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Introduction: Integrating brain imaging with large scale omics data may identify novel
mechanisms of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). We
integrated and analyzed brain magnetic resonance imaging (MRI) with cerebrospinal
fluid (CSF) metabolomics to elucidate metabolic mechanisms and create a “metabolic
map” of the brain in prodromal AD.

Methods: In 145 subjects (85 cognitively normal controls and 60 with MCI), we derived
voxel-wise gray matter volume via whole-brain structural MRI and conducted high-
resolution untargeted metabolomics on CSF. Using a data-driven approach consisting
of partial least squares discriminant analysis, a multiomics network clustering algorithm,
and metabolic pathway analysis, we described dysregulated metabolic pathways in CSF
mapped to brain regions associated with MCI in our cohort.

Results: The multiomics network algorithm clustered metabolites with contiguous
imaging voxels into seven distinct communities corresponding to the following
brain regions: hippocampus/parahippocampal gyrus (three distinct clusters), thalamus,
posterior thalamus, parietal cortex, and occipital lobe. Metabolic pathway analysis
indicated dysregulated metabolic activity in the urea cycle, and many amino acids
(arginine, histidine, lysine, glycine, tryptophan, methionine, valine, glutamate, beta-
alanine, and purine) was significantly associated with those regions (P < 0.05).

Conclusion: By integrating CSF metabolomics data with structural MRI data, we
linked specific AD-susceptible brain regions to disrupted metabolic pathways involving
nitrogen excretion and amino acid metabolism critical for cognitive function. Our
findings and analytical approach may extend drug and biomarker research toward more
multiomics approaches.

Keywords: MRI imaging, metabolomics (OMICS), multiomics analysis, mild cognition impairment, amino acids
(AA), Alzheimer’s disease, integrative “omics,” gray matter atrophy
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INTRODUCTION

Advancements in brain imaging and omics fields (genomics,
transcriptomics, proteomics, etc.) have produced a wealth of
knowledge regarding the underlying biology of cognitive decline
in the healthy aging population and those who suffer from
neurocognitive disorders such as Alzheimer’s disease (AD),
Parkinson’s, and dementia (Johnson et al., 2012; Sancesario and
Bernardini, 2018). Merging imaging and omics modalities may
provide further breakthroughs not attainable by a single field to
aid patient prognosis, precision medicine, early detection and
prevention of neurocognitive decline (Avramouli and Vlamos,
2017; Pimplikar, 2017; Antonelli et al., 2019).

Brain imaging is one way to assess the structural changes
preceding and during neurocognitive decline. Brain atrophy
(i.e., the loss of gray matter), as measured by magnetic
resonance imaging (MRI), can reflect a patient’s progression
from normal cognition to mild cognitive impairment (MCI) and
AD (Bozzali et al., 2006; Matsuda, 2016). Whole-brain voxel-
wise measurements of gray matter volume is now common. The
approach provides a comprehensive and less biased assessment
of anatomical and volumetric differences between cognitively
impaired individuals and cognitively normal controls (Ries et al.,
2008; Matsuda, 2013).

High-resolution untargeted metabolomics (HRM) is
the newest entrant to the omics fields. It uses liquid or
gas-chromotography paired with high-throughput mass-
spectrometry to comprehensively measure endogenous
small biochemical compounds and signaling molecules (i.e.,
metabolites) (Liu and Locasale, 2017) as well as exogenous
environmental chemical exposures (i.e., the exposome)
(Vermeulen et al., 2020). Given that metabolic dysfunction
in the brain and surrounding tissues plays a significant role in
the onset and progression of cognitive impairment (de la Monte
and Tong, 2014; Campos-Peña et al., 2017; Szablewski, 2017),
untargeted metabolomics is primed to make key discoveries
about the pathological mechanisms underlying MCI and AD
(Wilkins and Trushina, 2018).

For this project, we integrated voxel-wise MRI brain imaging
with untargeted metabolomics in cerebrospinal fluid (CSF) to
study the shared metabolic and structural mechanisms of mild
cognitive impairment (MCI) – i.e., to create a CSF metabolic map
of the MCI vs. cognitively normal brain. Each method has made
individual discoveries regarding the biology of cognitive decline,
however, to our knowledge, this is the first study to perform
large-scale integration of the two. Since this is novel, there is
no established workflow. Our analytical approach is just one of
many possible approaches. Nevertheless, a multiomics analysis of
the two data sources may indeed provide useful information not
attainable by either method separately.

MATERIALS AND METHODS

Participant Cohort
The cohort is part of a larger NIH consortium, Molecular
Mechanisms of the Vascular Etiology of Alzheimer’s Disease

(M2OVE-AD). More information about M2OVE-AD can be
found here: https://adknowledgeportal.synapse.org/. Specific
information on the data used for this analysis can be found
here: https://adknowledgeportal.synapse.org/Explore/Studies/
DetailsPage?Study=syn18909507. Subjects were recruited via the
Brain Stress Hypertension and Aging Program (B-SHARP) at
Emory University. B-SHARP participants underwent baseline
cognitive assessments by a study physician, neuroimaging and
lumbar punctures before being enrolled in observational studies
or clinical trials based on their eligibility and consent. Participants
were excluded if they had a history of stroke in the past 3 years,
were unwilling or unable to undergo study procedures including
MRI and LP, did not have a study informant, had a clinical
diagnosis of dementia of any type, or abnormal serum Thyroid
Stimulating Hormone (>10) or B12 (<250). Recruitment
occurred through referral from the Goizueta Alzheimer’s Disease
Research Center at Emory or through community partnerships
with health education organizations, health fairs, advertisements
and mailed announcements. The current analysis used data from
145 subjects (60 with MCI and 85 cognitively normal controls)
enrolled in B-SHARP from March 2016-January 2019 who had
baseline data, whole brain MRI imaging, and CSF metabolomics.

