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Abstract
Background: Cancer survivors perceive cancer-related fatigue (CRF) as one of the
most common symptoms. However, the potential relationship between CRF and gut
microbiota has not been elucidated. Our study aimed to preliminary explore the
diverse gut microbiota composition between mild and severe CRF in advanced lung
cancer patients undergoing first-line chemotherapy.
Methods: A total of 20 advanced lung patients treated with first-line chemotherapy
were enrolled, 10 with mild CRF and 10 with severe CRF. The self-reported Piper
Fatigue Scale and stool samples were collected from all eligible patients. The 16 S ribo-
somal ribonucleic acid gene was performed to analyze the intestinal microbiome.
Results: We identified the significantly diverse gut microbiota composition among
patients with mild and severe CRF. The pattern was characterized by the increasing
abundance in short-chain fatty acid-producing taxa for mild CRF patients (genus
Lachnospiraceae-UCG-008 and family Lachnospiraceae, p < 0.05), whereas higher
abundance in taxa related to inflammation (family Enterobacteriaceae and genus
Escherichia-Shigella, p < 0.05) for severe CRF patients. Significantly different Kyoto
Encyclopedia of Genes and Genomes pathways between mild and severe CRF patients
were evaluated concerning fatty acid metabolism, nucleotide metabolism, brain func-
tion, amino acid metabolism, and so on (p < 0.05).
Conclusions: Our study observed a plausible association between different levels of
CRF and the diverse gut microbiota composition, with increasing proinflammation
taxa in severe CRF patients and anti-inflammation taxa growing in mild CRF patients.
Further studies are warranted to evaluate whether CRF can be improved by modulat-
ing the gut microbiota composition.
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INTRODUCTION

Cancer-related fatigue (CRF) is perceived by cancer survi-
vors to be one of the most common and distressing side

effects of cancer and its treatment with deterioration in
all aspects of quality of life may be aggravated during
cancer treatment.1,2 In most studies, the prevalence evalu-
ation of moderate to severe CRF during anticancer treat-
ment ranges from 30% to 60%.1 CRF is typically more
frequently reported in patients receiving chemother-
apy (80%–96%) than patients undergoing radiotherapy
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(60%–93%).3 By changing a patient’s mood, work, social
relationships, and daily activities, CRF significantly affects
the quality of life during treatment.1,3 However, despite its
prevalence and detrimental impact, the underlying mecha-
nisms of CRF are still not fully understood. Shreds of evi-
dence suggest that the etiology of CRF may involve
multifactorial processes. These include elevated levels of
proinflammatory cytokines, 5-hydroxytryptophan dysregu-
lation, hypothalamic–pituitary–adrenal axis dysregulation,
circadian rhythm disturbances, and increased vagal
tone.4–8 Currently, most studies exploring the mechanism
of CRF focus on inflammation, especially proinflammatory
cytokines.1 Although the association between inflammation

and CRF has been revealed, further studies on how inflam-
mation leads to CRF are warranted.9,10

Gut microbiota plays a vital role in multiple physiologi-
cal functions of humans, particularly metabolism,
inflammation, and immunity.11 Short-chain fatty acids
(SCFA) are produced with specific gut microbiota during
the fermentation of indigestible carbohydrates.12 These
SCFAs may have potential anti-inflammatory and immu-
nomodulatory abilities.12,13 For instance, butyrate, an
anti-inflammatory SCFA, may inhibit the production of
proinflammatory cytokines.14,15 Recently, accumulating
evidence favors that gut microbiota exerts profound
effects on local and systemic immune responses,11

T A B L E 1 Baseline demographic characteristics of patients

Characteristic
Mild CRF (N = 10) Severe CRF (N = 10) Total (N = 20)

p-valueMean � SD or N (%) Mean � SD or N (%) Mean � SD or N (%)

Age (years)

Mean � SD 64.20 � 7.54 61.60 � 10.09 62.90 � 8.77 0.522

Median (range) 66.50 (46.00–74.00) 63.00 (46.00–78.00) 66.00 (46.00–78.00)

Gender

Male 6 (60.00%) 9 (90.00%) 5 (25.00%) 0.303

Female 4 (40.00%) 1 (10.00%) 15 (75.00%)

