost all age groups, no statistical difference was observed when

the male-to-female incidence rate ratio (IRR) was estimated overall or stratified by age group

(IRR: 1.92; 95% confidence interval [CI]: 0.53–6.90). During the 18 years evaluated, the male/

female ratio remained practically constant during the first five years of the epidemic, it oscil-

lated with little variability between 2006 and 2016 and returned to the initial ratio in the final

two years of the analysis.

The annual crude incidence and the temporal evolution of VL cases are depicted in Fig 2.

Descriptively, there was a continuous and progressive increase in the incidence rate until 2006,

followed by declines in 2007, 2009, and 2010, and a sharp increase between 2011 and 2012.

From 2013 through 2018, the tendency was for the incidence to decrease.

Fig 3 shows the smoothed relative risks for each Campo Grande neighborhood throughout

the evaluated series. Among the 1,855 notifications, 15 cases who lived in the rural area when

they were diagnosed and reported to the SINAN were excluded from the analysis. Descrip-

tively, it is noted that there was a relatively high fluctuation (variability) until 2010, followed by

stabilization between 2010 and 2014, with a return to baseline from 2014. Two neighborhoods

showed different behaviors and, therefore, improved detail was required: at the beginning of

the series, in 2003, the Jockey Club neighborhood had a high SRR that decreased over time;

the Noroeste neighborhood, on the other hand, showed the opposite behavior and was con-

spicuous due to the sharp increase in rates between 2014 and 2016, peaking in 2016. The
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explanation for the high rates is that the observed values were much higher than the expected

values for these areas. Fig 4 presents the spatial distribution of SRR according to neighbor-

hoods over the study period.

At the beginning of the VL epidemic, between 2001 and 2003, in addition to the continuous

increase in annual incidence rates, there was also a rapid spread of the disease throughout the

city that evidenced the transition from epidemic to endemic in Campo Grande in the follow-

ing years, since the constant presence of the disease was observed in the city. From Fig 4 it can

be seen that the high SRR values are distributed throughout the city over the years, and the

number of neighborhoods coded with dark red tones (SRR > 1) has also increased over the

years, especially after 2003. Considering the spatial distribution of the SRR accumulated in the

period 2001–2018 (Fig 5), it was observed that the largest SRRs are distributed in peripheral

neighborhoods that, in the great majority, are neighborhoods with low socioeconomic status.

Our results from Fig 6 and S2 Table showed that among 17 covariables assessed, 10 of them

showed a significant association with the cumulative SRR, being that all of them are related to

income, housing, or education. The significant correlations between the SRR and the covari-

ables can be considered moderate, since they are around 0.50, with the highest correlation

coefficient equal to -0.59 (p-value < 0.001) which corresponded to the income and poverty

Table 2. Demographic features of visceral leishmaniasis cases in Campo Grande, Brazil, 2001–2018.

Age 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

n % n % n % n % n % n % n % n % n % n %

< 1 0 0,00 0 0,00 2 2,08 9 7,14 13 8,50 11 6,96 11 8,27 14 9,79 7 6,80 5 4,59

1 to 4 5 50,00 6 30,00 25 26,04 30 23,81 27 17,65 34 21,52 26 19,55 30 20,98 21 20,39 25 22,94

5 to 14 1 10,00 5 25,00 17 17,71 20 15,87 32 20,92 20 12,66 21 15,79 16 11,19 8 7,77 12 11,01

15 to 24 2 20,00 3 15,00 16 16,67 14 11,11 20 13,07 15 9,49 17 12,78 12 8,39 8 7,77 10 9,17

25 to 39 1 10,00 3 15,00 11 11,46 22 17,46 23 15,03 32 20,25 18 13,53 18 12,59 14 13,59 15 13,76

40 to 59 0 0,00 2 10,00 17 17,71 22 17,46 24 15,69 28 17,72 29 21,80 36 25,17 28 27,18 28 25,69

� 60 1 10,00 1 5,00 8 8,33 9 7,14 14 9,15 18 11,39 11 8,27 17 11,89 17 16,50 14 12,84

