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Breast cancer is one of the most common cancers. Although the present molecular
classification improves the treatment effect and prognosis of breast cancer, the
heterogeneity of the molecular subtype remains very complex, and the applicability and
effectiveness of treatment methods are still limited leading to poorer patient prognosis than
expected. Further identification of more refined molecular typing based on gene
expression profile will yield better understanding of the heterogeneity, improving
treatment effects and prolonging prognosis of patients. Here, we downloaded the
mRNA expression profiles and corresponding clinical data of patients with breast
cancer from public databases and performed typical molecular typing using PAM50
(Prediction Analysis of Microarray 50) method. Comparative analyses were performed to
screen the common and specific differentially expressed genes (DEGs) between cancer
and corresponding para-cancerous tissues in each breast cancer subtype. The GO and
KEGG analyses of the DEGs were performed to enrich the common and specific functional
progress and signaling pathway involved in breast cancer subtypes. A total of 38 key
common and specific DEGs were identified and selected based on the validated results,
GO/KEGG enrichments, and the priority of expression, including four common DEGs and
34 specific DEGs in different subtypes. The prognostic value of these key common and
specific DEGs was further analyzed to obtain useful potential markers in clinic. Finally, the
potential roles and the specific prognostic values of the common and specific DEGs were
speculated and summarized in total breast cancer and different subtype breast cancer
based on the results of these analyses. The findings of our study provide the basis of more
refinedmolecular typing of breast cancer, potential new therapeutic targets and prognostic
markers for different breast cancer subtypes
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INTRODUCTION

Breast cancer is one of the few tumor types with good molecular
classification and targeted therapies (Barry et al., 2010; Prat et al.,
2015). However, due to its complex heterogeneity, the current
treatment effects and patient’s prognosis are still not very
satisfactory. An increasing number of researchers have begun
to focus on the subdivision of breast cancer subtypes for
individualizing treatment, which may be the main means of
fundamentally improving treatment effects and prolonging
patient prognosis. The rapid development of molecular biology
has prompted the shift of breast cancer from pure anatomical and
pathological classification to new classification and fine
classification based on molecular standards. Breast cancer can
be divided into molecular subtypes with unique clinical features
and identifiable gene expression features (Prat et al., 2015).
PAM50 (Prediction Analysis of Microarray 50) gene signatures
are a second-generation multi-gene expression assay used for
quantifying the mRNA expression of 50 genes, including ER, PR,
andHer2. It is currently recognized in the industry as a molecular
subtype classification method for breast cancer. The PAM50 gene
signature method was proposed by Parker et al. to evolve from the
initial intrinsic subtype, providing 50 gene signatures for subtype
assignment (Parker et al., 2009). According to the PAM50
method, breast cancer can be divided into the following five
molecular subtypes: Basal-like, LumA, LumB, Her2, and Normal-
like (Perou et al., 2000). At present, comprehensive treatment
based on molecular typing, including surgery, radiotherapy,
chemotherapy, endocrine therapy and targeted therapy, can
significantly improve the therapeutic effect, including the
overall survival (OS) rate and progression-free survival rate
(Edenfield et al., 2017). Although the PAM50 classification
improves the treatment effect and prognosis of breast cancer,
the problems remain. As the heterogeneity of the same molecular
subtype remains very complex, the applicability and effectiveness
of treatment methods are still very limited, resulting in poorer
patient prognosis than expected (Sotiriou et al., 2003). Moreover,
the differences in the molecular characteristics and pathways
among patients with Basal-like, Her2, LumA, LumB, and
Normal-like breast cancer subtypes are still not well understood.

To choose more suitable treatment methods for different
breast cancer molecular subtypes, better and deeper
understanding of the similarities and differences of the
patients’ biological and molecular pathways are required. The
exploration of abnormally expressed genes during breast cancer
development is essential for in-depth understanding of the
biological functions, molecular pathways, and possible
mechanisms involved. However, the different genetic
backgrounds and living environments of different populations
complicate the identification of the common tumor-related genes
associated with breast cancer. Transcriptome sequencing and
bioinformatics analysis can evaluate the whole cell tissue
process effectively (Martin and Wang, 2011). Whole-
transcriptome analysis can reveal differentially expressed genes
(DEGs) in relevant tissues (e.g., breast cancer tumor tissues and
paracancerous breast tissues), elucidate their cellular mechanisms
and development processes, and can yield potentially more

valuable therapeutic, diagnostic, and prognostic targets (Sørlie
et al., 2001).

Elucidating the potential biological and molecular pathways of
patients with different breast cancer molecular subtypes is
necessary for selecting effective treatment modalities and for
improving treatment efficacy and patient’s prognosis. The
present study was aimed to identify the DEGs between the
cancer tissues and paracancerous tissues (cancer-adjacent
normal tissue) from the different breast cancer subtypes,
screen key common and specific differential molecules and
signaling pathways, and analyze the clinical application value
of these key molecules. At last, the possibility of these key
differential molecules as potential diagnostic and prognostic
markers and novel therapeutic targets for different breast
cancer subtypes was evaluated through comprehensive analyses.

MATERIALS AND METHODS

Data Download
The Cancer Genome Atlas (TCGA) breast cancer (BRCA-
RNAseq) data were downloaded from the UCSC Xena
database, and included 1,091 cancer tissue samples. Using the
genefu software package of R 4.0 (Gendoo et al., 2016), the
samples underwent molecular classification using the PAM50
method. The Basal-like (N � 190), Her2 (N � 82), LumA (N �
564), LumB (N � 215), and Normal-like (N � 40) molecular
subtypes were compared, and common and specific DEGs in the
subtypes were screened. Similarly, METABRIC data were
downloaded, and the Basal-like (N � 199), Her2 (N � 220),
LumA (N � 680), LumB (N � 461), and Normal-like (N � 140)
subtypes were compared according to PAM50 subtype
classification annotated by METABRIC data. The subtypes’
common and specific DEGs were screened, and the results of
screening with TCGA analysis data were mutually verified to
obtain the candidate common and specific DEGs.

