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Turmeronols (A and B), bisabolane-type sesquiterpenoids found in turmeric, reduce inflammation outside the 
brain in animals; however, their effects on neuroinflammation, a common pathology of various neurodegenerative 
diseases, are not understood. Inflammatory mediators produced by microglial cells play a key role in 
neuroinflammation, so this study evaluated the anti-inflammatory effects of turmeronols in BV-2 microglial cells 
stimulated with lipopolysaccharide (LPS). Pretreatment with turmeronol A or B significantly inhibited LPS-
induced nitric oxide (NO) production; mRNA expression of inducible NO synthase; production of interleukin 
(IL)-1β, IL-6, and tumor necrosis factor α and upregulation of their mRNA expression; phosphorylation of nuclear 
factor-κB (NF-κB) p65 proteins and inhibitor of NF-κB kinase (IKK); and nuclear translocation of NF-κB. These 
results suggest that these turmeronols may prevent the production of inflammatory mediators by inhibiting 
the IKK/NF-κB signaling pathway in activated microglial cells and can potentially treat neuroinflammation 
associated with microglial activation.
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INTRODUCTION

Curcuma longa L., also known as turmeric, is a member of 
the ginger family that is widely used as a traditional spice and 
has various physiological activities [1]. Turmeronols (A and B) 
are sesquiterpenoids that can be isolated from the dried rhizome 
and water extract of C. longa (Fig. 1) [2, 3]. Dried C. longa 
rhizome has been reported to contain turmeronols (A and B) at 
concentrations of about 200 µg/g and 300 µg/g, respectively 
[2]. Water extracts of C. longa have antioxidant and anti-
inflammatory effects [3–6], increase the water content of skin 
[7], improve emotional fatigue [8], and have antidepressant 
effects [9]. A clinical study found that the daily intake of a water 
extract of C. longa containing turmeronols improves the levels of 
systemic inflammatory markers, such as C-reactive protein, and 
quality of life (QOL) scores on the 36-Item Short-Form Health 
Survey (SF-36) [10, 11]. However, the influence of turmeronols 
on neuroinflammation is not clearly understood.

Neuroinflammation, a central nervous system inflammatory 
response, can be triggered by infection, trauma, tissue injury, 

and neurotoxins [12] and involves glial cells [13], including 
microglial cells. It increases the permeability of the blood-
brain barrier, recruits inflammatory cells into the target site to 
eliminate pathogens and dead cells [14], and promotes neuronal 
regeneration/repair [15]. Although these effects are beneficial in 
the short term, a chronic neuroinflammatory response, which is 
mediated by long-lived immune cells such as microglial cells, 
has various undesirable consequences, including neuronal 
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Fig. 1.	 Chemical structure of turmeronols.
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damage and dysfunction and poor tissue repair [12, 16]. Chronic 
neuroinflammation is known to contribute to the pathogenesis 
of mental diseases and various neurodegenerative diseases 
[17], such as Alzheimer’s disease, amyotrophic lateral sclerosis, 
multiple sclerosis, and Parkinson’s disease [18].

Pro-inflammatory mediators such as nitric oxide (NO), 
interleukin (IL)-1β, IL-6, and tumor necrosis factor α (TNF-α) 
are produced by microglial cells in response to stimulation by 
conserved microbial structures, tissue damage signals, and 
abnormal proteins such as Aβ species. These mediators induce 
disruption of the blood-brain barrier, neuronal death, and synaptic 
loss [12, 19], all of which are involved in the pathogenesis of 
neurodegenerative diseases, including Alzheimer’s disease 
[20], Parkinson’s disease [21], Huntington’s disease [22], 
and amyotrophic lateral sclerosis [23]. Previous clinical 
studies showed microglial activation in patients with various 
neurodegenerative diseases [24]. Turmeronols were reported 
to have anti-inflammatory effects in RAW 264.7 macrophage 
cell lines [3], but the effects of turmeronols on the production 
of inflammatory mediators in microglial cells are not clearly 
understood.