Cognitive Diagnosis
Mild cognitive impairment (MCI) categorization was done
using a modified Peterson criteria with the Montreal Cognitive
Assessment (MoCA) instead of Mini-Mental State Exam. MCI
criteria included subjective memory complaints, a MoCA < 26,
Clinical Dementia Rating (CDR) score, memory sum of
boxes = 0.5, education adjusted cutoff score on Logical
Memory delayed recall of the Wechsler Memory Scale and
preserved Functional Assessment Questionnaire (FAQ) ≤ 7.
Normal cognition was defined as having no significant memory
complaints beyond those expected for age, a MoCA score > 26
points, a CDR score of 0 (including a 0 on the Memory
Box score), and preserved FAQ ≤ 7. Each subject underwent
a review with the study physician and PI (Hajjar) and a
neuropsychologist. When the participant’s assessment did not
reveal a clear cognitive category, a consensus diagnosis was
sought by the study PI and the neuropsychologist reviewing
the physician interview, cognitive assessment, and other relevant
elements. If the two evaluators failed to reach an agreement,
then a third independent cognitive neurologist from Emory,
blinded from the initial diagnosis, was consulted and his
assessment broke the tie.

Magnetic Resonance Imaging
Acquisition and Processing
Magnetic resonance imaging was performed using 3.0 Tesla
scanner (Magnetom Prisma, Siemens, Erlangen, Germany).
Anatomical T1-weighted images were acquired using high-
resolution three-dimensional magnetization-prepared rapid
acquisition with gradient echo (MPRAGE). Images were
then digitally saved for offline processing. For each scan,
preprocessing was performed using voxel-based morphometry
toolbox (Ashburner, 2007) in the SPM package and the results
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were visually inspected. Briefly, T1 images were corrected
for bias field, and segmented into three separate probability
maps: gray matter, white matter, and cerebrospinal fluid. The
segmented maps of all subjects were normalized to the MNI
template and smoothed using an 8 mm Gaussian filter. We used
the voxel-based gray matter volume in our statistical analysis.
To this end, the gray matter probability map threshold was 0.3
to remove voxels with less than 30% probability of belonging
to gray matter, thus producing a binary gray matter mask.
The three-dimensional gray matter mask was transformed to
a one-dimensional array for statistical analyses. An inverse
transformation was used to convert the statistical results back to
the original image space.

High-Resolution Untargeted
Metabolomics
Our HRM approach used an established liquid-chromatography
mass spectrometry (LC-MS) workflow developed at the Emory
Clinical Biomarkers Laboratory (Accardi et al., 2016; Chandler
et al., 2016). CSF aliquots were removed from storage at
−80◦C and thawed on ice. A 65 µL aliquot of CSF was
treated with 130 µL of LC-MS grade acetonitrile, equilibrated
for 30 min on ice and centrifuged (16.1 × g at 4◦C) for
10 min to remove precipitated proteins. The supernatant
was added to an autosampler vial and maintained at 4◦C
until analysis. Sample extracts were analyzed using liquid
chromatography and Fourier transform high-resolution mass
spectrometry (Dionex Ultimate 3000, Q-Exactive HF, Thermo
Scientific). For each sample, triplicate 10 µL injections were
analyzed using hydrophilic interaction liquid chromatography
(HILIC) with electrospray ionization (ESI) source operated in
positive mode. Analyte separation was accomplished using a
2.1 mm × 100 mm × 2.6 µm Accucore HILIC column (Thermo
Scientific) and an eluent gradient (A = 2% formic acid, B = water,
C = acetonitrile) consisting of an initial 1.5 min period of 10% A,
10% B, 80% C, followed by linear increase to 10% A, 80% B, 10%
C at 6 min and then held for an additional 4 min, resulting in a
total runtime of 10 min per injection. Mobile phase flow rate was
held at 0.35 mL/min for the first 1.5 min, increased to 0.5 mL/min
and held for the final 4 min.

The high-resolution mass spectrometer was operated in full
scan mode at 120,000 resolution and mass-to-charge ratio
(m/z) range 85.0000–1275.0000. Probe temperature, capillary
temperature, sweep gas and S-Lens RF levels were maintained at
200◦C, 300◦C, 1 arbitrary units (AU), and 45 AU, respectively,
for both polarities. Positive tune settings for sheath gas,
auxiliary gas, sweep gas and spray voltage setting were 45 AU,
25 AU and 3.5 kV, respectively. Raw data was extracted and
aligned using apLCMS (Yu et al., 2013) and xMSanalyzer
(Uppal et al., 2013) (see Supplementary Laboratory Methods).
Uniquely detected ions consisted of accurate mass m/z, retention
time and ion abundance, referred to as m/z features. Data
filtering was performed to remove m/z features with median
coefficient of variation (CV) within technical replicates ≥ 75%.
Additionally, only samples with Pearson correlation within
technical replicates ≥ 0.7 were used for downstream analysis.