DEG Screening Analysis
Cancer samples from patients with the five breast cancer subtypes
were matched to the corresponding paracancerous sample data;
genes without corresponding gene names were deleted, and
data <0 were corrected. DEGs were determined using the
limma package in R 4.0. The screening criteria were | log two
FC (fold change) | >1.5 and p < 0.05; gene_ID was converted into
ENTREZID and gene symbol, and genes without the
corresponding ENTREZID and gene symbols were discarded
to obtain their respective DEGs. Comparing the subtypes DEG
profiles, a Venn diagram was used to determine the common and
specific DEGs among the subtypes. The Venn diagram was
created using jvenn (Bardou et al., 2014). The expression
trends of the subtypes’ shared and specific DEGs were verified
using METABRIC data and Breast Cancer Gene-Expression
Miner v4.5 (bc-GenExMiner v4.5, http://bcgenex.
centregauducheau.fr/BC-GEM/GEM-requete.php). Limma
package has a command “Normalize” in built, and the
RNAseq-counts data was normalized before the difference
analyses.
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Functional Analysis of DEGs
Gene ontology (GO) andKyoto Encyclopedia ofGenes andGenomes
(KEGG) pathway enrichment of DEGs was performed by the
clusterProfiler package (Yu et al., 2012) and GOplot package in R
4.0, and the conversion results were visualized. When p < 0.05, the
GO and KEGG pathway was identified as significantly enriched. The
top 10 GO terms and KEGG enrichment pathways were mapped
using the ggplot2 packages in R 4.0.

Survival Analysis
Survival analysis was performed by the Kaplan-Meier plotter online
tool (www.kmplot.com) (Györffy et al., 2010).The cut-off value was
set to select the best cut-off value automatically, and all data sets
within the website were selected for analysis according to the Basal-
like, Her2, LumA, and LumB subtypes. As the Kaplan-Meier plotter
does not have Normal-like subtype grouping data, we screened
patients with the Normal-like subtype and the corresponding
prognostic data from TCGA using GraphPad Prism 5.

RESULTS

DEG Screening
Using the PAM50method, the breast cancer samples (1,091 cases) in
TCGA database were divided into five molecular subtypes: Basal-like

(190 cases), Her2 (73 cases), LumA (564 cases), LumB (215 cases) and
Normal-like (40 cases). A comparative analysis of gene expression
was performed between cancer tissues and corresponding
paracancerous tissues in all breast cancer and different subtypes’
breast cancer, and the significantly differentially expressed genes were
screened out. Compared with the corresponding paracancerous
tissues, 131 high-expression genes and 113 low-expression genes
were screened out in the Basal-like subtype, 142 high-expression
genes and 107 low-expression genes were screened out in the Her2
subtype, 41 high-expression genes and eight low-expression genes
were screened out in the LumA subtype, 120 high-expression genes
and 143 low-expression genes were screened out in the LumB
subtype, and 19 high-expression genes and no significant low-
expression genes were screened out in the Normal-like subtype,
whereas 48 high-expression genes and 29 low-expression genes were
screened out in all breast cancers (Figure 1). The data of comparative
analysis suggest that the changes in the molecular characteristics in
the breast cancer subtypes may be quite different from that in breast
cancer as a whole.

To analyze the common and specific DEGs in the five
subtypes, we performed the intersection on the Venn diagram.
There were four common DEGs in the five subtypes. There were
80 specific DEGs for the basal-like subtype, 55 specific DEGs for
the Her2 subtype, five specific DEGs for the LumA subtype, 56
specific DEGs for the LumB subtype, and three specific DEGs for

FIGURE1 | Volcanomap of DEGs between cancer tissues and paracancerous tissues in breast cancer molecular subtypes and all breast cancer. (A)Basal-like; (B)
Her2; (C) LumA; (D) LumB; (E) Normal-like; (F) BRCA (all breast cancer). Red dots denote upregulated genes screened based on log two FC > 1.5 (p < 0.05); blue dots
denote downregulated genes screened based on log two FC < -1.5 (p < 0.05); black dots denote genes with no significant difference (p < 0.05). p < 0.05, FC, fold
change.
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the Normal-like subtype (Table 1; Figure 2). Supplementary
Table S1 shows the details of the common DEGs in the five
subtypes and the specific DEGs for each subtype.

GO Analysis of the DEGs
The functions of the DEGs in all breast cancers and each subtype
breast cancer were predicted using GO analysis. Figure 3 shows the
top 10 enriched GO entries of all breast cancers and each subtype
breast cancer, and the detailed results of all enriched GO entries are
shown in Supplementary Tables S2–S7. Comparative analysis of the
subtypes’ GO entries showed that a total of 123 GO entries were
enriched for the DEGs in the basal-like subtype, and 61 of these GO
entries were specifically enriched which were mainly concentrated in
“mitotic,” “cell cycle,” and “oxidoreductase activity.”A total of 39 GO
entries were enriched for the DEGs in the Her2 subtype, and 10 of
these GO entries were specifically enriched which were mainly
concentrated in “nucleosome,” “cell differentiation” and “RAGE
receptor binding.” A total of six GO entries were enriched for the
DEGs in the LumA subtype, whereas there was no specifically
enriched GO entry. A total of 50 GO entries were enriched for
the DEGs in the LumB subtype, and 13 of these 50 GO entries were
specifically enriched that were mainly concentrated in “kidney
development” and “chloride channel complex.” A total of 86 GO
entries were enriched for the DEGs in the normal-like subtype, and
41 of these GO entries were specifically enriched that were mainly
concentrated in “mitotic DNA damage checkpoint,” and “DNA
damage response.”

There were no co-enriched GO entries for the DEGs among the
five subtypes. There were 13 co-enriched GO entries for the DEGs

among the Basal-like, Her2, LumB andNormal-like subtypes, mainly
at “chromosome” and “mitosis.” There was one GO entry for co-
enriched of the DEGs in Basal-like, Her2 and LumA subtypes:
“collagen fibril organization.” There were four co-enriched GO
entries for the DEGs in the Basal-like, Her2 and LumB subtypes,
mainly at “CENP-A containing nucleosome assembly,” “protein
localization to chromosome” and “CENP-A containing chromatin
organization.” There were two co-enriched GO entries for the DEGs
in the LumAandLumB subtypes,mainly at “multicellular organismal
movement” and “musculoskeletal movement.”

