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computer can do for you
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In 1957, Herbert Simon, a pioneer of artificial intelli-
gence, predicted that a computer would be the world
chess champion within 10 years. It took somewhat
longer, but he was eventually proven right when IBM’s
Deep Blue computer beat Gary Kasparov in 1997. This
major breakthrough in artificial intelligence was, in a
way, also one of the last successes of what was known
as ‘good old-fashioned AI’: the idea that to mimic and
understand human intelligence, computers should repre-
sent knowledge as symbols and apply reasoning and
rules to infer new knowledge. This notion had been criti-
cized for some time already (Dreyfus and Dreyfus, 1992)
and over the years gradually lost ground to another
approach, machine learning, in which statistical models
were fitted to data to derive patterns and correlations.
Widely known systems that fit this category include Wat-
son, which successfully competed against the best
human players in the Jeopardy! general knowledge quiz,
and Google’s AlphaGo, which in 2017 beat the reigning
world champion at the game of Go. In other settings as
well, machine learning progressed. In 2012, it was
demonstrated how an extremely large neural network,
AlexNet, could be trained to recognize images in 1000
different categories, an atpproach that became known as
deep learning (LeCun et al., 2015). Machine learning
and deep learning are now routinely used by companies
such as Google, Facebook, Amazon and Tesla in prod-
ucts ranging from automated translation and home
automation to self-driving cars.
In biology, machine learning has likewise found its

use. Large volumes of -omics data can now routinely be

measured and are used to infer biological function. Many
bioinformatics algorithms under the hood rely on statisti-
cal models trained on such data to predict – often from
nucleotide or amino acid sequences – the structure of
genes, the function, location, domain content and sec-
ondary structure of proteins, the interactions of proteins
with other proteins and DNA, phenotypes, etc. Deep
learning has been applied to biological data as well, pre-
dicting, among others, protein–DNA interactions (Deep-
Bind), gene regulation (DeepChrome) and variant effects
(DeepSEA; Min et al., 2017).
A particularly interesting application of machine learn-

ing is one where the computer is not only able to predict
the function of a sequence or set of sequences, but to
(re)design sequences to achieve a certain desired func-
tion. This will make it possible to design bespoke regula-
tory elements, molecules and interactions on-demand,
the building blocks needed to fulfil the promise of syn-
thetic biology to engineer microbial machines (Vickers,
2017). Algorithms have been developed to directly pre-
dict a sequence given a function, for example inferring
an amino acid sequence most likely to fold into a desired
three-dimensional structure (O’Connell et al., 2018) or a
DNA sequence most likely to bind a certain protein (Kil-
loran et al., 2017). Alternatively, search algorithms can
iteratively try mutating a given sequence and keep those
changes considered beneficial by a function predictor
(Guimaraes et al., 2014), for example to improve protein
production (van den Berg et al., 2014).
In essence, such sequence (re)design approaches are

similar to the AlphaGo setup, in which deep learning net-
works are used to evaluate Go board positions and
moves, based on which a search algorithm decides the
next best move to make. In both cases, the search
space (the number of mutations or moves to consider) is
extremely high-dimensional: in the order of 20400 for a
400-amino acid protein design, and 250150 for a game
Go. Deep learning can still successfully learn to predict
the value of previously unseen input in such huge
spaces, but it requires two things: massive computa-
tional resources and extremely large sets of examples.
Both are now available for many applications; deep
learning was in large part made possible by the advent
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of affordable GPU-based devices and is most successful
in areas where large data sets have become available.
For example, AlexNet was trained on over a million
images labelled by crowdsourcing through the Internet,
and Google Translate is based on millions of online doc-
uments.
In biology, we are not quite there yet. Even though

many measurement sets are generated, for a single speci-
fic problem very large data sets are not often available; in
particular, reliable outputs are often lacking. For example,
we know the sequences of millions of proteins, but only
have experimentally verified functions of a few hundreds
of thousands, and often only in model organisms. How-
ever, the tide is turning, combining the possibilities offered
by cheap DNA synthesis and sequencing in protocols to
measure sequence–function relations at unprecedented
scales. In so-called deep mutational scanning, massively
parallel reporter assays (MPRAs) or multiplexed assays
for variant effects (MAVEs), thousands to hundreds of
thousands of sequence variants are generated and their
effect on transcription, translation or function is assessed
(Gasperini et al., 2016). If such data sets are mainly mea-
sured to test specific hypotheses on the effects of limited
levels of variation, they may not be useful to train machine
learning models that can generalize, but this is changing
as well. In recent examples, researchers fit models to
244 000 variants of a gene in Escherichia coli to learn
about the influence of sequence composition on transla-
tion (Cambray et al., 2017) and trained a deep learning
network to predict protein expression in Saccharomyces
cerevisiae from a set of 500 000 random 50-nt 50 UTR
sequences (Cuperus et al., 2017).
So it seems safe to predict that, like in many other