Histology

Adenocarcinoma 4 (40.00%) 2 (20.00%) 6 (30.00%) 0.553

Squamous 3 (30.00%) 3 (30.00%) 6 (30.00%)

Small cell lung cancer 3 (30.00%) 5 (50.00%) 8 (40.00%)

Smoking status

Nonsmoker 7 (70.00%) 8 (80.00%) 15 (75.00%) 1.000

Smoker 3 (30.00%) 2 (20.00%) 5 (25.00%)

Alcoholism

Yes 1 (10.00%) 3 (30.00%) 4 (20.00%) 0.582

No 9 (90.00%) 7 (70.00%) 16 (80.00%)

Married

Yes 8 (80.00%) 9 (90.00%) 17 (85.00%) 1.000

No 2 (20.00%) 1 (10.00%) 3 (15.00%)

BMI (kg/m2) 21.51 � 2.27 24.55 � 4.16 23.03 � 3.61 0.058

Chemotherapy regimen

Etoposide + carboplatin 0 (0.00%) 3 (30.00%) 3 (15.00%) 0.121

Etoposide + cisplatinum 3 (30.00%) 2 (20.00%) 5 (25.00%)

Paclitaxel + cisplatinum 2 (20.00%) 3 (30.00%) 5 (25.00%)

Paclitaxel + carboplatin 3 (30.00%) 0 (0.00%) 3 (15.00%)

Pemetrexed + carboplatin 1 (10.00%) 1 (10.00%) 2 (10.00%)

Pemetrexed + cisplatinum 1 (10.00%) 1 (10.00%) 2 (10.00%)

ECOG scores

0 2 (20.00%) 7 (70.00%) 9 (45.00%) 0.070

1 8 (80.00%) 3 (30.00%) 11 (55.00%)

Piper total scores 1.91 � 0.60 7.86 � 0.87 4.88 � 3.14 0.000

Abbreviations: BMI, body mass index; CRF, cancer-related fatigue; ECOG, Eastern Cooperative Oncology Group; SD, standard deviation.
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representing a fundamental to exploring the possible
mechanism of CRF based on the relationship between gut
microbiota and inflammation. Gonz�alez-Mercado et al.16 per-
formed a cross-sectional pilot study that primarily
showed fatigued rectal cancer patients owned differen-
tially abundant microbial taxa relative to nonfati-
gued rectal cancer patients at the end of chemotherapy
and radiotherapy. A pilot study conducted by Xiao
et al.10 demonstrates the diverse composition of gut
microbiota in head and neck cancer patients who receive
radiotherapy with high versus low CRF, which indicates
the potential associations between gut microbiota and
CRF. However, research exploring the relationship
between gut microbiota and CRF is sparse, particula-
rly for lung cancer patients with CRF undergoing
chemotherapy.

This pilot study was performed on lung cancer patients
with CRF undergoing chemotherapy to primarily identify
the diverse composition of gut microbiota between severe
and mild CRF.

METHODS

This pilot study designed with a questionnaire and biosam-
ple gathered during chemotherapy treatment primarily eval-
uated the diverse composition of gut microbiota between
severe and mild CRF for lung cancer patients receiving che-
motherapy at the West China Hospital, Sichuan University.
This study was approved by the Ethics Committee of West
China Hospital of Sichuan University. Written informed
consent was obtained from all eligible patients.

F I G U R E 1 Principal coordinate analysis (PCoA) between mild versus severe CRF groups based on (a) Bray-Curtis distance, (b) Jaccard distance,
(c) unweighted Unifrac distance, and (d) weighted Unifrac distance. CRF, cancer-related fatigue

WEI ET AL. 311



Patients

Patients were enrolled if they met the following inclusion
criteria: pathologically diagnosed with lung cancer, pre-
sented with mild or severe CRF, aged 18 years or older, stage
IV based on the eighth edition of the American Joint Com-
mittee on Cancer staging manual, and undergoing first-line
chemotherapy. The main exclusion criteria consisted of the
following: (1) history of second malignancy; (2) receiving
immunotherapy, radiotherapy, or targeted therapy com-
bined with chemotherapy; (3) long-term immunosuppres-
sive medication treatment; and (4) regular usage of
antibiotic or probiotic preparations.