KEGG Pathway Analysis of the DEGs
The detailed KEGG pathway enrichment results are shown in
Supplementary Tables S8–S13, and the top 10 KEGG pathways
enriched of all breast cancer and each subtype were represented in
Figure 4. In the Basal-like subtype, the DEGs were enriched in 22
KEGG pathways, and eight of these pathways were specifically
enriched mainly focusing on “ubiquinone and other terpenoid-
quinone biosynthesis,” “maturation” and “amino acid
metabolism.” In the Her2 subtype, the DEGs were enriched in 16
KEGG pathways, and four of these 16 pathways were specifically
enriched mainly focusing on “bladder cancer” and “amino acid
metabolism.” In the LumA subtype, the DEGs were enriched in
11 KEGG pathways, and five of these pathways were specifically
enriched mainly focusing on “epithelial cell signaling in infection,”
“one carbon pool by folate,” “phagosome” and “protein interaction
with cytokine.” In the LumB subtype, the DEGs were enriched in 24
KEGG pathways, and 10 of these 24 pathways were specifically
enriched mainly focusing on “chemical carcinogenesis,” “insulin
resistance” and “drug metabolism.”

There was no pathway for co-enrichment of the DEGs in the five
subtypes, but there was one pathway for co-enrichment of the DEGs
in the Basal-like, Her2, LumA, and LumB subtypes: “neuroactive
ligand-receptor interaction.” There was also one pathway for co-
enrichment of the DEGs in the basal-like, Her2 and LumA subtypes:
“rheumatoid arthritis.”There were six pathways for co-enrichment of
the DEGs in the Basal-like, Her2 and LumB subtypes focusing on
“alcoholism,” “ABC transporters,” “PPAR signaling pathway,”

TABLE 1 | Number of common and specific DEGs in the breast cancer subtypes.

PAM50
subtype

Common Basal-
like

Her2 LumA LumB Normal-
like

UP 4 25 34 5 9 3
DOWN 0 55 21 0 47 0

FIGURE 2 | Venn diagram of common and specific DEGs in different breast cancer subtypes. (A) Upregulated DEGs; (B) Downregulated DEGs.
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FIGURE 3 |GO analysis of the DEGs. The chord plot displays the relationship between DEG and GO terms, representing the names of DEGs in the top enriched 10
GO terms. (A) Basal-like; (B) Her2; (C) LumA; (D) LumB; (E) Normal-like; (F) BRCA (all breast cancer). GO:0007059: chromosome segregation; GO:0000070: mitotic
sister chromatid segregation; GO:0000819: sister chromatid segregation; GO:0098813: nuclear chromosome segregation; GO:0051321: meiotic cell cycle; GO:
0008608: attachment of spindle microtubules to kinetochore; GO:1901987: regulation of cell cycle phase transition; GO:1902850: microtubule cytoskeleton
organization involved in mitosis; GO:0090307: mitotic spindle assembly; GO:0007052: mitotic spindle organization; GO:0030198: ECM organization; GO:0043062:
extracellular structure organization; GO:0071459: protein localization to chromosome, centromeric region; GO:0046888: negative regulation of hormone secretion; GO:
0001655: urogenital system development; GO:0072001: renal system development: GO:0034080: CENP-A containing nucleosome assembly; GO:0035850: epithelial
cell differentiation involved in kidney development; GO:0030199: collagen fibril organization; GO:0030574: collagen catabolic process; GO:0050879: multicellular
organismal movement; GO:0050881: musculoskeletal movement; GO:0051302: regulation of cell division; GO:0072073: kidney epithelium development; GO:0051782:
negative regulation of cell division; GO:1902806: regulation of cell cycle G1/S phase transition; GO:0044843: cell cycle G1/S phase transition; GO:0090068: positive
regulation of cell; GO:0045787: positive regulation of cell cycle; GO:1901990: regulation of mitotic cell cycle phase transition; GO:0042383: sarcolemma.
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“regulation of lipolysis in adipocytes,” “oocyte meiosis” and “systemic
lupus erythematosus.” There was one pathway for co-enrichment of
the DEGs in the basal-like, LumA and LumB subtypes: “protein
digestion and absorption.” There were two pathways for co-
enrichment of the DEGs in the Her2, LumA and LumB subtypes:
“nicotine addiction” and “IL-17 signaling pathway.” There was one
pathway for co-enrichment of the DEGs in the basal-like and Her2
subtypes: “cysteine and methionine metabolism.” There was one
pathway for co-enrichment of the DEGs in the basal-like and LumA
subtypes: “cAMP signaling pathway.” There were three pathways for
co-enrichment of theDEGs in the basal-like and LumB subtypes: “cell
cycle,” “malaria” and “African trypanosomiasis.” There was one
pathway for co-enrichment of the DEGs in the Her2 and LumB
subtypes: “cytokine-cytokine receptor interaction.”

Screening and Validation of the Key
Common and Specific Genes From the
DEGs
To analyze the crucial common and specific genes in the subtypes,
we first validated the potential DEGs using the METABRIC

database and bc-GenExMiner v4.5. The DEGs with consistent
results in the different databases were retained. After verification,
four key common DEGs among the subtypes were identified:
NEIL3, CDC25C, NEK2 and HCN2, and their expression were
significantly upregulated in all five subtypes. The specific DEGs
were 61 genes (21 upregulated and 40 downregulated) for Basal-
like subtype, 34 genes (19 upregulated and 15 downregulated) for
Her2 subtype, two genes (both upregulated) for LumA subtype,
36 genes (3 upregulated and 33 downregulated) for LumB
subtype, and two genes (both upregulated) for Normal-like
subtype (Table 2). To facilitate further analysis, we further
selected the key specific DEGs for each subtype. As just a few
validated DEGs were found in the LumA and Normal-like
subtypes, these specific DEGs were considered to be the key
genes by default. There were many specific DEGs in the Basal-
like, Her2 and LumB subtypes, and the top 10 were selected as the
key specific DEG for each subtype by combining the specific GO
and KEGG enrichment results and the priority of the changed
expression. The selected key specific genes were MISP and
SMIM22 for LumA subtype, IDH1-AS1 and TMEM233 for
Normal-like subtype, MCM10, HPDL, SOX11, PLK1, BUB1,

FIGURE 4 | KEGG analysis of the DEGs. (A) Basal-like; (B) Her2; (C) LumA; (D) LumB; (E) Normal-like; (F) BRCA (all breast cancer).
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DYNLRB2, OGN, COL4A6, AGTR1, and ADRB2 for Basal-like
subtype, SPOCD1, IL21R, JPH3, SAMD11, IFI30, ATRNL1,
TNNI3K, PI15, FAM189A2, and MYZAP for Her2 subtype,
and CNTD2, NEURL1, SYCE3, STAC2, PPP1R1A, HRCT1,
AKR1C2, IL6, FREM1, and HOXA4 for LumB subtype.