areas, high-throughput modelling – machine learning on
massive data sets specifically generated to train models
– will become standard practice in the near future. An
important question then is what to research, i.e. what
sequence variants to investigate. The full search space
for cellular genomes is immense, even for minimal gen-
omes – there are 4580,000 possible genomes of the size
of Mycoplasma genitalium. Of course, evolution has
already explored part of this space, and extant genomes
provide a good starting point. To proceed, we can actu-
ally learn from the AlphaGo approach. Initially, this sys-
tem was trained on a large database of human Go
games, after which it improved quickly by playing games
against versions of itself (Silver et al., 2016) (later ver-
sions even started from scratch). This form of ‘on-the-job
training’ is called reinforcement learning and is applica-
ble in situations such as games, where a series of
actions is eventually rewarded (if it leads to a win) or
penalized (if it causes a loss).
In biological experiments, we generally cannot as

easily declare victory, but we can use the systems

biology approach of cycling between experimentation
and modelling to see which sequences, when tested,
are most likely to improve the model. In artificial intelli-
gence, this is called active learning, and it has some
similarity to the way in which we as humans learn as
infants: we get some help from parents and teachers,
but mainly model the world around us by exploring it and
interacting with it. Ideally then, we would recreate such
an environment for our machine learning algorithms in
the laboratory, where we start with an initial ‘infant’
model of a certain regulatory system or protein function
and let the computer decide what sequence designs to
try out – a deep learning version of the ‘robot scientist’
(King et al., 2009). Microbes are ideal organisms for
such an approach, given the ease and speed with which
they can be grown and genetically manipulated. Com-
bined with laboratory automation, many microbial experi-
ments can (soon) be performed with minimal human
intervention, ranging from strain construction and screen-
ing, such as operated by Amyris, Gingko, Transcriptic,
etc., to full-genome engineering or even the design of
microbial ecologies. As demonstrated by Zymergen, in
some cases it is already feasible to simply define our
engineering goals and let the robots figure out how to
achieve it (Bohannon, 2017). In such a setting, would we
become mere servants to our new robotic overlords? I
do not believe so – if anything, the increased speed and
scope of experimentation will free up our creativity and
allow us take microbial machinery to places we could
not imagine going today (Timmis et al., 2017).
One important question remains, though: while this

makes for great engineering, where does it leave
science? Interestingly, a similar discussion is going on in
artificial intelligence. At a 2011 meeting at MIT, Noam
Chomsky – a veteran computational linguist, among
others – dismissed machine learning-based AI as fol-
lows: ‘There is a notion of success which has developed
in computational cognitive science in recent years which
I think is novel in the history of science. It interprets suc-
cess as approximating unanalysed data’. In other words,
although we may be able to predict (or engineer) some
phenomenon, it does not mean that we actually under-
stand it – especially if we use a ‘black-box’ model deriv-
ing correlations from data, such as a deep learning
network. I would counter that while this is true, the same
can be said of any model in science (paraphrasing
George Box). In systems biology, models are not the
end goal, but tools to capture our current knowledge,
combine it with new data and derive creative new
hypotheses on causes and effects to be verified experi-
mentally. And while a machine learning model may be
harder to interpret than a differential equation, it is often
quite possible and can be highly informative (Breiman,
2001).
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In summary, then, like in any other endeavour, artificial
intelligence will likely have a major impact on the way we
work as biologists and biotechnologists, by closing the
loop between experimentation and analysis. Increasingly
we will measure data specifically to feed machine learning
models and let such models guide our experimentation by
proposing new sequences to synthesize, new perturba-
tions to apply, new conditions to try, etc. As a conse-
quence, more than ever advances in engineering and
science will become mutually interdependent. And luckily,
there is still room for human engineers to create these
tools, and for human scientists to make sense of it all.
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