Feature intensities for triplicates were median summarized with
the requirement that at least two replicates had non-missing
values. Batch-effect correction was performed using ComBat
(Johnson et al., 2007). Metabolites with <20% missing in
either the MCI or cognitively normal populations were imputed
with half of the lowest recorded intensity value; metabolites
with >20% missing were excluded. Metabolite intensities were
log2-transformed, and quantile normalized (see Supplementary
Figure 1). Specific metabolites pertaining to our findings were
annotated by matching mz and retention time to previous
confirmed metabolites via laboratory reference standards (Liu
et al., 2020) or by a computational match using xmsAnnotator
(Uppal et al., 2017). xmsAnnotator is a multistage clustering
algorithm that uses metabolic pathway associations, intensity
profiles, retention time, mass defect, and adduct patterns to
match mz features to publicly available metabolic databases.

Statistical and Bioinformatic Analysis
We summarize our analytical pipeline in three steps: (1) We
performed feature selection by identifying the subset of brain
imaging voxels in which gray matter atrophy was associated with
MCI vs. controls independent of the CSF metabolomics data.
This was done to target the metabolomics integration in step 2
to the areas of the brain most affected by cognitive decline. (2)
We then conducted a multiomics analysis of the Step 1 selected
voxels with the metabolomics data, thus, finding a set of CSF
metabolites that correlated with specific brain regions associated
with MCI. (3) We conducted metabolic pathway enrichment
analysis of the metabolites found for each cluster in Step 2
to determine dysregulated metabolic pathways specific to each
MCI-associated brain region. Lastly, given the large number of
voxel-metabolite links we estimated in Step 2, we conducted a
sensitivity analysis using training (67%) and validation (33%)
sample subsets to investigate the degree to which the multiomics
integration findings are replicable (i.e., how robust are the
Step 2 findings).

For Step 1, we used threefold cross-validated partial least
squares discriminant analysis (PLS-DA) to identify the subset of
brain voxels with less gray matter in MCI vs. control subjects
(xmsPANDA R program version 3.5.1 using default parameter
selections). PLS-DA is a popular multivariate data dimension
reduction and feature selection algorithm to distinguish between
two or more outcome classes (e.g., MCI vs. control) using linear
combinations of the explanatory variables (e.g., voxels), similar
to linear discriminant analysis or principal component analysis
(Brereton and Lloyd, 2014). PLS-DA is used extensively in
metabolomics (Gromski et al., 2015) and is gaining popularity as
an analytical tool discriminating cognitive decline with functional
and structural MRI data (Andersen et al., 2012; Khedher et al.,
2015). Feature selection via PLS-DA was done by ranking the
explanatory variables according to their importance at separating
the outcomes, called the Variable Importance in Projection
(VIP); unfortunately, PLS-DA does not produce P-values, nor
does it allow for traditional covariate adjustment (e.g., age and
sex adjusted estimates). We explored the potential impact of
confounding by age and sex by investigating the association of
those factors with the CSF metabolites among the cognitively
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normal controls without incorporating the MRI imaging data.
For consideration of multiple comparisons, we pre-specified a
VIP cutoff ≥ 2 (a common but strict threshold used in clinical
omics research) (Pérez-Enciso and Tenenhaus, 2003) and added
the additional restriction of >2% mean difference in gray matter
volume. The voxels that met these criteria but had higher gray
matter in MCI subjects vs. controls were considered data artifacts
and were excluded from the additional analyses for three reasons:
(i) lack of prior evidence suggesting MCI is associated with higher
gray matter, (ii) the limited number (n = 49), and (iii) the fact
they did not map to a contiguous and discernible area of the
brain. For the voxels that had lower gray matter volume present
in MCI subjects vs. controls (n = 2,375), we mapped them back
to the MNI brain template to identify specific brain regions and
subsequently used them for the multiomics analysis.

For Step 2, we integrated voxel-level data from the brain
imaging voxels from Step 1 with the extracted CSF metabolomics
data using a publicly available multiomics network algorithm,
xMWAS (Uppal et al., 2018). xMWAS is an R program that
automates existing network algorithms to identify and graph
clusters of correlated data from multiple sources (e.g., clusters
of imaging voxels and metabolites). It uses sparse partial least
squares regression, community detection algorithms and eigen
vector centrality measures to estimate pair-wise correlations
between voxels and metabolites and evaluate unique voxel-
metabolite clusters. The program identifies the number of voxel-
metabolite clusters by optimizing cluster modularity, a frequently
used community detection algorithm that partitions a network
into clusters made up of densely connected nodes (i.e., voxels
and metabolites), so that nodes belonging to different clusters are
sparsely connected (Blondel et al., 2008). xMWAS requires the
researcher to set a Pearson correlation cutoff to model network
links. We set ours at >|0.271| with a P-value < 0.05 because
that was the weakest correlation in which each of the 2,375
imaging voxels correlated with≥1 metabolite. We then annotated
the specific brain regions that corresponded to each imaging-
metabolite cluster.