To validate the accuracy of our expression analysis results, we
downloaded some independent BRCA (non-TCGA) data from
the GEO database and classified the samples of these BRCA
database into different subtypes according to PMA50, and finally
selected the GSE65216 dataset as an independent validation to
validate the key common and specific DEGs because it is the
largest sample size of different subtypes. The validation data show
that the selected key specific DEGs are highly consistent with
TCGA data, and the consistency is 100% for LumA subtype, 100%
for Basal-like subtype, 60% for Her2 subtype (the consistent
DEGs are SAMD11, IFI30, ATRNL1, PI15, FAM189A2, and
MYZAP), 60% for LumB subtype (the consistent DEGs are
STAC2, PPP1R1A, HRCT1, AKR1C2, FREM1, and HOXA4),
whereas the common DEGs seem to be very different in the
independent BRCA sanples of GSE65216 database (Table 3;
Supplementary Figures S1–S4). As no samples of Normal-like
subtype were found in the GSE65216 dataset, the selected genes
were not validated in Normal-like subtypes.

Prognostic Value of the Selected Key
Common and Specific DEGs
To determine the importance and clinical value of the selected key
common and specific DEGs, we examined the relationship
between those genes and the recurrence-free survival (RFS)
and OS of patients with breast cancer by Kaplan-Meier
analysis. For the four key common DEGs, high expression of
NEIL3 predicted high RFS (p < 0.05) and OS (p < 0.05), high
expression ofNEK2 predicted low RFS (p < 0.05) but high OS (p <
0.05), and low expression of CDC25C only predicted low OS (p <
0.05) in the Basal-like subtype (Table 4; Supplementary Figures

S5A). High expression of NEIL3 predicted high RFS (p < 0.05) in
the Her2 subtype (Table 4; Supplementary Figure S5B). Low
expression of NEIL3, CDC25C andNEK2 predicted high RFS (p <
0.05) and OS (p < 0.05), respectively, while low expression of
HCN2 only predicted high OS (p < 0.05) in the LumA subtype
(Table 4; Supplementary Figure S5C). Low expression of
CDC25C predicted high OS (p < 0.05), high expression of
NEIL3 and HCN2 predicted high RFS (p < 0.05) in the LumB
subtype (Table 4; Supplementary Figure S5D). Low expression
of NEIL3 predicted high OS (p < 0.05), while low expression of
NEK2 predicted high RFS (p < 0.05) and OS (p < 0.05)
respectively, while in the LumB subtype (Table 4;
Supplementary Figure S5D). In all breast cancer, low
expression of NEIL3, CDC25C and NEK2 predicted high RFS
(p < 0.05) respectively, while high expression of HCN2 predicted
high RFS (p < 0.05), and low expression of NEIL3, CDC25C,
NEK2 and HCN2 predicted high OS respectively (p < 0.05)
(Table 4; Supplementary Figure S5E).

For the key specific DEGs in the LumA subtype, SMIM22 was
significantly overexpressed, but the high expression of SMIM22
was not associated with prognosis (OS and RFS) of patients. As
the Kaplan-Meier plotter does not contain information on the
MISP gene, the prognostic analysis of MISP was not performed.

For the key specific DEGs in Normal-like subtype, the
prognostic analysis of IDH1-AS1 and TMEM233 was
performed using data from TCGA database, which was not
meaningful due to the small number of breast cancer samples
from this subtype in TCGA database. Therefore, this part of the
results is not shown.

For the key specific DEGs in the Basal-like subtype, low SOX11
mRNA expression predicted high RFS and OS (p < 0.05) (Table 5;
Supplementary Figure S6). High expression of BUB1, OGN,
COL4A6, AGTR1, and ADRB2 mRNA predicted high RFS
respectively (p <0.05), and high expression of BUB1 and PLK1
mRNA predicted high OS respectively (p < 0.05) (Table 5;
Supplementary Figure S6). The expression of MCM10, HPDL,

TABLE 2 | Genes with consistent expression with TCGA screening results were verified via the METABRIC database and BC-GenExMiner v4.5.

PAM50 subtype Up gene name Down gene name

Basal-Her2-LumA-
LumB-normal-like

NEIL3/CDC25C/NEK2/HCN2 —

Basal SLCO5A1/GPR19/LCTL/MCM10/HPDL/SOX11/RAD54L/CDCA2/
MSLN/GTSE1/NDC80/BUB1/COL22A1/KIF2C/PLK1/FOXM1/
CDCA3/NCAPG/AUNIP/MIR4292/CCNE1

LINC00504/TFF3/CYP4B1/TTC36/DYNLRB2/OGN/ACSM5/MS4A2/
MIR4697HG/C16orf89/PTPRT/MYRIP/CAPN8/AGTR1/PFKFB1/
PGR/COL4A6/ABCC11/DHRS2/NDNF/PLIN5/FER1L5/AZGP1P1/
GRIK3/NEK10/RANBP3L/FAM198B-AS1/GFRA1/SOWAHA/
CLEC3B/LRRN3/FAM162B/AK5/IQUB/SEMA3E/ADRB2/GLDN/
DACH1/LIPE/LOC105371730

Her2 LOC105372233/SPOCD1/IL21R/JPH3/SAMD11/IFI30/JSRP1/
ANGPTL6/IL4I1/VSTM2L/MMP3/HES6/S100A8/ASCL2/TCHH/
NXPH4/LBX2/LOC105371849/SIX2