Total 10 20 96 126 153 158 133 143 103 109

Sex

F 4 40,00 8 40,00 39 40,63 50 39,68 57 37,25 44 27,85 45 33,58 50 34,97 33 32,04 48 43,64

M 6 60,00 12 60,00 57 59,38 76 60,32 96 62,75 114 72,15 89 66,42 93 65,03 70 67,96 62 56,36

Total 10 20 96 126 153 158 134 143 103 110

Age 2011 2012 2013 2014 2015 2016 2017 2018 Total

n % n % n % n % n % n % n % n % n %

< 1 16 11,43 9 4,48 6 3,85 4 4,55 8 11,59 2 3,70 2 3,33 3 8,82 122 6,58

1 to 4 29 20,71 52 25,87 20 12,82 12 13,64 13 18,84 7 12,96 11 18,33 6 17,65 379 20,45

5 to 14 15 10,71 9 4,48 8 5,13 7 7,95 2 2,90 1 1,85 2 3,33 3 8,82 199 10,74

15 to 24 8 5,71 17 8,46 10 6,41 14 15,91 2 2,90 2 3,70 2 3,33 1 2,94 173 9,34

25 to 39 19 13,57 30 14,93 33 21,15 13 14,77 19 27,54 22 40,74 10 16,67 10 29,41 313 16,89

40 to 59 35 25,00 51 25,37 48 30,77 17 19,32 16 23,19 15 27,78 20 33,33 8 23,53 424 22,88

� 60 18 12,86 33 16,42 31 19,87 21 23,86 9 13,04 5 9,26 13 21,67 3 8,82 243 13,11

Total 140 201 156 88 69 54 60 34 1853

Sex

F 52 37,14 66 32,84 57 36,77 28 31,82 28 40,58 14 25,93 24 40,00 13 38,24 660 35,60

M 88 62,86 135 67,16 98 63,23 60 68,18 41 59,42 40 74,07 36 60,00 21 61,76 1194 64,40

Total 140 201 155 88 69 54 60 34 1854

Note: One case was excluded from sex analysis and two from age analysis because of missing information.

https://doi.org/10.1371/journal.pone.0240218.t002
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index variable. The second highest correlation coefficient had the opposite direction (r = 0.58;

p-value < 0.001) and corresponded to the poverty of the persons responsible for permanent pri-
vate housing units variable. These two covariables express the same magnitude (income) and

are, therefore, strongly correlated (r = -0.92; p-value < 0.001). However, it is important to note

that they indicate opposite directions (ratified by the r = -0.92; p-value< 0.001), that is, while

high values of income and poverty index indicate higher income, high values of poverty of the
persons responsible for permanent private housing units indicate greater poverty among persons

responsible for permanent private housing. Moreover, the correlations of these two covariables

with the SRR are consistent as they indicate that the higher the poverty level, the greater the

Table 3. Cumulative crude incidence of visceral leishmaniasis according to age and sex; Campo Grande, Brazil, 2001–2018.

Female sex Male sex Male-to-female Incidence rate ratio (95% CI)

Population Cases Incidence per 100,000 Population Cases Incidence per 100,000

Age 405464 660 162,78 381333 1192 312,59 1.92 0.53–6.90

< 1 5734 53 924,31 5965 69 1.156,75 1.25 0.81–1.94

1 to 4 22153 187 844,13 23109 192 830,85 0.98 0.95–1.02

5 to 9 27542 62 225,11 28829 76 263,62 1.17 0.86–1.60

10 to 14 31843 33 103,63 32845 28 85,25 0.82 0.56–1.21

15 to 19 35218 27 76,67 35337 44 124,52 1.62 0.63–4.20

20 a 29 73723 68 92,24 73142 125 170,90 1.85 0.55–6.21

30 a 39 66420 65 97,86 61218 156 254,83 2.60 0.40–16.99

40 a 49 57372 67 116,78 50412 187 370,94 3.18 0.33–30. 60

50 a 59 41698 29 69,55 36006 141 391,60 5.63 0.19–166.58

60 a 69 24028 39 162,31 19980 88 440,44 2.71 0.38–19.20

70 a 79 13496 21 155,60 10282 58 564,09 3.63 0.29–45.25

� 80 6237 9 144,30 4208 28 665,40 4.61 0.23–92.23

Note: One case was excluded from sex analysis and two from age analysis because of missing information.