To investigate the anti-neuroinflammatory effects of turmeronol 
A and turmeronol B, we measured the production and mRNA 
expression of inflammatory mediators and the protein expression 
of factors associated with inhibitor of nuclear factor kappa B 
(IκB) kinase (IKK)/nuclear factor kappa B (NF-κB) signaling in 
BV-2 mouse microglial cells stimulated with lipopolysaccharide 
(LPS).

MATERIALS AND METHODS

Cell culture
BV-2 cells (Interlab Cell Line Collection, Genova, Italy), an 

immortalized mouse microglial cell line, were seeded onto 24-
well plates at 1.2 × 106 cells per well and incubated in 0.5 mL of 
Dulbecco’s modified Eagle’s medium (DMEM; Sigma-Aldrich, 
St. Louis, MO, USA) containing 10% heat-inactivated fetal bovine 
serum (FBS; HyClone, Logan, UT, USA), 100 U/mL penicillin 
(Sigma-Aldrich), and 100 µg/mL streptomycin (Sigma-Aldrich) 
for 24 hr at 37°C under an atmosphere of 5% CO2. After removing 
the medium, cells were preincubated for 1 hr in 0.5 mL of FBS-
free DMEM containing graded concentrations of turmeronol A 
or turmeronol B (Nagara Sciences, Gifu, Japan) and stimulated 
with LPS (from Escherichia coli O127:B8; product No. L3129, 
Sigma-Aldrich) for 6, 12 or 24 hr at a final concentration of 500 
ng/mL. Then, cells at 6 hr or culture supernatants at 12 or 24 
hr were collected for measurement of inflammatory mRNA or 
mediators. Lack of cytotoxicity of the test agents was confirmed 
in a preliminary experiment.

ELISA
In culture medium, all of ELISA kits were performed according 

to the manufacturer’s instructions, including kits for IL-1β (R&D 
Systems, Rochester, MN, USA), TNF-α (R&D Systems), and 
IL-6 (Abcam, Cambridge, MA, USA).

Measurement of NO
The concentration of nitrite (a stable metabolite of NO) in 

culture supernatants was measured by the Griess method [25, 26].

Reverse transcription polymerase chain reaction (PCR)
Total RNA was extracted from the cultured cells with a 

Maxwell® RSC simplyRNA Cells Kit and automated RNA 
extraction system by using a Maxwell® RSC Instrument 
(Promega, Madison, WI, USA) according to the manufacturer’s 
instructions [27–29]. The RNA was eluted with 50 µL of 
nuclease-free water. Then, expression of the inducible nitric 
oxide synthase (iNOS), IL-1β, IL-6, and TNF-α genes was 
investigated by reverse transcription PCR [30]. Complementary 
DNA synthesis and PCR were performed with a Thermal Cycler 
Dice Real Time System III (Takara code, TP970; Takara, Shiga, 
Japan) and One Step SYBR PrimeScriptTM RT-PCR Kit II 
(Takara), respectively, according to the manufacturer’s protocol. 
PCR primers were obtained from Fasmac (Kanagawa, Japan); the 
primer sequences are displayed in Supplementary Table 1. The 
2−ΔΔ CT method [31] was employed for data processing, which 
was based on analysis of the second derivative curve of amplified 
plots and performed with the Thermal Cycler Dice Real Time 
System software (version 6.01C, Takara). Target gene expression 
was normalized to the expression of glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) mRNA, which was confirmed to be 
stable by a preliminary analysis.