LINC00173/ATRNL1/TNNI3K/PI15/FAM189A2/LOC100505635/
MYZAP/SLC4A4/LRP2/NAT8L/OXTR/SLC25A27/FGF14-AS2/
LINC00639/TRMT9B

LumA MISP/SMIM22 —

LumB CNTD2/NEURL1/SYCE3 STAC2/PPP1R1A/HRCT1/AKR1C2/IL6/FREM1/HOXA4/TMOD1/
PTGS2/PTGS2/FAM107A/IL33/TRIM29/TMEM220-AS1/PROX1/
GFRA2/SLC28A3/HCAR2/PPARGC1A/GNG12-AS1/TDRD10/SOX8/
TP63/TTYH1/PTH2R/SLC2A12/KCNA6/PROM1/KRT17/C2orf88/
PAMR1/PPP1R14A/BCL11A

Normal-like IDH1-AS1/TMEM233 —

(Genes annotated in yellow are those for which validation results were discordant or no data were available in the METABRIC database and BC genexminer v4.5).
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and DYNLRB2 had no significant correlation with RFS and OS of
patients (p > 0.05).

For the key specific DEGs in the Her2 subtype, high expression
of PI15 and FAM189A2 mRNA predicted high RFS respectively
(p <0.05) (Table 5; Supplementary Figure S7A). Low expression

of MYZAP mRNA predicted high OS (p < 0.05), and high
expression of IL21R and IFI30 mRNA predicted high RFS and
OS respectively (p <0.05) (Table 5; Supplementary Figure S7A).
The expression of SPOCD1, JPH3, SAMD11, ATRNL1, and
TNNI3K had no significant correlation with RFS and OS of
patients (p > 0.05).

For the key specific DEGs in the LumB subtype, high
expression of STAC2 and FREM1 predicted high RFS and OS
respectively (p <0.05, Table 5; Supplementary Figure S7B). High
expression of CNTD2, NEURL1, IL6, and HOXA4 predicted high
RFS respectively (p <0.05), and low expression of AKR1C2
predicted high OS (p < 0.05) (Table 5; Supplementary
Figures S7B). The expression of SYCE3, PPP1R1A, and
HRCT1 had no significant correlation with RFS and OS of
patients (p >0.05).

In addition, the prognostic value of the selected key common
and specific DEGs was also analyzed in all breast cancer (BRCA)
and shown in Table 4 and Table 5.

DISCUSSION

Accurate disease diagnosis, prognostic evaluation, and effective
treatment are effective methods for reducing breast cancer
mortality. Identification of the molecular subtypes and the
molecular characteristics predicted by the subtypes through
gene expression profiling can yield better understanding of the
heterogeneity of breast cancer, enable the development of
targeted treatment methods, and ultimately improve survival
time. In the present study, we analyzed the mRNA expression

TABLE 4 | Prognostic value of the key common DEGs in total and different
subtype breast cancers.

Basal RFS OS

Gene HR (95%CI for HR) P HR (95%CI for HR) P

NEIL3 0.68 (0.53–0.88) 0.003 0.57 (0.34–0.93) 0.022
CDC25C 0.91 (0.7–1.17) 0.45 0.5 (0.3–0.83) 0.0063
NEK2 1.35 (1.03–1.79) 0.031 0.55 (0.34–0.9) 0.016
HCN2 0.77 (0.58–1.03) 0.074 1.36 (0.83–2.23) 0.23

HER2 RFS OS
NEIL3 0.59 (0.4–0.86) 0.006 1.38 (0.71–2.7) 0.34
CDC25C 0.7 (0.47–1.04) 0.078 0.56 (0.26–1.23) 0.14
NEK2 1.34 (0.91–1.97) 0.13 0.55 (0.23–1.32) 0.17
HCN2 1.54 (0.98–2.42) 0.057 1.94 (0.91–4.11) 0.079

Lum A RFS OS
NEIL3 1.29 (1.08–1.54) 0.0041 1.79 (1.24–2.59) 0.0017
CDC25C 1.64 (1.37–1.96) 6e-08 2 (1.4–2.85) 9.2e-05
NEK2 2.2 (1.85–2.6) <1e-16 2.5 (1.75–3.57) 1.6e-07
HCN2 0.86 (0.72–1.02) 0.09 1.5 (1.03–2.19) 0.034

Lum B RFS OS
NEIL3 0.81 (0.67–0.98) 0.03 1.73 (1.11–2.69) 0.014
CDC25C 1.19 (0.99–1.45) 0.068 1.49 (1.03–2.15) 0.035
NEK2 1.71 (1.37–2.14) 1.7e-06 1.86 (1.17–2.96) 0.0082
HCN2 0.74 (0.6–0.91) 0.0047 1.36 (0.94–1.97) 0.1

BRCA RFS OS
NEIL3 1.12 (1.07–1.38) 0.0022 1.63 (1.27–2.11) 0.00014
CDC25C 1.45 (1.3–1.61) 2.6e-11 1.54 (1.24–1.91) 8.9e-05
NEK2 1.91 (1.7–2.14) <1e-16 2.08 (1.62–2.67) 4.8e-09
HCN2 0.83 (0.74–0.94) 0.0033 1.39 (1.1–1.77) 0.0064

TABLE 3 | The key common and specific DEGs selected were verified in the
GSE65216 dataset.