CI, confidence interval.

https://doi.org/10.1371/journal.pone.0240218.t003

Fig 2. Annual crude incidence and absolute frequency of visceral leishmaniasis by year in Campo Grande, Brazil, 2001–2018.

https://doi.org/10.1371/journal.pone.0240218.g002
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SRR. These results can also be viewed in the scatter plots (Fig 6) where weak/moderate linear

relationships with apparent non-constant variability are shown; thus, it can be concluded that

the SRR of VL has a weak or moderate linear relationship with all covariables. The strong lin-

ear relationship between the covariables indicates multicollinearity.

A GAM with a negative binomial response for the number of VL reports adequately

described the trend of VL over the evaluated period. Among the study covariables, only urban

quality of life index (UQLI) remained as a predicted variable in the model. The estimated

parameters of the model are presented in Table 4. This model presents residuals with Moran’s

I index and Durbin-Watson test not significant, which indicates that the model adequately

captured the spatial and temporal variability in the data. Additionally, the predicted errors for

2018 (Fig 7) reinforced the good model fit, since most predicted errors (difference between the

values observed for 2018 and the prediction for this same year) are around 0.

Discussion

In our study, the analysis of an 18-year series in an endemic urban area considered an area of

intense VL transmission [16, 49] revealed important findings regarding the epidemiology and

spatio-temporal distribution of the disease by highlighting the rapid transition from epidemic

to endemic status. This analysis has also indicated a greater occurrence of diseases in extremes

of age and an inverse association with covariables related to socioeconomic status, suggesting

the greatest risk of illness in vulnerable human populations [50].

Our results indicated that the disease had a heterogeneous incidence in the population,

affecting mainly men and extremes of age. Previous studies on the epidemiological profile of

VL morbidity and mortality between 2001 and 2009 in the city of Campo Grande [15, 51–53]

revealed that men were significantly more affected by the disease than women. The highest

morbidity and mortality measures observed among men were associated with age, increasing

in individuals over 40 years old and children under 10 years old. In the city of Natal, state of

Rio Grande do Norte, Lima et al. [54] reported that the average age at diagnosis increased over

prior years, and males were more frequently affected between 1990 and 2014. Some authors

have suggested that the immunologic effects of sex hormones could be linked to the increased

Fig 3. Smoothed relative risks according to the neighborhoods of Campo Grande, Brazil, 2001–2018 (n = 1840).

https://doi.org/10.1371/journal.pone.0240218.g003
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risk of VL in males [54, 55]. Other studies conducted in urban areas in Brazil have described

the higher incidence of the disease in children under 5 years of age, suggesting that this is pos-

sibly related to increased susceptibility to L. infantum infection when long-term immunity is

developing [56, 57]. Similar reasoning can be applied for older people, whose other chronic

degenerative morbidities and immunosenescence [58] may increase susceptibility to infection.

During the 18-years of VL occurrence in Campo Grande, it was possible to observe varia-

tions in the incidence of the disease in two periods, 2008–2009 and 2013–2016. These reduc-

tions in incidence rates probably do not have a straightforward explanation, especially due to

the complexity of Leishmania parasite transmission dynamics [59]. Several factors and hypoth-

eses can be considered, including the cyclical nature of the disease, aspects of its pathogenesis

such as undetermined incubation period and asymptomatic and subclinical forms [60, 61],

Fig 4. Spatial distribution of smoothed relative risks according to year and neighborhoods; Campo Grande, Brazil, 2001–2018. Legend categories coded with the

light red tones represent neighborhoods where the risk is less than the city average (SRR< 1), and the dark red tones corresponding to those neighborhoods where the

risk is higher than the city average (SRR> 1). Data sources: shapefile from the Municipal Department of Environment and Urban Development of Campo Grande