For Step 3, we performed metabolic pathway enrichment
analysis on the metabolites in each imaging-metabolite cluster
to describe dysregulation of metabolic pathways specific for
each brain region identified in Step 2. This was done using the
default inputs (i.e., Human model, Mass accuracy = 10 ppm,
Adducts: M[1 + ], M + H[1 + ], and M + Na[1 + ]) for the
online version of Mummichog 2.0, an untargeted metabolomics
pathway analysis tool (Li et al., 2013). Mummichog requires two
metabolite lists: a user-specified list of significant metabolites
(e.g., the metabolites in imaging-metabolite cluster 1) and a list
of non-significant reference metabolites (e.g., the whole list of
extracted metabolites). Mummichog constructs the metabolic
pathways by mapping the reference list to the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database and searches for
enrichment from the user-specified list. Mummichog calculates a
Fisher’s exact P-value for each metabolic pathway via permutation
testing using repeated random sampling from the referenced
list. Each imaging-metabolite cluster was investigated separately
for pathway enrichment to describe dysregulated metabolic
pathways specific for each brain region found in Step 2.

For the sensitivity analysis, we randomly divided our full
sample size into a 67% training set (ncases = 40, ncontrols = 57)
and a 33% validation set (ncases = 20, ncontrols = 28). Among the
training set, we re-ran the Step 2, voxel-metabolite integration
using the same xMWAS parameters as we used in the full dataset
(r > |0.271|with a P-value < 0.05). We compared the xMWAS
voxel-metabolite pair-wise correlations found in the training set
against identical xMWAS voxel-metabolite correlations in the
validation set; we also investigated the individual and average
voxel-metabolite correlations of just the 20 metabolites we found
in the Step 3 pathway analysis. For each investigation, we provide
a scatter plot with a fitted linear regression and R2 value to
demonstrate the degree to which the xMWAS findings in the
training set were replicated in the validation set.

RESULTS

Of the 145 subjects, 60 had MCI and 85 controls were cognitively
normal (Table 1). Subjects with MCI were older (67.1 average
years vs. 62.7) and were more likely to be male (42% vs. 29%).
As expected, subjects with MCI had lower cognitive performance
and less total hippocampal volume than the controls. Though the
average age significantly differed between MCI vs. controls, age
was generally associated with different metabolites and different
metabolic pathways than we found in our primary results in Step
2 and 3 (see Confounding by Age and Sex in the Supplemental).
Based on this we concluded that age was not a confounder of
our primary results. Sex also differed between MCI vs. controls
but was generally associated with different metabolites than our
primary results. It was, however, weakly associated with two
amino acid pathways we found in our primary results: histidine
metabolism and methionine and cysteine metabolism. Based on
these results we concluded that sex was a weak confounder that
does not meaningfully change our primary results or conclusions.

The whole-brain MRI produced 247,941 unique voxels for
each subject. An unbiased voxel-wise approach using PLS-DA
identified 2,424 voxels (approximately 1%) that – having met
the pre-specified criteria of VIP ≥ 2 and > 2% mean difference
in gray matter – differentiated between MCI and controls in
our population (PLS-DA score plots are in Supplementary
Figure 2 and a Volcano plot is in Supplementary Figure 3).
Of those, 49 voxels indicated higher gray matter in MCI
subjects and were excluded from further analyses. The remaining
2,375 voxels indicated lower gray matter in MCI subjects
and were used for the multiomics analysis. The 2,375 voxels
included contiguous clusters in regions known to be susceptible
in the neuropathology of MCI and AD: the hippocampus,
parahippocampal gyrus, thalamus, orbitofrontal cortex and visual
cortex (Supplementary Figure 4).

The high-resolution untargeted metabolomics extracted
13,064 unique CSF metabolic features according to mass to
charge (m/z) and retention time. After filtering for missing
data, 9,804 features remained for all 145 subjects and were
used for analysis. The integration of the brain imaging
data with the CSF metabolomics data generated twelve
unique imaging-metabolite clusters by correlating all 2,375
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TABLE 1 | Characteristics of the sample stratified by cognitive diagnosis: normal
cognition and mild cognitive impairment (MCI).

Normal cognition MCI

Characteristic (n = 85) (n = 60) p-value

Age in years (±SD) 62.7 ± 7.1 67.1 ± 9.2 0.001

Sex 0.13

Female 60(70.6%) 35(58.3%)

Male 25(29.4%) 25(41.7%)

Race 0.23

Non-Hispanic White 59(69.4%) 35(58.3%)

African American 25(29.4%) 25(41.7%)

Other 1(1.2%) 0(0.0%)

Education in years
(±SD)

16.5 ± 2.6 16.0 ± 2.8 0.27

BMI 0.24

Underweight 0(0.0%) 3(5.0%)

Normal 36(42.9%) 23(38.3%)

Overweight 30(35.7%) 19(31.7%)

Obese 15(17.9%) 14(23.3%)

Morbid Obesity 3(3.6%) 1(1.7%)

CDR <0.001

0 83(98.8%) 7(11.7%)

0.5 1(1.2%) 53(88.3%)

MoCA <0.001

≥26 64(75.3%) 1(1.7%)

<26 21(24.7%) 59(98.3%)

Family history of AD 0.35

No 34(40.5%) 29(48.3%)