Basal-like

Gene name TCGA GSE65216

NEIL3 Up No change
HCN2 Up Down
NEK2 Up Up
CDC25C Up Up
SOX11 Up Up
PLK1 Up Up
BUB1 Up Up
OGN Down Down
AGTR1 Down Down
COL4A6 Down Down
ADRB2 Down Down
DYNLRB2 Down Down
HPDL Up Up
MCM10 Up Up

Her2
Gene name TCGA GSE65216
NEIL3 Up Down
HCN2 Up Down
NEK2 Up No change
CDC25C Up Down
ATRNL1 Down Down
FAM189A2 Down Down
IFI30 Up Up
IL21R Up No change
JPH3 Up Down
MYZAP Down Down
PI15 Down Down
SAMD11 Up Up
SPOCD1 Up No change
TNNI3K Down No change

LumA
Gene name TCGA GSE65216
NEIL3 Up No change
HCN2 Up Down
NEK2 Up No change
CDC25C Up No change
MISP Up Up
SMIM2 Up Up

LumB
Gene name TCGA GSE65216
NEIL3 Up No change
HCN2 Up Down
NEK2 Up Down
CDC25C Up Down
AKR1C2 Down Down
CNTD2 Up No change
FREM1 Down Down
HOXA4 Down Down
HRCT1 Down Down
IL6 Down No change
NEURL1 Up Down
PPP1R1A Down Down
STAC2 Down Down
SYCE3 Up No change
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data of breast cancer samples in TCGA database and identified 38
key common and specific DEGs in the five breast cancer subtypes,
including the four overexpressed common DEGs and 34 specific
DEGs with 17 genes upregulated and 17 genes downregulated. In
order to better understand these DEGs, KEGG pathway and GO
function were analyzed. The results of functional enrichment
analysis showed that the significant DEGs were related to

pathways such as systemic development, amino acid
metabolism and cell cycle in BRCA. The regulation of the cell
cycle is a hot issue and important content in life science research.
Importantly, some DEGs have been validated and found to be
associated with prognosis, which indicates that these genes not
only control important pathways such as cellular processes, but
also have high value in clinical diagnosis.

TABLE 5 | Prognostic value of the key specific DEGs in Basal subtype, Her2 subtype, LumB subtype and total breast cancers.

Basal RFS OS
Gene HR (95% CI for HR) P HR (95% CI for HR) P
SOX11 1.65 (1.25–2.16) 0.00031 1.75 (1.03–2.98) 0.0235
PLK1 0.82 (0.63–1.08) 0.15 0.56 (0.34–0.91) 0.019
BUB1 0.69 (0.53–0.89) 0.0045 0.44 (0.26–0.73) 0.00096
OGN 0.67 (0.49–0.93) 0.015 1.48 (0.76–2.86) 0.24
COL4A6 0.73 (0.56–0.95) 0.018 1.6 (0.98–2.64) 0.06
AGTR1 0.63 (0.48–0.82) 0.00048 0.79 (0.48–1.29) 0.34
ADRB2 0.56 (0.43–0.74) 2e-05 1.49 (0.91–2.46) 0.11

BRCA RFS OS
Gene HR (95% CI for HR) P HR (95% CI for HR) P
SOX11 1.61 (1.44–1.8) <1e-16 1.71 (1.37–2.13) 1.2e-06
PLK1 1.51 (1.34–1.7) 4.5e-12 1.56 (1.25–1.94) 6.7e-05
BUB1 1.84 (1.64–2.06) <1e-16 2.12 (1.64–2.74) 4e-09
OGN 0.64 (0.55–0.75) 4e-08 0.57 (0.41–0.8) 0.0011
COL4A6 0.58 (0.52–0.65) <1e-16 0.71 (0.55–0.93) 0.012
AGTR1 0.61 (0.54–0.68) <1e-16 0.5 (0.39–0.65) 1.1e-07
ADRB2 0.59 (0.52–0.66) <1e-16 0.62 (0.49–0.77) 2.4e-05

HER2 RFS OS
Gene HR (95% CI for HR) P HR (95% CI for HR) P
IL21R 0.42 (0.26–0.69) 0.00044 0.34 (0.15–0.79) 0.0083
IFI30 0.61 (0.42–0.9) 0.012 0.47 (0.24–0.9) 0.019
PI15 0.57 (0.38–0.83) 0.0034 1.77 (0.91–3.45) 0.087
FAM189A2 0.45 (0.31–0.67) 4.1e-05 0.63 (0.33–1.21) 0.16
MYZAP 1.55 (0.88–2.73) 0.13 5.79 (1.37–24.6) 0.007

BRCA RFS OS
Gene HR (95% CI for HR) P HR (95% CI for HR) P
IL21R 0.67 (0.57–0.79) 1.4e-06 0.58 (0.39–0.86) 0.006
IFI30 1.37 (1.2–1.56) 1.8e-06 1.29 (1.04–1.6) 0.021
PI15 0.61 (0.55–0.68) <1e-16 0.7 (0.56–0.88) 0.002
FAM189A2 0.62 (0.56–0.7) 1.9e-15 0.71 (0r.56–0.89) 0.0026
MYZAP 0.64 (0.54–0.74) 7.8e-09 0.68 (0.47–0.97) 0.03

LumA RFS OS
Gene HR (95% CI for HR) P HR (95% CI for HR) P
SMIM22 1.3 (0.98–1.72) 0.073 1.44 (0.97–2.14) 0.067

BRCA RFS OS
Gene HR (95% CI for HR) P HR (95% CI for HR) P
SMIM22 0.86 (0.73–1) 0.054 1.44 (0.97–2.14) 0.067

LumB RFS OS
CNTD2 0.64 (0.53–0.78) 4.8e-06 0.85 (0.58–1.23) 0.38
NEURL 0.68 (0.56–0.83) 0.00011 1.26 (0.81–1.93) 0.3
STAC2 0.6 (0.43–0.85) 0.0039 0.39 (0.15–1.01) 0.044
AKR1C2 0.75 (0.54–1.04) 0.088 2.02 (1.03–3.98) 0.038
IL6 0.64 (0.53–0.78) 6.3e-06 0.79 (0.55–1.16) 0.23
FREM1 0.44 (0.32–0.61) 3.7e-07 0.42 (0.19–0.92) 0.026
HOXA4 0.71 (0.58–0.86) 0.00049 0.8 (0.55–1.17 0.25