Preparation of a whole-cell extract and cytoplasmic and nuclear 
proteins

BV-2 cells were seeded into 6-well plates at 5.4 × 106 cells 
per well and incubated in 2 mL of DMEM (10% heat-inactivated 
FBS) for 18 hr. Then, the cells were pretreated with each test 
agent under serum-free conditions for 1 hr and stimulated 
with LPS (500 ng/mL) for 30 min. The cells were collected 
with a cell scraper (Techno Plastic Products AG, Trasadingen, 
Switzerland) and centrifuged at 300 g for 10 min at 4°C, after 
which the supernatant was removed. Cells were resuspended 
in ice-cold PBS and centrifuged at 300 g for 10 min at 4°C. To 
prepare the whole-cell extract, the pellet was lysed with ice-cold 
radioimmunoprecipitation assay (RIPA) buffer (Fujifilm Wako, 
Osaka, Japan) supplemented with cOmplete protease inhibitor 
cocktail tablets (Sigma-Aldrich) and PhosStop phosphatase 
inhibitor tablets (Sigma-Aldrich). After 1 hr on ice, the extract 
solution was centrifuged at 16,260 g for 20 min at 4°C, and 
the supernatant was collected. To prepare the cytoplasmic and 
nuclear proteins, the pellet was lysed with protein extraction 
buffer, and then cytosolic and nuclear proteins were extracted 
with an EzSubcell Extract kit (ATTO, Tokyo, Japan) according 
to the manufacturer’s instructions. Total protein levels in the 
preparations were determined with a Micro BCA Protein Assay 
kit (Thermo Fisher Scientific, Vernon Hills, IL, USA).

Western blot analysis
Automated capillary electrophoresis-based Western blot 

analyses were performed on a ProteinSimple Wes® System with 
a 12-230 kDa Separation Module kit (ProteinSimple SM-W004, 
ProteinSimple, San Jose, CA, USA) and Anti-Rabbit Detection 
Module kit (ProteinSimple DM-001, ProteinSimple) according to 
the manufacturer’s instructions [32–34]. In brief, samples were 
diluted to an appropriate concentration (0.02, 0.2, or 2 mg/mL) 
in 0.1 × sample buffer containing sodium dodecyl sulfate (SDS) 
and then combined with 5 × Fluorescent Master Mix (containing 
5 × sample buffer, 5 × fluorescent standard, and 200 mM 
dithiothreitol) at a ratio of 4:1 and heated at 95°C for 5 min. The 
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samples, blocking reagent (antibody diluent), primary antibodies, 
horseradish peroxidase (HRP)-conjugated secondary antibodies, 
and chemiluminescent substrate (luminol-S/peroxide) were added 
to each well of the microplate provided by the manufacturer. 
The primary anti-mouse antibodies against NF-κB p65, 
phospho-NF-κB p65 (Ser536), phospho-IKK-α/β (Ser176/180), 
lamin B1, and GAPDH were purchased from Cell Signaling 
Technology (Danvers, MA, USA); those against IKK-α/β were 
purchased from Abcam. The microplate was loaded into the 
instrument, which performed electrophoretic protein separation 
and immunodetection in the automated capillary system. The 
expression levels of GAPDH and lamin B1 were used as internal 
controls for cytoplasmic and nuclear proteins, respectively. These 
internal controls were confirmed to be stable by a preliminary 
experiment. The data were analyzed with the Compass software 
(version 4.1.0; ProteinSimple). Phosphorylated protein expression 
was expressed as the ratio of phosphorylated to total protein, and 
nuclear translocation of the NF-κB p65 subunit (as an indicator 
of NF-κB activation) was expressed as the ratio of nuclear to 
cytoplasmic NF-κB protein.

Statistical analysis
LPS-stimulated control cells and treated cells were compared 

with Student’s t-test or Dunnett’s multiple comparison test. 
Results are shown as the mean and standard deviation (SD). A 
probability (p) value of less than 0.05 was defined as indicating 
statistical significance, and analyses were performed with the 
Statcel 4 software (OMS Publishing, Tokorozawa, Japan).