Baseline demographic characteristics such as age, gen-
der, chemotherapy regimen, marital status, smoking status,
alcohol status, Eastern Cooperative Oncology Group

Performance Status (ECOG PS) and body mass index (BMI)
were collected.

Cancer-related fatigue evaluation

CRF was evaluated with the Mandarin Chinese version of
the Piper Fatigue Scale at baseline. The Mandarin Chinese
version of the Piper Fatigue Scale is a self-administered mul-
tidimensional assessment tool consisting of 24 items cover-
ing four attributes: affective, sensory, behavioral, and
cognitive/mood.17,18 The Mandarin Chinese version of the
Piper Fatigue Scale has established excellent reliability; the
Cronbach α is 0.96 to 0.97.18 Patients determined the degree
of their CRF from 0 to 10, where 0: not at all, 1–3: mild
CRF, 4–6: moderate CRF, 7–10 severe CRF.

F I G UR E 2 LEfSe analysis of taxa
abundance between mild and severe CRF
patients. LEfSe, linear discriminant analysis
effect size; CRF, cancer-related fatigue; LDA,
linear discriminant analysis; c, class; o, order;
f, family; g, genus

312 WEI ET AL.



Gut microbiota, bioinformatic analysis, and
statistical analyses

The detailed methods are presented in the supplementary
materials (Supporting information).

RESULTS

Patients

Twenty lung cancer patients were enrolled in this pilot
study. Table 1 describes the baseline demographic character-
istics of the participants. Of the 20 eligible patients, mild
CRF patients did not significantly differ from severe CRF

participants according to age, gender, histology, smoking
status, alcohol status, marital status, BMI, chemotherapy
regimen, and PS scores (p > 0.05), except for the mean
fatigue (p = 0.000).

Bacterial diversity and composition

There was no significant difference of the common phyla
between the severe CRF and mild CRF group, 43.68% versus
47.76% in the phyla Bacteroidetes (p = 0.496), 40.70% ver-
sus 43.37% in the phyla Firmicutes (p = 0.364), 7.84% ver-
sus 4.96% in the phyla Proteobacteria (p = 0.199), 3.46%
versus 1.47% in the phyla Actinobacteria (p = 0.450), 3.43%
versus 0.76% in the phyla Fusobacteria (p = 0.226).

F I G U R E 3 Comparison between mild versus severe CRF patients in gut microbiota pattern based on Random Forest analysis. CRF, cancer-related
fatigue; **, p < 0.01; *, p < 0.05
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No significant difference was observed based on alpha-
diversity between severe and mild CRF in terms of Chao1
(860.02 � 124.73 vs. 893.16 � 121.07, p = 0.554), Simpson
(0.94 � 0.02 vs. 0.95 � 0.03, p = 0.244), Shannon-Wiener
index (3.78 � 0.27 vs. 4.07 � 0.41, p = 0.079), and PD
(56.26 � 6.62 vs. 55.91 � 7.33, p = 0.912).

The beta-diversity was performed with PERMANOVA
(weighted Unifrac: p = 0.519; unweighted UniFrac:
p = 0.066; Bray-Curtis: p = 0.152; Jaccard: p = 0.162), and

ANOSIM (weighted Unifrac: p = 0.659; unweighted Uni-
Frac: p = 0.297; Bray-Curtis: p = 0.224; Jaccard: p = 0.221)
showed no significant difference between severe and mild
CRF. Figure 1 showed the results from principal coordinate
analysis (PCoA) between severe and mild CRF.

Figure 2 showed that class Bacilli were more abundant
in patients with severe CRF, which was further reflected
in more abundance in order Lactobacillales, order Enter-
obacteriales, family Enterobacteriaceae, genus

T A B L E 2 Relative abundance between severe and mild CRF in level 2 KEGG pathways

KEGG pathways
Severe CRF Mild CRF

p-valueMean (SD) Mean (SD)

Nucleotide metabolism 6.91 � 10�2 (3.17 � 10�3) 7.10 � 10�2 (2.19 � 10�3) 0.009

Amino acid metabolism 1.12 � 10�1 (8.06 � 10�3) 1.16 � 10�1 (7.68 � 10�3) 0.190

Xenobiotics biodegradation and metabolism 2.49 � 10�2 (2.05 � 10�3) 2.50 � 10�2 (1.41 � 10�3) 1.000