Yes 50(59.5%) 31(51.7%)

Hypertension 0.006

No 36(43.4%) 40(66.7%)

Yes 47(56.6%) 20(33.3%)

Diabetes 0.78

No 72(86.7%) 53(88.3%)

Yes 11(13.3%) 7(11.7%)

Heart disease 0.63

No 68(80.0%) 46(76.7%)

Yes 17(20.0%) 14(23.3%)

High cholesterol 0.44

No 43(51.8%) 35(58.3%)

Yes 40(48.2%) 25(41.7%)

Stroke 0.96

No 79(95.2%) 57(95.0%)

Yes 4(4.8%) 3(5.0%)

Total lesion volume
in mm3 (±SD)

1.5 ± 2.1 3.3 ± 4.9 0.02

Total hippocampal
volume in mm3

(±SD)

7641 ± 876 6791 ± 1077<0.001

SD, standard deviation; BMI, body mass index; AD, Alzheimer’s disease; CDR,
clinical dementia rating; MoCA, Montreal cognitive assessment.

imaging voxels with 463 of the 9,804 metabolic features
(Table 2, Figure 1A, and Supplementary Table 3); 9,341
metabolites did not correlate with an imaging voxel. Seven
of those clusters corresponded to contiguous brain regions
important to neurocognitive decline: (1) Parietal cortex; (2)
Posterior Thalamus; (3) Hippocampus/Parahippocampal

TABLE 2 | The number of voxels and metabolites that comprise each community
cluster identified by the xMWAS multiomics analysis program when integrating
2,375 voxels with 463 metabolites.

Brain region # of Voxels # of Metabolites

Cluster 1 Right parietal cortex 90 111

Cluster 2 Posterior thalamus 406 96

Cluster 3 N/Aa 11 13

Cluster 4 Hippocampus/
Parahippocampal gyrus (right

hemisphere)

209 68

Cluster 5 N/Aa 7 14

Cluster 6 Left Hippocampus/
Parahippocampal gyrus – cluster A

438 108

Cluster 7 Thalamus 158 54

Cluster 8 Left Hippocampus/
Parahippocampal gyrus – cluster B

617 107

Cluster 9 N/Aa 13 36

Cluster 10 Occipital lobe and orbitofrontal
cortex

393 177

Cluster 11 N/Aa 32 31

Cluster 12 N/Aa 1 1

Total 2,375 816b

aNot applicable because the voxels did not conform to a contiguous region of the
brain in the MNI image.
bThe total is larger than 463 because many metabolites linked to >1 cluster.

gyrus (mostly right hemisphere); (4) Left
Hippocampus/Parahippocampal gyrus (cluster A); (5) Thalamus;
(6) Left Hippocampus/Parahippocampal gyrus (cluster B); (7)
Occipital lobe and orbitofrontal cortex (bilateral) (Figure 2
and Supplementary Figure 4). The remaining five clusters
were small (average voxel size = 12.8) and did not conform
to contiguous regions of brain in the MNI image and were
not further analyzed. The five clusters corresponding to the
hippocampus and thalamus shared connections with some of the
same metabolites (i.e., hippocampal voxel–metabolite–thalamus
voxel correlations). Conversely, the clusters that corresponded to
the parietal cortex and the occipital lobe were separate.

We conducted metabolic pathway enrichment analyses
among the CSF metabolites that correlated with each of the
seven brain regions that differentiated MCI vs. controls. We
summarize the statistically significant dysregulated pathways and
their linked brain regions in Figure 1B; the complete list is in
Supplementary Tables 4–10. In six of the regions (hippocampus
[3 regions], thalamus [2], and parietal cortex) we found
significant dysregulation of CSF metabolic activity that regulates
the urea cycle, and a host of amino acids (arginine, histidine,
lysine, glycine, tryptophan, methionine, valine, glutamate, beta-
alanine, and purine). Dysregulation of urea cycle metabolism
was the most significant and consistent finding across the
six regions. Notably, the metabolites that correlated with the
occipital lobe did not generate an enriched metabolic pathway
according to Mummichog. This may be due to an inherent
limitation of current knowledge of metabolic pathways. In
Table 2, we list the 20 metabolites that comprised the statistically
significant metabolic pathways linked to the brain regions. We
include the metabolite annotation and note those that matched
to lab-confirmed reference standards (Uppal et al., 2017;
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FIGURE 1 | (A) Multiomics clustering network of MRI-derived gray matter brain imaging voxels and CSF metabolites. The network algorithm (xMWAS) identified
twelve distinct imaging-metabolite clusters. Each cluster is indicated by a different color. The seven clusters that correspond to contiguous regions of the brain are
labeled. The circles are MRI brain imaging voxels and the rectangles are cerebrospinal fluid metabolites. Blue lines indicate positive correlation with controls, red lines
indicate negative correlation. This is a modified figure limiting the number of voxels, metabolites, and connections to visualize the clusters and their relationships. The
unaltered figure is in Supplementary Figure 5. (B) The associated metabolic pathways from the seven annotated imaging-metabolite clusters identified by the
multiomics network. Metabolic pathway enrichment analysis (Mummichog) described the dysregulated metabolic pathways specific to each region of the brain. The
size and color of the circles indicate the number of significant overlapping metabolic features in the pathway and the Fisher’s exact P-value of each pathway. The
number next to the metabolic pathway is the number of reference metabolites in each pathway. The metabolites that correlated with the occipital lobe were sparse
and did not collectively map to a specific known pathway.
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FIGURE 2 | The neuroimaging atlas of the seven annotated brain regions as identified by the imaging metabolite clusters from the multiomics network algorithm,
xMWAS. The red coloring shows the location of imaging voxels for each cluster.