RESULTS

Effects of turmeronol A and turmeronol B on NO production 
and synthetic enzyme mRNA expression in BV-2 cells stimulated 
with LPS

The NO level was markedly increased in LPS-stimulated control 
cells compared with unstimulated control cells, and LPS-induced 
NO production was significantly inhibited by pretreatment of 
cells with turmeronol A or turmeronol B (Fig. 2A). Expression 
of iNOS mRNA was upregulated by LPS stimulation, and this 
upregulation was significantly suppressed by pretreatment of 
cells with turmeronol A or turmeronol B (Fig. 2B).

Effects of turmeronol A and turmeronol B on inflammatory 
cytokine production and mRNA expression in BV-2 cells 
stimulated with LPS

LPS stimulation markedly increased IL-1β, IL-6, and TNF-α 
production, but the increase was inhibited by pretreatment of cells 
with turmeronol A or turmeronol B (Fig. 3A–3C). Expression of 
IL-1β, IL-6, and TNF-α mRNA was also markedly upregulated by 
LPS stimulation, and this upregulation was significantly inhibited 
by pretreatment with turmeronol A or turmeronol B (Fig. 3D–3F).

Effects of turmeronol A and turmeronol B on phosphorylation 
of IKK-α/β in BV-2 cells stimulated with LPS

The phosphorylation of IKK-α/β protein (Ser176/180) was 
increased in control cells after 30 min of LPS stimulation, but it 
was inhibited by pretreatment with turmeronol A or turmeronol 
B (Fig. 4).

Effects of turmeronol A and turmeronol B on nuclear 
translocation of NF-κB in BV-2 cells stimulated with LPS

The nuclear level of p65 protein was markedly increased 
in control cells after 30 min of LPS stimulation, and this was 
inhibited by pretreatment with turmeronol A or turmeronol B 
(Fig. 5A and 5B). These results suggested that turmeronol A 
and turmeronol B inhibited translocation of NF-κB from the 
cytoplasm to the nucleus after 30 min of LPS stimulation.

Effects of turmeronol A and turmeronol B on phosphorylation 
of NF-κB p65 in BV-2 cells stimulated with LPS

The phosphorylation of NF-κB p65 (Ser536) was markedly 
increased in control cells after 30 min of LPS stimulation and 
inhibited by pretreatment with turmeronol A or turmeronol B 
(Fig. 6A and 6B).

DISCUSSION

In the present study, pretreatment with turmeronol A or 
turmeronol B significantly inhibited NO production and mRNA 
expression of iNOS in BV-2 mouse microglial cells stimulated 
with LPS. The turmeronols also significantly inhibited LPS-
induced production and mRNA expression levels of IL-1β, IL-6, 
and TNF-α. In addition, both turmeronols significantly suppressed 

Fig. 2.	 Effects of turmeronol A and turmeronol B on NO production and mRNA expression of synthetic enzymes in BV-2 cells stimulated with LPS.
Cells were preincubated with turmeronol A or turmeronol B for 1 hr under serum-free conditions and subsequently stimulated with LPS (500 ng/mL) for 
(A) 12 hr or (B) 6 hr. NO levels in culture supernatants were measured by the Griess assay. Inducible NO synthase mRNA expression was determined by 
reverse transcription polymerase chain reaction with glyceraldehyde-3-phosphate dehydrogenase as an internal control. Data are expressed as the mean 
± standard deviation (n=3). **p<0.01 vs. LPS-stimulated control cells (Dunnett’s test).
iNOS: inducible nitric oxide synthase; LPS: lipopolysaccharide; NO: nitric oxide; LPS: lipopolysaccharide.
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the increase in phosphorylated IKK and NF-κB proteins and 
the nuclear translocation of NF-κB. These results suggest that 
the turmeronols may prevent the production of inflammatory 
mediators by reducing the activation of IKK/NF-κB signaling in 
activated microglial cells.