Metabolism of other amino acids 2.25 � 10�2 (6.77 � 10�4) 2.22 � 10�2 (9.67 � 10�4) 0.353

Carbohydrate metabolism 1.44 � 10�1 (6.98 � 10�3) 1.42 � 10�1 (5.64 � 10�3) 0.353

Biosynthesis of other secondary metabolites 8.33 � 10�3 (3.72 � 10�4) 8.13 � 10�3 (3.75 � 10�4) 0.165

Glycan biosynthesis and metabolism 3.30 � 10�2 (6.85 � 10�3) 3.18 � 10�2 (5.82 � 10�3) 0.436

Lipid metabolism 2.94 � 10�2 (1.29 � 10�3) 2.83 � 10�2 (1.50 � 10�3) 0.089

Energy metabolism 6.78 � 10�2 (3.23 � 10�3) 6.70 � 10�2 (5.31 � 10�3) 0.912

Metabolism of cofactors and vitamins 6.74 � 10�2 (4.02 � 10�3) 6.73 � 10�2 (4.01 � 10�3) 0.971

Metabolism of terpenoids and polyketides 1.89 � 10�2 (1.60 � 10�3) 1.80 � 10�2 (1.37 � 10�3) 0.019

Translation 6.05 � 10�2 (4.74 � 10�3) 6.16 � 10�2 (4.04 � 10�3) 0.353

Membrane transport 1.14 � 10�1 (1.52 � 10�2) 1.18 � 10�1 (1.38 � 10�2) 0.481

Signal transduction 6.88 � 10�2 (8.46 � 10�3) 6.71 � 10�2 (6.60 � 10�3) 0.353

Cell motility 2.22 � 10�2 (5.18 � 10�3) 2.13 � 10�2 (4.69 � 10�3) 0.529

Folding, sorting and degradation 2.64 � 10�2 (2.17 � 10�3) 2.61 � 10�2 (1.49 � 10�3) 0.853

Transcription 2.77 � 10�3 (2.19 � 10�4) 2.72 � 10�3 (1.99 � 10�4) 0.796

Replication and repair 5.73 � 10�2 (4.53 � 10�3) 5.75 � 10�2 (3.54 � 10�3) 0.631

Cell growth and death 1.74 � 10�2 (5.76 � 10�4) 1.72 � 10�2 (9.79 � 10�4) 0.971

Transport and catabolism 2.38 � 10�3 (5.28 � 10�4) 2.14 � 10�3 (4.58 � 10�4) 0.247

Circulatory system 3.97 � 10�5 (1.51 � 10�5) 3.60 � 10�5 (1.26 � 10�5) 0.165

Cell communication 1.34 � 10�5 (5.02 � 10�6) 1.54 � 10�5 (2.64 � 10�6) 0.393

Signaling molecules and interaction 1.34 � 10�5 (5.03 � 10�6) 1.54 � 10�5 (2.64 � 10�6) 0.393

Immune system 9.60 � 10�4 (2.92 � 10�4) 9.81 � 10�4 (2.71 � 10�4) 0.853

Environmental adaptation 2.42 � 10�3 (1.33 � 10�4) 2.33 � 10�3 (1.23 � 10�4) 0.105

Nervous system 1.13 � 10�3 (6.51 � 10�5) 1.07 � 10�3 (1.23 � 10�4) 0.247

Sensory system 6.09 � 10�11 (1.92 � 10�10) 2.57 � 10�12 (8.11 � 10�12) 1.000

Endocrine system 3.65 � 10�3 (4.46 � 10�4) 3.51 � 10�3 (3.92 � 10�4) 0.280

Endocrine and metabolic diseases 6.51 � 10�4 (3.89 � 10�5) 6.46 � 10�4 (2.67 � 10�5) 0.971

Excretory system 1.95 � 10�4 (4.60 � 10�5) 1.79 � 10�4 (4.58 � 10�5) 0.218

Digestive system 2.35 � 10�3 (1.60 � 10�3) 2.16 � 10�3 (1.25 � 10�3) 0.579

Neurodegenerative diseases 1.19 � 10�3 (2.15 � 10�4) 1.24 � 10�3 (2.08 � 10�4) 0.579