Liu et al., 2020), the confidence level in that identification per
Schymanski et al. (2014) the MCI vs. cognitively normal fold
change, and correlation links to MRI voxels and brain regions.
Among those, some notable metabolites and their relative levels
in MCI subjects vs. controls are amino butyrate∗ (lower in
MCI), histamine∗ (lower), creatinine (higher), guanidinoacetate∗
(lower), hypoxanthine (higher), 5-hydroxyindoleacetate∗
(higher); ∗indicates a laboratory confirmed metabolite.

Using the same input data and parameter selections, the
Step 2 multiomics integration sensitivity analysis integrated
all 2,375 voxels with 1,638 metabolites among the randomly
selected training set. Comparing the xMWAS voxel-metabolite
correlations found in the training set with identical ones
in the validation set, we found low correlation (r = 0.34,
R2 = 0.11; Supplementary Figure 6), suggesting that many
of voxel-metabolite links might not be replicable. However,
when we restricted the comparison to the voxel-metabolite links
of the metabolites we found in the Step 3 pathway analysis
(Table 3), we found a much stronger correlation (r = 0.74,
R2 = 0.55; Supplementary Figure 6), suggesting the links

xMWAS found between these amino acid/urea cycle metabolites
and their corresponding brain regions are more robust. Since
many of those amino acid/urea cycle metabolites had multiple
voxel connections, we compared the average voxel correlation
in the training set with the average voxel correlation in the
validation set for each metabolite via a scatter plot (Figure 3). The
averages show even stronger correlations between the training
set and the validation set (r = 0.88, R2 = 0.77). It should be
noted that three of the twenty metabolites, indoleacetic acid,
5-hydroxyindoleacetate, and S-adenosylhomocysteine, did not
meet the xMWAS parameter criteria (r > | 0.271| with a
P-value < 0.05) to link to voxels in the training set and thus were
not compared to the validation set.

DISCUSSION

By integrating whole-brain structural MRI with CSF untargeted
metabolomics, we created a novel metabolic map to MCI-relevant
brain regions. We found lower levels of gray matter in the
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TABLE 3 | Twenty cerebrospinal fluid metabolites that comprise the significant pathways per the Mummichog metabolic pathway analysis.

m/z Timea Metabolite Associated metabolic pathways Adduct ID levelb Fold changec Voxel linksd Associated areas of the brain

104.0706 277 Gamma-aminobutyrate Urea cycle/amino group metabolism;
Glycine, serine, alanine, and

threonine metabolism

M + H 1 –0.18 16 Posterior Thalamus, Hippocampus –
left hemisphere (cluster A)

111.0805 157 Histamine Histidine metabolism M[1+] 1 -0.28 757 Posterior Thalamus, Hippocampus -
left hemisphere (cluster A and B)

115.0632 34 Creatinine Urea cycle/amino group metabolism;
Arginine and Proline Metabolism

M + H[+1] 3 0.13 1,374 Parietal Cortex, Posterior Thalamus,
Hippocampus – right and left
hemisphere (cluster A and B),

Thalamus

118.0499 160 N-acetylglycine Urea cycle/amino group metabolism;
Glycine, serine, alanine and

threonine metabolism

M + H 1 –0.10 8 Hippocampus – left hemisphere
(cluster A and B)

118.0604 205 Guanidinoacetate
(Glycocyamine)

Urea cycle/amino group metabolism;
Arginine and Proline Metabolism;

Glycine, serine, alanine and
threonine metabolism

M + H 1 –0.22 258 Posterior Thalamus, Hippocampus –
right hemisphere, Occipital
lobe/Orbitofrontal cortex

132.1019 42 Leucine Valine, leucine and isoleucine
degradation

M + H 1 -0.11 6 Parietal Cortex

137.0458 43 Hypoxanthine Purine metabolism M + H 1 0.04 476 Parietal Cortex

148.0605 55 N-methyl-D-aspartate Urea cycle/amino group metabolism;
Glycine, serine, alanine, and

threonine metabolism; Histidine
metabolism; Arginine and Proline

Metabolism; Glutamate metabolism;
Beta-Alanine metabolism; Valine,

leucine and isoleucine degradation;
Butanoate metabolism; Lysine

metabolism; Aspartate and
asparagine metabolism; Methionine

and cysteine metabolism; Purine
metabolism

M + H 1 -0.03 9 Parietal Cortex, Hippocampus - left
hemisphere (cluster A)

149.0281 77 2-keto-4-methylthiobutyrate Methionine and cysteine metabolism M + H 4 0.22 66 Parietal Cortex

175.0713 50 Formiminoglutamic acid Histidine metabolism M + H 3 0.29 176 Parietal Cortex, Posterior Thalamus,
Hippocampus - right and left
hemisphere (cluster A and B)