Microglial cells play an important role in immune surveillance 
of the central nervous system by removing harmful pathogens 
and cellular debris [18]. However, excessive microglial activation 
by inflammatory stimuli such as pathogen-associated molecular 
patterns and damage-associated molecular patterns leads to 
production of high amounts of pro-inflammatory cytokines 
and neurotoxic factors, which cause neural dysfunction 
[12]. In addition, clinical studies have identified microglial 

activation as a pathological hallmark of neuroinflammation in 
patients with various neurodegenerative diseases, including 
Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s 
disease, Parkinson’s disease, and primary progressive multiple 
sclerosis [24]. In animal models of neurodegenerative diseases, 
neuroinflammation was improved by minocycline, a commonly 
used inhibitor of microglial activation [35]. In the present study, 
both turmeronols prevented the increase in protein and mRNA 
expression levels of various inflammatory mediators in LPS-
activated microglial cells (Figs. 2 and 3), indicating that they may 
potentially ameliorate the neuroinflammation mediated by the 
activation of microglial cells.

Fig. 3.	 Effects of turmeronol A and turmeronol B on inflammatory cytokine production and mRNA expression in BV-2 cells stimulated with LPS.
Cells were preincubated with turmeronol A or turmeronol B for 1 hr under serum-free conditions and subsequently stimulated with LPS (500 ng/mL) for 
(A–C) 24 hr or (D–F) 6 hr. (A) IL-1β, (B) IL-6, and (C) TNF-α protein levels in culture supernatants were measured by enzyme-linked immunosorbent 
assay. (D) IL-1β, (E) IL-6, and (F) TNF-α mRNA expression was determined by reverse transcription polymerase chain reaction with glyceraldehyde-3-
phosphate dehydrogenase as an internal control. Data are expressed as the mean ± standard deviation (n=3). **p<0.01 vs. LPS-stimulated control cells 
(Dunnett’s test).
IL: interleukin; LPS: lipopolysaccharide; TNF: tumor necrosis factor.

Fig. 4.	 Effects of turmeronol A and turmeronol B on phosphorylation of IKK-α/β in BV-2 cells stimulated with LPS.
Cells were preincubated with turmeronol A or turmeronol B for 1 hr under serum-free conditions and subsequently stimulated with LPS (500 ng/mL) for 30 
min. After preparation of whole cell extracts, IKK-α/β protein expression was determined by Western blotting with GAPDH as an internal control protein. 
The relative band intensity of phosphorylated IKK-α/β was normalized to that of total IKK-α/β and expressed in the graph. Data are expressed as the mean 
± standard deviation (n=3). *p<0.05 vs. LPS-stimulated control cells (Dunnett’s test).
GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IKK: inhibitor of nuclear factor kappa B kinase; LPS: lipopolysaccharide.
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Fig. 5.	 Effects of turmeronol A and turmeronol B on nuclear translocation of NF-κB in cytoplasmic and nucleus protein extracts of BV-2 cells 
stimulated with LPS.
Cells were preincubated with turmeronol A or turmeronol B for 1 hr under serum-free conditions and subsequently stimulated with LPS (500 ng/mL) for 
30 min (A and B). After preparation of cytoplasmic and nuclear cell extracts, NF-κB p65 protein expression was determined by Western blotting with 
GAPDH and lamin B1 as a cytoplasmic and nuclear internal control protein, respectively. For the graph, the relative band intensity of nuclear NF-κB 
p65 was normalized to that of cytoplasmic NF-κB p65. Data are expressed as the mean ± standard deviation (n=3–6) of three independent experiments. 
*p<0.05 vs. LPS-stimulated control cells (Student’s t-test).
GAPDH: glyceraldehyde-3-phosphate dehydrogenase; LPS: lipopolysaccharide; NF-κB: nuclear factor kappa B.