Substance dependence 5.36 � 10�5 (1.65 � 10�5) 4.23 � 10�5 (9.77 � 10�6) 0.063

Infectious diseases 1.68 � 10�2 (9.43 � 10�4) 1.62 � 10�2 (8.45 � 10�4) 0.247

Cancers 9.76 � 10�4 (5.77 � 10�5) 9.86 � 10�4 (8.11 � 10�5) 0.684

Immune diseases 4.92 � 10�4 (1.00 � 10�4) 4.68 � 10�4 (8.73 � 10�5) 0.579

Cardiovascular diseases 6.29 � 10�6 (3.99 � 10�6) 3.48 � 10�6 (2.89 � 10�6) 0.019

Abbreviations: CRF, cancer-related fatigue; KEGG, Kyoto Encyclopedia of Genes and Genomes; SD, standard deviation.
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Escherichia-Shigella, and genus Cetobacterium. More-
over, LDA bar graphs and the cladogram illustrated that
Bacilli and subsequent levels were more abundant in
patients with severe CRF compared to mild CRF
(Figure 2). Results from LEfSe analysis also demon-
strated that patients with mild CRF possessed more
abundant in genus Lachnospiraceae-UCG-008 and fam-
ily Lachnospiraceae.

Based on the results of machine learning, a significantly
higher abundancy was observed in the mild CRF group rela-
tive to the severe CRF group on Ruminiclostridium
9 (0.17 � 0.14 versus 0.05 � 0.03, p = 0.002), Coprococcus
2 (0.58 � 1.14 vs. 0.01 � 0.01, p = 0.003), Lachnospiraceae
UCG-008 (6.01 � 4.02 vs. 2.38 � 2.25, p = 0.008), Lachnos-
piraceae UCG-001 (0.66 � 1.27 vs. 0.03 � 0.04, p = 0.006),
Ruminococcus 2 (0.60 � 0.49 vs. 0.15 � 0.20, p = 0.010),
Alistipes (1.94 � 1.92 vs. 0.51 � 0.65, p = 0.015),
Eubacterium ventriosum group (0.20 � 0.20 vs.
0.10 � 0.23, p = 0.028), Megasphaera (0.27 � 0.68
vs. 0.25 � 0.32, p = 0.049), Roseburia (2.81 � 2.37
vs. 1.27 � 1.43, p = 0.049), Odoribacter (0.40 � 0.49 vs.
0.07 � 0.09, p = 0.019), Ruminococcaceae UCG-003
(0.23 � 0.26 vs. 0.07 � 0.12, p = 0.041), Lachnoclostridium
(0.07 � 0.06 vs. 0.03 � 0.02, p = 0.048), Eubacterium
ruminantium group (0.12 � 0.32 vs. 0.00 � 0.00,
p = 0.015), and Lachnospiraceae ND3007 group
(0.18 � 0.16 vs. 0.06 � 0.08, p = 0.038). In addition, more
abundance of Escherichia-Shigella (2.74 � 3.56 vs.
0.74 � 1.05, p = 0.005), Enterococcus (1.12 � 2.05 vs.
0.04 � 0.02, p = 0.004), Robinsoniella (0.52 � 1.14
vs. 0.01 � 0.01, p = 0.028), Clostridium innocuum group
(0.31 � 0.60 vs. 0.05 � 0.03, p = 0.025), Allobaculum
(0.02 � 0.01 vs. 0.01 � 0.01, p = 0.022), and Ruminococcus
gnavus group (0.05 � 0.07 vs. 0.01 � 0.01, p = 0.028) in the
severe CRF group compared to the mild CRF group (Figure 3).