BRCA RFS OS
CNTD2 0.6 (0.53–0.67) <1e-16 0.75 (0.59–0.94) 0.013
NEURL 0.62 (0.56–0.7) <1e-16 0.84 (0.67–1.04) 0.11
STAC2 0.85 (0.72–1) 0.055 1.47 (1.04–2.07) 0.027
AKR1C2 0.75 (0.64–0.89) 0.00074 1.59 (1.16–2.2) 0.004
IL6 0.77 (0.69–0.86) 3.3e-06 0.86 (0.69–1.07) 0.17
FREM1 0.42 (0.36–0.49) <1e-16 0.54 (0.38–0.78) 0.00068
HOXA4 0.64 (0.57–0.72) 2.4e-14 0.73 (0.58–0.91) 0.0055
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Endonuclease VIII-like 3 (NEIL3) is a DNA glycosylase
protein involved in oxidative and DNA interstrand crosslink
damage repair (Kazuya et al., 2016). NEIL3-overexpressing
tumors accumulate mutations and chromosomal variations.
NEIL3 may be a potential prognostic marker for high-risk
patients or an attractive therapeutic target for some cancers.
CDC25C (cell division cycle 25C) may be a potential target
for aspirin for inhibiting the proliferation of human breast
cancer cells, and its gene function is mainly enriched in cell
cycle and cell division (Zhu et al., 2019). NEK2 (never in mitosis
gene A-related kinase 2) promotes tumor development through
the Wnt signaling pathway, and may be a potential target for
cancer treatment (Cappello et al., 2014; Wen et al., 2016; Tang
et al., 2018). HCN2 (hyperpolarization-activated cyclic
nucleotide-gated 2) plays an important role in neuronal
excitability (Wu et al., 2018; Ramírez et al., 2018), whereas its
role in tumors is unclear. According to the existing literature,
except for NEK2 the expression and prognostic significance of the
NEIL3, CDC25C, and HCN2 genes are still unknown in breast
cancer. Here, we found that low expression of NEIL3, CDC25C,
andNEK2 predicted high RFS and OS respectively (p < 0.05), and
low expression ofHCN2 predicted high OS (p < 0.05) in all breast
cancer. These results suggest that NEIL3, CDC25C, and NEK2
may be involved in breast cancer recurrence. Further survival
analysis of the four common DEGs in each subtype revealed that
low expression of NEK2 in the Basal-like subtype was associated
with good RFS. Low expression of NEIL3, CDC25C, and NEK2 in
the LumA subtype was associated with good RFS respectively.
Low expression of NEK2 in the LumB subtype was associated
with good RFS. These analytical data suggest that NEK2 may be
involved in the recurrence of Basal-, LumA- and LumB-subtype
breast cancer, while NEIL3 and CDC25Cmay only be involved in
recurrence of LumA-subtype breast cancer. Functional studies are
required to further determine their roles the recurrence of breast
cancer in the future. In addition, to some extent these four key
common DEGs can also be used as prognostic markers for breast
cancer.

In the selected key specific DEGs for Basal-subtype breast
cancer, the altered expression of SOX11, PLK1, BUB1, OGN,
COL4A6, AGTR1, and ADRB2 were significantly correlated with
the prognostic survival of the patients. SOX11 is a key regulator of
proliferation and migration of Basal-subtype breast cancer cells,
and is associated with poor prognosis (Shepherd et al., 2016). Our
results show that SOX11 was specifically downregulated in Basal-
subtype breast cancer. SOX11 high expression in the Basal-like
subtype was associated with poor prognosis (RFS and OS), which
was consistent with the prognostic analysis results in all breast
cancer. These findings consistently suggest that SOX11 may play
a carcinogenic role in the pathogenesis and development of Basal-
subtype breast cancer. Further experimental studies are required
to determine its precise functions in breast cancer in the future.

PLK1 plays key roles in the mitotic regulation of triple-
negative breast cancer (TNBC) cells, and is associated with
better prognosis in wild-type p53 breast tumors (King et al.,
2012; de Cárcer et al., 2018; Ueda et al., 2019). Our results show
that PLK1 was specifically highly expressed in Basal-subtype
breast cancer, and was mainly enriched in the cell cycle,

mitosis and chromosome segregation pathways. PLK1 does not
like in all breast cancer that low expression predicted high RFS
and OS (p < 0.05), PLK1 overexpression improved prognosis in
Basal-subtype breast cancer (p < 0.05). These data show that
PLK1 may be a different important participant and a promising
therapeutic target in Basal-subtype breast cancer.

BUB1 (budding uninhibited by benzimidazoles 1) plays a key
role in the proliferation and radioresistance of glioblastoma
(GBM) in a FOXM1-dependent manner (Yu et al., 2019).
BUB1 is overexpressed in breast cancer and is associated with
poor clinical prognosis (Takagi et al., 2013). Our analysis revealed
that BUB1 was specifically highly expressed in the Basal-like
subtype. However, high expression of BUB1 was associated with
good prognosis (RFS and OS) in Basal-subtype breast cancer,
while low expression of BUB1 predicted high RFS and OS (p <
0.05) in all breast cancer. This may be due to the different roles of
BUB1 in Basal-subtype and all breast cancer, which suggest a
specific therapeutic target for Basal-subtype breast cancer.
Moreover, whether BUB1 has a tumor suppressive activity
remains uncertain in Basal-subtype breast cancer, and the
mechanism of BUB1 also remains to be further explored. In
addition, our results also show that FOXM1 is specifically
upregulated in Basal-subtype, and whether BUB1 depends on
FOXM1 to play roles requires further exploration in Basal-
subtype breast cancer.

Reduced OGN (osteoglycin) expression has been found in
various types of cancers compared with normal tissues, and
higher OGN expression is an indicator of increased survival
and reduced cancer recurrence (Lee et al., 2003; Lomnytska
et al., 2010). OGN can inhibit breast cancer cell proliferation
(Xu et al., 2019). Our results found that OGN expression was
significantly different in the Basal-like subtype from other breast
cancer subtypes, and its expression in Basal-like subtype was
lower than that in other subtypes. Low OGN expression was
significantly associated with poor RFS in Basal-subtype breast
cancer. These data suggest that OGN may have a different role
and clinical value in Basal-like subtype. Further experimental
studies are required to determine its precise functions and clinical
value in Basal-subtype breast cancer in the future.