Fig. 6.	 Effects of turmeronol A and turmeronol B on phosphorylation of NF-κB in BV-2 cells stimulated with LPS.
Cells were preincubated with turmeronol A or turmeronol B for 1 hr under serum-free conditions and subsequently stimulated with LPS (500 ng/mL) for 
30 min (A and B). After preparation of whole cell extracts, NF-κB p65 protein expression was determined by Western blotting with GAPDH as the internal 
control protein. For the graph, the relative band intensity of phosphorylated NF-κB p65 was normalized to that of total NF-κB p65. Data are expressed as 
the mean ± standard deviation (n=3). *p<0.05, **p<0.01 vs. LPS-stimulated control cells (Student’s t-test).
GAPDH: glyceraldehyde-3-phosphate dehydrogenase; LPS: lipopolysaccharide; NF-κB: nuclear factor kappa B.
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Pro-inflammatory mediators produced by a variety of cell 
types, including microglial cells, are known to have undesirable 
effects in the central nervous system [18, 36]. NO interacts with 
superoxide to form ONOO-, which induces neuronal cell death 
by causing oxidative damage to cellular components such as 
DNAs, lipids, and proteins [19]. IL-1β and TNF-α have also 
been shown to cause neuronal death by activating caspase-8 and 
increasing synaptic loss [12]. IL-6 has been reported to promote 
Aβ-induced neurotoxicity and to increase the protein expression 
of vascular cell adhesion molecule 1 and gene expression of 
iNOS [37, 38]. A study in a mouse model of Alzheimer’s disease 
showed that depletion of either TNF-α receptor 1 or iNOS genes 
inhibits synaptic disruption and memory impairment [39]. In 
addition, research in Parkinson’s disease mouse models showed 
that IL-1 or IL-6 deficiency prevents microglial activation 
and behavioral impairment [40, 41]. In the present study, both 
turmeronols significantly suppressed the production of NO and 
inflammatory cytokines in microglial cells (Figs. 2 and 3). Taken 
together, these results suggest that the turmeronols may prevent 
neuronal cell death and dysfunction by inhibiting the production 
of inflammatory mediators.

IKK, an enzyme complex consisting of three subunits 
(IKK-α, IKK-β, and IKK-γ), is essential for activation of NF-κB 
signaling pathways [42]. The binding of LPS to toll-like receptor 
4 can recruit cytoplasmic adaptor proteins such as myeloid 
differentiation primary response 88, which in turn phosphorylates 
the IKK complex. Activated IKK-β increases the degradation of 
IκB-α and allows NF-κB translocation from the cytoplasm to the 
nucleus, and activated NF-κB induces the expression of target 
genes, including iNOS, IL-1β, IL-6, and TNF-α [43, 44, 45]. In 
agreement with previous studies, LPS stimulation in the present 
study increased phosphorylation of IKK-α/β and translocation 
of NF-κB from the cytoplasm to the nucleus (Figs. 4 and 5). 
In another study, pretreatment with Compound A—an IKK-β 
selective inhibitor—suppressed mRNA expression levels of 
inflammatory mediators such as NO, IL-1β, and TNF-α in rat 
primary microglial cells stimulated with LPS [46]. In the present 
study, both turmeronols significantly reduced LPS-induced 
phosphorylation of IKK-α/β and nuclear translocation of NF-κB 
(Figs. 4 and 5). These results suggest that the turmeronols may 
inhibit expression of inflammatory mediator genes by reducing 
activation of the IKK/NF-κB signaling pathway.

Transcription of NF-κB target genes is dependent on not only 
nuclear translocation of NF-κB but also phosphorylation of 
NF-κB p65. Phosphorylated NF-κB p65 is known to enhance 
its transcriptional activity by promoting acetylation at the 
lysine residue of p65 and interaction with cAMP-response 
element-binding protein (CREB)-binding protein (CBP)/p300, a 
transcriptional co-activator protein [47, 48]. In fact, licochalcone 
A, a component of licorice root, has been shown to suppress 
phosphorylation of NF-κB p65 and mRNA expression of NF-
κB target genes, including iNOS, TNF-α, and MCP-1, without 
inhibiting nuclear translocation of NF-κB [49]. In addition, 
NF-κB p65 at Ser536 is reported to be phosphorylated by some 
protein kinases, including IKK-α and IKK-β [47]. In the present 
study, both turmeronols reduced phosphorylation of IKK and NF-
κB p65 proteins in BV-2 cells stimulated with LPS (Fig. 6). Taken 
together, these findings raise the possibility that turmeronols 
reduce the increase in the levels of phosphorylated NF-κB p65 
protein by inhibiting phosphorylation of IKK.