(PLANURB); Brazilian Notification Disease Information System (SINAN). Geographic Coordinate Systems WGS-84. SRR, smoothed relative risk.

https://doi.org/10.1371/journal.pone.0240218.g004
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and the discontinuity of control measures recommended by Brazil’s Ministry of Health [16]

such as the euthanasia of seropositive dogs, the monitoring of vectors, and the sprinkling of

residual action insecticides. From 2007 to 2009, dogs were fitted with a 4% deltamethrin-

impregnated collar on a large scale [15]. Data reported by Brazuna [15] showed a reduction in

the incidence of canine VL during the two years of this intervention. Although there are no

data on the effect of canine VL on the incidence of the disease in humans, our results (Fig 2)

showed that the period of high collar coverage in dogs (2008–2009) coincided with a reduction

of human cases.

Fig 5. Spatial distribution of cumulative smoothed relative risks according to neighborhoods in Campo Grande, Brazil, 2001–2018. Legend categories

coded with the light red tones represent neighborhoods where the risk is less than the city average (SRR< 1), and the dark red tones correspond to those

neighborhoods where the risk is higher than the city average (SRR> 1). Data sources: shapefile from the Municipal Department of Environment and Urban

Development of Campo Grande (PLANURB); Brazilian Notification Disease Information System (SINAN). Geographic Coordinate Systems WGS-84. SRR,

smoothed relative risk.

https://doi.org/10.1371/journal.pone.0240218.g005
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The rapid VL spatio-temporal dispersion and its association with UQLI, which is calculated

from socioeconomic and environmental data, are pronounced. The first evidence of the spread

and urbanization of VL in Brazil was described by Deane [62] in 1956, in Sobral, in the state of

Ceará, Northeast Brazil. Almost 30 years later, the first major urban VL epidemic in Brazil was

reported in Teresina, capital of the state of Piauı́, also located in the Northeast region [8].

Antonialli et al. [63] suggested that the expansion of VL in the state of Mato Grosso do Sul

Fig 6. Scatter plots and matrix correlations of the study variables assessed. ��� indicates p-value< 0.001; �� indicates p-value< 0.05; �

indicates p-value = 0.10; SRR, smoothed relative risk of visceral leishmaniasis; PPH, permanent private households; RPH, residents private

household; AR, average number of residents in permanent private housing units; IMM, income value of median monthly nominal income of

persons 10 years of age and over; TH, toilet at home; HWS, household water supply; RGC, regular garbage collection; EI, education index; IPI,

income and poverty index; ESI, environmental sanitation index, HLC, housing and living conditions index; UQLI, urban quality of life index;

SEI, social exclusion index; PPR, poverty of the persons responsible for permanent private housing units; IIQ, income inequality; LR, literacy

rate; YEPR, years of education of persons responsible for permanent private housing units.

https://doi.org/10.1371/journal.pone.0240218.g006
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occurred from the city of Corumbá and coincided in time and space with three major works

that would have caused anthropogenic environmental changes, especially the Brazil-Bolivia

gas pipeline.

In Campo Grande, our data showed that the disease is associated with covariables related to

socioeconomic status. The influence of socioeconomic factors on VL has been widely reported

in the scientific literature [11, 64, 65]. The link between poverty and health problems is com-

plex and profound; various conditions are associated with poverty, such as malnutrition, poor

housing conditions, difficulties in accessing health services, and a lack of education [65].

The burden of leishmaniasis falls disproportionately on the poorest segments of the global

population. In endemic areas, there is an increased risk of infection due to poor housing con-

ditions and environmental sanitation and also due to migratory movements motivated by

Table 4. Parametric coefficients of the GAM regression model with a negative binomial response for the number of VL reports.