Gut microbiota functional gene analysis

There was no significant difference in the level 1 KEGG
pathways between the severe CRF and mild CRF groups,
5.98 � 10�1 � 1.33 � 10�2 versus 5.97 � 10�1 � 1.09 � 10�2

in metabolism (p = 1.000), 1.47 � 10�1 � 1.15 � 10�2 versus
1.48 � 10�1 � 8.92 � 10�3 in genetic information processing
(p = 0.579), 1.83 � 10�1 � 2.31 � 10�2 versus
1.85 � 10�1 � 1.72 � 10�2 in environmental information
processing (p = 0.971), 4.20 � 10�2 � 4.66 � 10�3 versus
4.07 � 10�2 � 4.80 � 10�3 in cellular processes
(p = 0.481), 1.08 � 10�2 � 2.42 � 10�3 versus
1.03 � 10�2 � 2.03 � 10�3 in organismal systems
(p = 0.393), and 2.02 � 10�2 � 1.18 � 10�3 versus
1.96 � 10�2 � 1.08 � 10�3 in human diseases (p = 0.393).
Results from Table 2 showed the difference in level 2 KEGG
pathways between severe and mild CRF. A total of 271 different
level 3 KEGG pathways were analyzed in our data. Thirty-six
level 3 KEGG pathways were significantly different between
mild and severe CRF (p < 0.05) (Table 3). Results from the

machine learning further demonstrated that the severe CRF
group significantly differs from mild CRF according to
36 unique functional pathways (Figure 4). These pathways
concerned fatty acid metabolism, nucleotide metabolism,
brain function, amino acid metabolism, and so on.

DISCUSSION

This pilot study primarily assessed the diverse composi-
tion of gut microbiota for lung cancer patients under-
going first-line chemotherapy with severe and mild
CRF. Similar to the previous research, alpha and beta
diversity did not differ between mild and severe CRF
despite different fatigue evaluation strategies and types
of cancer.10 Nevertheless, our preliminary study found
a diverse gut microbiota pattern among patients with
mild CRF compared to those with severe CRF during
chemotherapy.

Patients with mild CRF disposition possessed a higher
relative abundance of bacterial taxa associated with SCFA
production. Among SCFAs, butyrate is associated with keep-
ing intestinal epithelial integrity, and Firmicutes families
belonging to Lachnospiraceae and Ruminococcaceae are the
key taxa of butyrate-producing bacteria.19,20 In addition,
butyrate can induce the differentiation of T regulatory cells
and control intestinal inflammation, which can reduce the
risk of inflammatory bowel disease or colorectal cancer.21–23

A previous study found the absence of SCFA-producing bac-
terial taxa has the potential relationship with a proinflamma-
tory state and even fatigue in cancer patients.9,10 Our study
found mild CRF patients have a higher abundance of Lachnos-
piraceae and Ruminococcaceae, which indicated that fatigue
state relieving might be associated with increased SCFA pro-
duction. Interestingly, human gut microbiota capable of SCFA
production was positively associated with anti–PD-1/PD-L1
response.24 Immune-checkpoint inhibitor treatment has
become the standard treatment strategy for lung cancer
patients. We suggest that patients with mild CRF might benefit
from immune-checkpoint inhibitor treatment attributed to
specific gut microbiota patterns. However, our study did not
enroll patients treated with immunotherapy, and our further
extensive sample research will continue to resolve this issue.

Patients with severe CRF changes in the stool microbial
composition were characterized by a lower abundance of gut
microbiota capable of SCFA production and have a relative
overgrowth of potentially pathogenic taxa. Endotoxins
derived from the family Enterobacteriaceae seemed to be a
key trigger for systemic inflammation.25 Specific gut micro-
biota can drive neuroinflammation and even influence brain
function and behavior in rodents and humans.26 Increased
Enterobacteriaceae, a peculiar gut microbiota composition
of Parkinsonian patients, has been implicated in disease
severity.27 Patients with cognitive impairment and brain
amyloidosis have a higher abundance of Escherichia/Shi-
gella, which are related to a proinflammatory status.26 These
studies suggest a higher abundance of proinflammatory gut
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microbiota associated with neuroinflammation status could
promote CRF in lung cancer patients.