The molecular targets of turmeronols (A and B) are not clearly 
understood. Parthenolide, one of the sesquiterpenoids in the anti-
inflammatory medicinal herb Tanacetum parthenium, has been 
reported to inhibit the activation of NF-κB and IKK by directly 
binding to cysteine residue at position 179 (Cys-179), a critical 
step in IKK-β enzymatic activity [50, 51]. In addition, arsenite 
and cyclopentenone prostaglandins, IKK-β inhibitors, also target 
this cysteine residue [52, 53]. The replacement of Cys-179 by an 
alanine residue of the IKK-β protein is known to block the IKK-β 
inhibitors that bind to this protein [51–53], resulting in reduced 
phosphorylation of activation loop serine, which is required for 
IKK-β activation [54]. Thus, turmeronols may also reduce IKK 
activation by binding to IKK-β at Cys-179; however, further 
research is needed to clarify whether turmeronols can directly 
bind to IKK-β.

The blood-brain barrier (BBB) limits transportation between 
peripheral circulation and the central nervous system. It plays 
an important role in protecting the central nervous system from 
harmful agents and microorganisms in the blood [55]. To date, 
it remains unclear whether turmeronols (A and B) can cross the 
BBB. However, α-, β-, and aromatic-turmerone, all of which 
have a sesquiterpene structure similar to that of the turmeronols 
contained in C. longa, were detected not only in serum but also in 
the brains (cerebrum and cerebellum) of mice administered these 
turmerones [56–58]. Thus, turmeronols may cross the BBB like 
other sesquiterpenes and influence microglial cells in the central 
nervous system. Further research on this topic is needed.

In animal models of neurodegenerative diseases, the pathology 
of neuroinflammation in the central nervous system was 
improved by functional food ingredients that inhibit production 
of inflammatory mediators in LPS-stimulated BV-2 microglial 
cell lines [59–61]. In addition, microglial inhibitors, including 
minocycline and a selective colony stimulating factor 1 receptor 
inhibitor, were reported not only to suppress neuroinflammation 
in animal models but also to improve cognitive function and 
the antidepressant effect of minocycline [35, 62–65]. Clinical 
intervention studies showed that a hot water C. longa extract, 
which contains turmeronols, significantly improves serum levels 
of inflammatory markers, such as C-reactive protein, IL-6, and 
TNF-α, and mental health scores on the SF-36 questionnaire 
[10, 11]. Therefore, turmeronol A and turmeronol B may be 
effective for improving neuroinflammation-related symptoms. 
To confirm the results of our in vitro experiments, the effects of 
turmeronols on neuroinflammation should be evaluated in vivo 
in two animal models of neurodegenerative diseases, i.e., the 
amyloid precursor protein (APP) transgenic mouse model of 
Alzheimer’s disease [66, 67] and the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced mouse model of Parkinson’s 
disease [68], because minocycline, a commonly used inhibitor of 
microglial activation, showed neuroprotective effects in both these 
models [69, 70].

In conclusion, we found that pretreatment with either 
turmeronol A or turmeronol B inhibited the production of 
inflammatory mediators and their gene expression levels in 
microglial BV-2 cells activated with LPS. In addition, both 
turmeronols reduced phosphorylation of IKK and NF-κB p65 
and nuclear translocation of NF-κB. These results suggest that 
turmeronol A and turmeronol B have the potential to prevent 
neuroinflammation induced by activated microglial cells.
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