176.0705 189 Indoleacetic acid Tryptophan metabolism M + H 4 –0.10 58 Hippocampus – left hemisphere
(cluster B)

185.1035 46 Carnitine Lysine metabolism M + Na[1+] 5 0.41 1 Posterior Thalamus

192.0655 36 5-Hydroxyindoleacetate Urea cycle/amino group metabolism,
Arginine and Proline metabolism,

Tryptophan metabolism

M + H 1 0.08 360 Posterior Thalamus, Hippocampus -
right and left hemisphere (cluster A

and B), Thalamus

205.1547 283 Hydroxy-trimethyl-lysine Lysine metabolism M[1+] 5 0.32 314 Posterior Thalamus, Hippocampus –
right and left hemisphere (cluster A

and B)

259.1036 45 Acadesine Tryptophan metabolism M[1+] 5 0.03 55 Thalamus, Hippocampus – left
hemisphere (cluster B)

265.1202 55 Phenylacetylglutamine Tryptophan metabolism M + H 4 0.01 9 Thalamus

320.0764 50 N-gluconyl ethanolamine
phosphate

Urea cycle/amino group metabolism,
Arginine and Proline Metabolism;

Methionine and cysteine metabolism;

M + H 3 –0.02 608 Parietal Cortex, Hippocampus – right
and left hemisphere (cluster A and

B), Thalamus

323.0288 97 Cinnabarinic acid Tryptophan metabolism M + Na[1 + ] 5 0.01 1 Hippocampus - left hemisphere
(cluster B)

344.0957 70 Dihydroxy-benzoxazin glucoside Lysine metabolism M + H 4 –0.45 214 Posterior Thalamus, Hippocampus –
right and left hemisphere (cluster B)

385.1303 73 S-adenosylhomocysteine Lysine metabolism; Urea cycle/amino
group metabolism; Histidine

metabolism; Glycine, serine, alanine,
and threonine metabolism

M + H 1 0.27 1 Posterior Thalamus

aMetabolite extraction retention time in seconds.
bThe level of confidence in each metabolite annotation per Schymanski et al. (2014): 1, lab confirmed structure by reference standards; 3, tentative candidate via a high
confident computational match to human metabolome database; 4, unequivocal molecular formula via a medium confidence computational match; 5, exact mass of
interest via a low confidence computational match; computational matches made by xmsAnnotator (Uppal et al., 2017).
cLog2 fold change – positive numbers mean higher levels found in MCI cases vs. controls, negative numbers mean lower levels found MCI cases vs. controls.
dThe number of network links with imaging voxels at Pearson’s r ≥ |0.271|.

hippocampus, thalamus, and parietal cortex to be associated with
dysregulated urea cycle and amino acid metabolic pathways in
CSF. Since gray matter atrophy in those regions is an early marker
for MCI and AD our study indicates that dysregulated nitrogen
excretion and amino acid metabolism may play an important

role in early neurocognitive decline. While MRI imaging and,
to a lesser extent, metabolomics have been previously studied in
MCI and AD, a multiomics analysis of these large data sources
has provided novel insight to help guide future biomarker and
therapeutic research.
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FIGURE 3 | A scatter plot of the average correlation, as estimated by xMWAS, between MRI imaging voxels and 17 amino acid/urea cycle metabolites found via
metabolic pathway analysis that met the xMWAS parameter thresholds (r > | 0.271| with a P-value < 0.05) in the training set. The x-axis is the average correlation in
the training set and the y-axis is the average correlation in the validation set. Three metabolites, indoleacetic acid, 5-hydroxyindoleacetate, and
S-adenosylhomocysteine from Table 3 did not meet the xMWAS parameter thresholds in the training set and were thus not included.

The hippocampus and surrounding regions are vulnerable
to neurodegeneration in the pathology of cognitive decline
(Ries et al., 2008; Tabatabaei-Jafari et al., 2015; Schröder and
Pantel, 2016; Yi et al., 2016). Prior studies have shown gray
matter atrophy in the hippocampus, as measured by voxel-based
MRI, to be a discriminating biomarker of the progression from
normal cognition to MCI to AD (Klöppel et al., 2008; Cuingnet
et al., 2011; Retico et al., 2015). Our whole-brain voxel-wise
analysis reinforces the importance of gray matter loss in the
hippocampal region as a marker of MCI but suggests additional
loss in the thalamus, orbitofrontal cortex and visual cortex may
also be relevant.

We believe our study is the first to comprehensively integrate
and analyze untargeted CSF metabolomics with structural MRI
brain imaging data, thus complicating the task of comparing our
results to prior studies. Further complicating the matter is that
untargeted metabolomics is methodologically and analytically
different from targeted metabolomics, which is a more common
method (Trushina and Mielke, 2014). In a recent untargeted

metabolomics study of CSF in MCI cases and cognitively
normal controls that did not use MRI imaging, Trushina et al.
(2013) reported dysregulation of metabolic pathways that we
did not observe, such as the TCA cycle, steroid hormones,
and neurotransmitters, but also the urea cycle and many
amino acids that we did observed. Where our findings differ
from Trushina et al. (2013) may demonstrate the novelty and
utility of our multiomics approach. Dysregulated urea cycle
and amino acid metabolism may be biologically relevant to
hippocampal and thalamus gray matter neurodegeneration,
while dysregulated metabolism in other pathways (e.g., sugars,
hormones, nucleotides, etc.) may relate to other aspects of
neurocognitive cognitive decline.