Estimate Std. Error z value Pr(>|t|)

Intercept -7.9251 0.1827 -43.383 <0.001

UQLI -2.0471 0.3076 -6.656 <0.001

Abbreviations: GAM, generalized additive model; VL, visceral leishmaniasis; UQLI, urban quality of life index.

https://doi.org/10.1371/journal.pone.0240218.t004

Fig 7. Model predicted errors for 2018. (A) Distribution of the prediction error by the adjusted model of the VL cases in Campo Grande for 2018.

(B) Histogram of prediction errors. (C) Boxplot of prediction errors. VL, visceral leishmaniasis.

https://doi.org/10.1371/journal.pone.0240218.g007

PLOS ONE Spatio-temporal modeling of visceral leishmaniasis in Midwest Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0240218 October 2, 2020 13 / 20

https://doi.org/10.1371/journal.pone.0240218.t004
https://doi.org/10.1371/journal.pone.0240218.g007
https://doi.org/10.1371/journal.pone.0240218


different causes [64, 66] that favor exposure and contact of non-immune individuals with

infected vectors. However, within poor communities, low income may not be a major determi-

nant of risk [64]. In our study, income, education, and housing were inversely associated with

VL. The final model with the best fit to the data to explain the occurrence of the disease in the

period evaluated in Campo Grande was composed only by UQLI. However, this single pre-

dicted variable jointly reflects income, education, housing conditions, and environmental

sanitation.

During a major urban VL epidemic in Teresina, Piauı́, from 1993 to 1996, the cases were

clustered on the outskirts of the city in areas bordering forest and green pastures, in regions

with no sewage system [20, 67]. Analyses of this epidemic by multilevel modeling showed that

the incidence of the disease was associated with low socioeconomic status, the presence of

dense vegetation, and a high prevalence of canine infection [67]. Other studies conducted in

Teresina during 1991–2000 [68] and 2001–2006 [69] also reported the spatial correlation of

VL incidence rates with socioeconomic, demographic, and risk indicators as well as environ-

mental sanitation such as the presence of running water, suggesting that the occurrence of the

disease is associated with poor living conditions.

Our results did not demonstrate the isolated association of VL with indicators of basic and

environmental sanitation, such as garbage collection, sanitary sewage, and running water.

According to data from the Municipality of Campo Grande in 2012, the public water supply

system served 99.5% of the population, and the city’s sewage system with collection and treat-

ment was available to 64.73% of households [29]. However, there are areas in the city with defi-

ciencies in sanitary infrastructure with poor housing conditions. Some of these conditions,

such as peridomicile rich in organic matter from fruit trees and household waste, are favorable

for the proliferation of vector insects [70, 71].

The absence of a cause-and-effect relationship between demographic density and disease

presence suggests the influence of other elements on the maintenance of endemicity in a given

area [72]. The present study did not consider the biotic and abiotic environmental factors that

are known to be associated with the risk of L. infantum infection. These factors directly affect

the presence, behavior, and distribution of wild parasite vectors and reservoirs and may pro-

vide contact with these peridomiciliary areas. Similar to other urban centers, dogs are the

main reservoir of L. infantum in Campo Grande, where serological positivity reached 25% of

the total samples analyzed between 2002 and 2006 [52].

Negative binomial Bayesian geostatistical models used to analyze the incidence of leishman-

iases in Brazil, which considered climate, environmental, and socioeconomic variables as pre-

dictors, demonstrated that rainfall and socioeconomic variables were risk factors for

cutaneous and visceral leishmaniases [19]. In Bihar, India, rainfall, illiteracy rate [73, 74], hous-

ing type, number of informal workers [71], land use and cover, vegetation conditions, surface

humidity, indoor climate, and size of the unemployed population [72] were factors associated

with disease occurrence. However, it must be noted that in India, the vector and Leishmania
are of different species. In this South Asian nation, humans are the reservoir of L. donovani
responsible for anthroponotic VL transmission, which may present a different scenario for VL

dispersion from that in Latin America [50].

The rapid and sometimes disorganized Brazilian territorial expansion and urbanization of

the disease bring to discussion the control and management strategies advocated by the com-

petent agencies, especially in urban centers where problems of malnutrition, education, hous-

ing, and basic sanitation are present [11]. The elimination of VL in Latin America does not

seem to be a realistic goal at this time, given the lack of political commitment, gaps in scientific

knowledge, and the weakness of management processes and surveillance systems [13, 14].