We also explored the difference in functional pathways
between mild and severe CRF groups and identified a range
of pathways in connection with fatty acid metabolism,
nucleotide metabolism, brain function, amino acid metab-
olism, and so on. Retrograde endocannabinoid signaling
plays a crucial role in certain synapse activities in many
brain regions, contributing to various brain functions

concerning learning and memory.28 Apart from retro-
grade endocannabinoid signaling, the tryptophan metabo-
lism pathway involved in brain functions and
neurotransmitter metabolism29 was abundant differently
between mild and severe CRF patients. Valine, leucine
and isoleucine biosynthesis have important mediation
effects on regulating metabolism of glucose, lipid, and
immunity.30 Furthermore, pyruvate metabolism is a key-
stone pathway for numerous human metabolism,

T A B L E 3 A significant difference in relative abundance between severe and mild CRF in level 3 KEGG pathways

KEGG pathways
Severe CRF Mild CRF

p-valueMean (SD) Mean (SD)

Biosynthesis of siderophore group nonribosomal
peptides

6.05 � 10�4 (9.29 � 10�5) 4.78 � 10�4 (6.08 � 10�5) 0.002

Retrograde endocannabinoid signaling 6.08 � 10�5 (2.12 � 10�5) 4.07 � 10�5 (7.78 � 10�6) 0.005

Amyotrophic lateral sclerosis 2.70 � 10�5 (7.65 � 10�6) 1.66 � 10�5 (3.50 � 10�6) 0.005

Fat digestion and absorption 1.72 � 10�7 (1.10 � 10�7) 5.96 � 10�8 (2.71 � 10�8) 0.008

Homologous recombination 1.63 � 10�2 (1.22 � 10�3) 1.70 � 10�2 (7.20 � 10�4) 0.010

Endocytosis 1.57 � 10�6 (7.21 � 10�7) 8.70 � 10�7 (2.75 � 10�7) 0.010

GnRH signaling pathway 1.57 � 10�6 (7.21 � 10�7) 8.70 � 10�7 (2.75 � 10�7) 0.010

Pyrimidine metabolism 3.05 � 10�2 (1.89 � 10�3) 3.26 � 10�2 (1.53 � 10�3) 0.013

Clavulanic acid biosynthesis 8.00 � 10�7 (5.50 � 10�7) 3.60 � 10�7 (1.34 � 10�7) 0.016

Polycyclic aromatic hydrocarbon degradation 2.71 � 10�3 (2.72 � 10�4) 3.01 � 10�3 (3.07 � 10�4) 0.016

Vibrio cholerae infection 9.19 � 10�6 (5.29 � 10�6) 4.42 � 10�6 (2.53 � 10�6) 0.016

Vibrio cholerae pathogenic cycle 1.57 � 10�3 (3.36 � 10�4) 1.35 � 10�3 (3.43 � 10�4) 0.016

Tryptophan metabolism 5.19 � 10�4 (6.33 � 10�5) 4.50 � 10�4 (2.45 � 10�5) 0.019

Toluene degradation 5.26 � 10�4 (6.84 � 10�5) 4.78 � 10�4 (5.45 � 10�5) 0.019

Meiosis-yeast 4.62 � 10�4 (1.02 � 10�4) 3.71 � 10�4 (9.81 � 10�5) 0.019

Salmonella infection 1.61 � 10�3 (1.30 � 10�4) 1.40 � 10�3 (2.20 � 10�4) 0.019

D-Arginine and D-ornithine metabolism 1.79 � 10�5 (4.27 � 10�6) 1.44 � 10�5 (2.95 � 10�6) 0.023

Pantothenate and CoA biosynthesis 8.07 � 10�3 (6.05 � 10�4) 8.68 � 10�3 (7.00 � 10�4) 0.023

Tropane, piperidine and pyridine alkaloid biosynthesis 1.03 � 10�3 (9.74 � 10�5) 9.77 � 10�4 (8.09 � 10�5) 0.023

Shigellosis 1.00 � 10�5 (2.05 � 10�5) 9.52 � 10�7 (1.13 � 10�6) 0.023

Pertussis 7.92 � 10�4 (2.06 � 10�4) 6.29 � 10�4 (1.26 � 10�4) 0.023

Hypertrophic cardiomyopathy 5.80 � 10�6 (4.16 � 10�6) 3.14 � 10�6 (2.95 � 10�6) 0.023

Alcoholism 1.13 � 10�5 (4.68 � 10�6) 7.23 � 10�6 (2.06 � 10�6) 0.028

Glyoxylate and dicarboxylate metabolism 7.18 � 10�3 (3.79 � 10�4) 6.75 � 10�3 (5.15 � 10�4) 0.034

Propanoate metabolism 3.76 � 10�3 (1.49 � 10�4) 3.61 � 10�3 (1.20 � 10�4) 0.034

Biosynthesis of unsaturated fatty acids 8.61 � 10�4 (8.12 � 10�5) 7.92 � 10�4 (4.46 � 10�5) 0.034