Seiler (2002) suggested ammonia as a contributing factor to
the pathogenesis and progression of AD. Ammonia (NH3) is
a nitrogen-based compound that is created by the metabolism
of amino acids. Because it is neurotoxic (Enns, 2008), excess
nitrogen and ammonia in brain tissue are reconstituted and
transported to the liver to be excreted via the urea cycle.
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Seiler theorized that high levels of ammonia to be a cause of
neurodegeneration since he noted that ammonia metabolism is
impaired in AD patients, and consequently ammonia levels are
elevated. The findings in our study support Seiler’s hypothesis.
Targeted metabolomics studies have also found an association
between urea cycle and amino acid metabolites and AD
(González-Domínguez et al., 2015; Kori et al., 2016; Chouraki
et al., 2017). One theory is that increased dependence on cerebral
amino acid metabolism is the result from impaired glucose energy
metabolism, an early precursor to AD (Griffin and Bradshaw,
2017). In otherwise healthy individuals, the excess ammonia
and nitrogen stemming from amino acid metabolism may be
managed. However, in MCI and prodromal AD patients, urea
cycle and amino acid metabolic dysregulation may accelerate a
cascade of neuronal changes that further the progression of AD.

A primary goal of a large-data multiomics analysis such as
ours, is to gain insight not attainable by either dataset alone.
For example, a prior CSF metabolomics study conducted by our
research group that had an overlapping study population but
did not use MRI brain imaging showed slightly different results.
In that study, we found sugar metabolism (i.e., N-glycan, sialic
acid, aminosugars, and galactose) as the primary dysregulated
metabolic pathway distinguishing MCI from cognitively normal
subjects; the urea cycle and some amino acid pathways were
statistically significantly dysregulated but weaker in magnitude
(Hajjar et al., 2020). Though abnormal cerebral glucose
metabolism is critically important to AD pathogenesis (Chen
and Zhong, 2013), the integration of structural MRI data in
this analysis reveals the importance of the urea cycle and
amino acid metabolism specifically to neurodegeneration in the
hippocampus and thalamus.

Key limitations to this study include the cross-sectional
design, the incomplete identification of metabolic features and
pathways common to untargeted metabolomics analyses, and
the approach which lacked covariate adjustment due to the
multivariate integration programs. The cross-sectional design
precludes a temporal relation thus we do not know whether
urea cycle and amino acid metabolism may be a potential
cause or just a biomarker of neurodegeneration. Longitudinal
studies will be needed to tease apart this issue. Moreover,
the difficulty of metabolite identification using an untargeted
approach is a current limitation of the field (Uppal et al.,
2016). To compensate, we reported the confidence level for
our annotated metabolites using confirmed authentic standards
(Liu et al., 2020) and state-of-the-art computational approaches
matched to reference databases (Uppal et al., 2017). Additionally,
metabolic pathway analysis is dependent upon complete and
correct knowledge of metabolic pathways. Many known and
unknown metabolites have not yet been mapped to referent
metabolic pathways. Another major limitation is our reliance
on multivariate techniques that do not allow for traditional
covariate adjustment (e.g., age and sex differences in gray matter).
The multivariate techniques such as PLS-DA and xMWAS are
very good when the number of predictor variables outweigh
the sample size (p > n) and when the predictors are highly
correlated, the scenario we have here. However, these methods
cannot adjust for confounders and this is a general limitation

of the multiomics field. We did explore the possible impact of
confounding by age and sex by examining their associations with
the CSF metabolites in the cognitively normal controls. We found
little to no overlap in metabolic pathways of those results and
our primary results leading us to believe that confounding by
age and sex may be underwhelming. Lastly, our approach was
completely data-driven and relied on making multiple statistical
comparisons, and thus our results should be replicated. Our
sensitivity analysis suggested that our primary metabolic pathway
findings were robust in our dataset, but independent validation is
needed. Also, if critical brain regions were omitted, the analyses
may not reveal the most appropriate metabolic pathways. Future
research may consider specifying brain regions a priori. However,
many of our results reflect similar metabolic pathways found
in other studies, and thus provides additional support that the
metabolite associations with brain regions are likely to be relevant
to cognition. Despite these limitations, we feel our analysis found
novel links to disrupted metabolic activity associated with specific
areas of the human MCI brain, findings that would be difficult to
reach using a non-multiomics approach.

In summary, a multiomics analysis of structural MRI brain
imaging and CSF metabolomics revealed novel links between
the urea cycle and amino acid metabolism and neurocognitive
decline in MCI-susceptible areas of the brain. Similar approaches
that integrate ‘big-data’ sources may offer novel insight into
the pathogenic systems of MCI and other neurodegenerative
diseases. The emerging field of imaging genomics – integrating
brain imaging with high-resolution genome-wide data – is one
approach that has helped narrow the study of candidate genes
that may affect and predict early AD (Thompson et al., 2010;
Zhang et al., 2014). Paired with other large data methods such
as imaging, genetics, or the microbiome, metabolomics may
continue to play an integral role in the future understanding,
treatment, and prevention of cognitive decline.
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