Thus, the need for studies with improved methodological quality in new regions is evident,
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prioritizing investigation into the identified patterns and their causes as well as the variables

for which knowledge is scarce [75].

This study identified the need to investigate and analyze the association between VL and

other predicted variables through more complex and robust models and, perhaps, the incorpo-

ration of other climate and environmental variables capable of highlighting the effect of other

factors on the spatio-temporal dynamics of the disease. Despite the flexibility of our model

that provided a better assumption of the nature of relationships between the UQLI and VL

cases, this limitation has to be pointed out.

Even though it is not possible to establish causal inferences from ecological studies, they

allow the analysis of certain questions due to the evaluation of the association of a certain dis-

ease and variables of interest that are defined in aggregates of individuals [76, 77]. Studies have

helped us to understand some factors related to the dynamics of VL dissemination in Brazilian

cities, a phenomenon that was poorly understood until the early 1990s [19, 20, 49, 78, 79].

Spatio-temporal models are useful for studying the interrelationships between health, envi-

ronmental, and socioeconomic factors, as well as the temporal and spatial distribution of vari-

ous diseases. These studies have provided important information for health surveillance, such

as monitoring and mapping of public health impact risk factors, as well as allowing a better

description, understanding, and prediction of risk areas for different diseases [67, 80–82]. Par-

ticularly, GAM models showed better fit and good prediction accuracy when compared to gen-

eralized linear models, which supports the use of this technique in the field of epidemiology

where a causal link needs to be assessed [25]. The practical use of this method has been demon-

strated through a real data analysis [18, 25].

In conclusion, our manuscript showed that VL has a higher incidence in men and people of

extreme ages. About two years after the first autochthonous reported VL case, the disease had

already been reported in almost every neighborhood of Campo Grande. The spatio-temporal

model presented a good fit to the study data and showed the relationship of the disease as an

indicator of urban quality of life, which is related to income, education, housing, and environ-

mental sanitation. These variables were not included individually in the final model, which

reinforces the need for a composite index that summarizes the main dimensions of the socio-

economic context for research purposes, considering that countless factors of different scales

and dimensions may have interplay with each other [83]. Finally, our results demonstrate the

need for investments in integrated control measures that aim beyond the public health mea-

sures and policy already recommended by the Ministry of Health of Brazil for VL [16], such as

improvements in housing conditions, environmental sanitation, and access to health services,

to reduce health disparities observed in this scenario.
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Writing – review & editing: Everton Falcão de Oliveira, Alessandra Gutierrez de Oliveira,

Carla Cardozo Pinto de Arruda, Wagner de Souza Fernandes, Márcio José de Medeiros.
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Rangel EF, Lainson R. Flebotomı́neos do Brasil. Rio de Janeiro: Fiocruz; 2003. p. 207–255.

71. Forattini OP. Entomologia médica: psychodidae, phlebotominae, leishmanioses, bartonelose. 4. ed.

São Paulo: Edgard Blücher; 1973.
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83. Barrozo LV, Fornaciali M, André CDS, et al. GeoSES: A socioeconomic index for health and social

research in Brazil. PloS one. 2020; 15(4): e0232074. https://doi.org/10.1371/journal.pone.0232074

PMID: 32348328

PLOS ONE Spatio-temporal modeling of visceral leishmaniasis in Midwest Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0240218 October 2, 2020 20 / 20

https://doi.org/10.1371/journal.pmed.0030473
http://www.ncbi.nlm.nih.gov/pubmed/17147467
https://doi.org/10.3201/eid0807.010454
https://doi.org/10.3201/eid0807.010454
http://www.ncbi.nlm.nih.gov/pubmed/12095431
https://doi.org/10.1371/journal.pone.0232074
http://www.ncbi.nlm.nih.gov/pubmed/32348328
https://doi.org/10.1371/journal.pone.0240218