Fatty acid metabolism 1.63 � 10�3 (1.05 � 10�4) 1.52 � 10�3 (1.32 � 10�4) 0.041

Valine, leucine and isoleucine biosynthesis 5.22 � 10�3 (8.19 � 10�4) 5.59 � 10�3 (7.03 � 10�4) 0.041

Porphyrin and chlorophyll metabolism 1.59 � 10�2 (1.68 � 10�3) 1.42 � 10�2 (1.53 � 10�3) 0.041

Sesquiterpenoid and triterpenoid biosynthesis 8.95 � 10�6 (8.31 � 10�6) 2.50 � 10�6 (1.56 � 10�6) 0.041

p53 signaling pathway 1.14 � 10�6 (4.88 � 10�7) 7.72 � 10�7 (1.66 � 10�7) 0.041

Cholinergic synapse 6.88 � 10�6 (2.16 � 10�6) 5.09 � 10�6 (1.63 � 10�6) 0.041

Dopaminergic synapse 1.22 � 10�5 (3.01 � 10�6) 9.51 � 10�6 (1.64 � 10�6) 0.041

Pyruvate metabolism 1.10 � 10�2 (1.87 � 10�4) 1.08 � 10�2 (1.61 � 10�4) 0.049

Complement and coagulation cascades 2.71 � 10�6 (2.67 � 10�6) 7.42 � 10�7 (5.69 � 10�7) 0.049

Renal cell carcinoma 1.03 � 10�4 (5.20 � 10�5) 1.38 � 10�4 (5.66 � 10�5) 0.049

Abbreviations: CRF, cancer-related fatigue; GnRH, gonadotropin-releasing hormone; KEGG, Kyoto Encyclopedia of Genes and Genomes; SD, standard deviation.
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including fatty acid synthesis and oxidation.31 Based on
this scenario, we speculate that the fatty acid metabolism
pathway, amino acid metabolism pathway, and glucose
metabolism pathway can directly or indirectly affect SCFA
production, affecting the inflammatory state and the
brain-gut axis. Our functional studies also reflect that gut
microbiota may attenuate or induce CRF by altering
inflammatory status and neurological function, but fur-
ther studies are needed to confirm this.

There are some limitations in our study. First, our
preliminary study was small and probably underpowered,
and our results should therefore be interpreted cau-
tiously. Nevertheless, we observed promising differences
in specific taxa abundances between the mild and severe
CRF groups, and our study lays the groundwork for fur-
ther validation in a more extensive sample study. In addi-
tion, ample current evidence shows intervention with

prebiotics and probiotics can contribute to SCFA
production,32 indicating that extra probiotics may be
valuable for managing CRF. Our study suggests that the
composition of gut microbiota is different in patients
with various severity of fatigue, which provides a theoret-
ical basis for future evaluation of whether CRF can be
improved by intervening in the composition of gut
microbiota. Second, our study only included patients with
advanced lung cancer who received first-line chemother-
apy, ignoring patients with advanced lung cancer who
received combination therapy or immunotherapy alone.
Due to the small sample size of our study, to reduce the
influence of confounding factors, patients who received
combination therapy were excluded, and we will further
explore such patients in future studies. Third, due to the
preliminary exploratory nature, our study did not include
patients with moderate CRF and non-CRF but instead

F I G U R E 4 Comparison between mild versus severe CRF patients in KEGG pathways based on Random Forest analysis. CRF, cancer-related fatigue;
KEGG, Kyoto Encyclopedia of Genes and Genomes; **, p < 0.01; *, p < 0.05
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included the two groups with the most significant differ-
ences in the impact on patients’ quality of life: cancer
patients with mild and severe CRF. In future studies,
patients with moderate CRF and non-CRF will be
included to further explore the relationship between CRF
and gut microbiota composition.

In conclusion, our study observed a plausible association
between different levels of CRF and the diverse gut micro-
biota composition, with increasing proinflammatory taxa in
severe CRF patients and anti-inflammation taxa growing in
mild CRF patients. Further studies are warranted to evaluate
whether CRF can be improved by modulating the gut micro-
biota composition.
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