COL4A6 (collagen type IV alpha six chain) is involved in
cancer progression and invasion, whose expression correlates
positively with the DFS of patients in prostate cancer (Ma et al.,
2020). COL4A6 was also identified as a key gene associated with
survival of cancer cells in breast cancer (Li et al., 2020). Our
results show that COL4A6 was significantly downregulated in
patients with Basal-subtype breast cancer, and this low expression
was associated with poor prognosis (RFS). AGTR1 (angiotensin II
receptor type 1) is associated with tumor growth, tumor
metastasis and drug resistance (Pu et al., 2017; Zhang et al.,
2019a; Ma et al., 2019). Studies have also shown that AGTR1may
be a potential therapeutic target in early breast cancer with lymph
node metastasis (Ma et al., 2019). AGTR1 is overexpressed in
LumA- and LumB-subtype breast cancer, which is associated
with aggressive features and decreased OS (Ekambaram et al.,
2018). Our results show that AGTR1 was significantly
downregulated in the Basal-like subtype, and this low
expression was associated with poor prognosis (RFS). ADRB2
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(adrenoceptor beta 2) plays an important role in the progression
and metastasis of various tumors (Zhang et al., 2019b; Kulik,
2019). ADRB2 single-nucleotide polymorphisms (SNPs)
rs1042713 and rs1042714 may influence the response to β
blockers in breast cancer treatment (Xie et al., 2019). Here,
ADRB2 was found to be specifically downregulated in basal-
subtype breast cancer, and this low ADRB2 expression was
associated with poor prognosis (RFS) in Basal-subtype breast
cancer. These data indicate that COL4A6, AGTR1, and ADRB2
may be involved in the recurrence of Basal-subtype breast cancer,
and further studies are required to determine their precise roles in
Basal-subtype breast cancer.

In brief, the analytical data suggest that SOX11, PLK1, and
BUB1 may be involved in tumorigenesis to improve OS of
patients with Basal-subtype breast cancer. SOX11, PLK1,
BUB1, OGN, COL4A6, AGTR1, and ADRB2 may be involved
in the recurrence of Basal-subtype breast cancer, and to some
extent the PLK1, BUB1, OGN, COL4A6, AGTR1, and ADRB2
can be used as the specific prognostic markers for Basal-subtype
breast cancer.

In the selected key specific DEGs for Her2-subtype breast
cancer, the expression of IL21R, IFI30, PI15, FAM189A2, and
MYZAP were significantly correlated with the prognostic survival
of the patients. IL21R (interleukin 21 receptor) knock-down may
sensitize cells to anti-tumor therapy by targeting MMPs, and
participate in tumor progression and metastasis in advanced
breast cancer (Kim et al., 2014; Wang et al., 2015). In our
analysis, IL21R was specifically upregulated, and this high
expression predicted high RFS and OS (p < 0.05) in Her2-
subtype breast cancer, which was consistent with the
prognostic analysis results in all breast cancer.

IFI30 is highly expressed in glioma and associated with
chemotherapy response (Zhu et al., 2020). Our analysis
showed that IFI30 were specifically upregulated and this high
expression predicted high RFS and OS (p < 0.05) in Her2-subtype
breast cancer, while high IFI30 expression predicted low RFS and
OS (p < 0.05) in all breast cancer. These data suggest that IFI30
may have a different role and clinical value in Her2-subtype.
Further studies are required to determine the specific role and
clinical value as well as the mechanism in Her2-subtype breast
cancer.

PI15 has been identified as a potential diagnostic marker in
colorectal carcinoma and cholangiocarcinoma (Tuupanen et al.,
2014; Jiang et al., 2019). Our results showed that PI15 was
specifically downregulated in the Her2 subtype, and this high
expression predicted high RFS in Her2-subtype breast cancer (p <
0.05). Thus, PI15 may be also a potential prognostic factor in
Her2-subtype breast cancer.

FAM189A2 is a potential therapeutic target, and its low
expression is associated with poor prognosis in oral squamous
cell carcinoma (Hu et al., 2020). The role of MYZAP
(myocardium-enriched zonula occludens-1-associated protein)
in tumors is completely unclear at present. Our analysis showed
that FAM189A2 and MYZAP were specifically downregulated in
the Her2 subtype, and high FAM189A2 expression predicted high
RFS in Her2-subtype breast cancer (p < 0.05), while lowMYZAP
expression predicted high OS in Her2-subtype breast cancer (p <

0.05). These analysis data show that FAM189A2 andMYZAPmay
be potential prognostic factors in Her2-subtype breast cancer,
and their main roles are required to further study.

In brief, the data in Her2-subtype breast cancer suggest that
IL21R, IFI30, and MYZAP may be involved in the tumorigenesis
to improve OS of patients with Her2-subtype breast cancer.
IL21R, IFI30, PI15, and FAM189A2 may be involved in
recurrence of Her2-subtype breast cancer IFI30, PI15,
FAM189A2, and MYZAP can be used as the specific
prognostic markers for Her2-subtype breast cancer.

In the selected key specific DEGs for LumB-subtype breast
cancer, the expression of CNTD2, NEURL, STAC2, AKR1C2, IL6,
FREM1, and HOXA4 were significantly correlated with the
prognostic survival of the patients. CNTD2 can promote colon
and lung cancer cell proliferation andmigration (Gasa et al., 2017;
Abril et al., 2018). Here, we found that CNTD2 was specifically
upregulated and the high expression predicted high RFS in
LumB-subtype breast cancer (p < 0.05), and high CNTD2
expression predicted high RFS (p < 0.05) and OS (p < 0.05) in
all breast cancer. NEURL1 is a potential suppressor of multiple
tumors, and its low expression is associated with reduced
metastasis-free survival (Teider et al., 2010; Kenawy et al.,
2019). Our results show that NEURL1 was specifically
upregulated, and the high expression predicted high RFS in
LumB-subtype breast cancer (p < 0.05), which is consistent
with the prognostic conclusion of all breast cancer. These
results revealed that CNTD2 and NEURL1 may play similar
roles and prognostic value in breast cancer and LumB-subtype
breast cancer.

STAC2 belongs to a small family of SH3 and cysteine-rich
adaptor proteins and is expressed in various tissue types
(Nelson et al., 2013). FREM1 is expressed in the developing
skin epidermis and in many differentiated epidermal
structures (Smyth et al., 2004). FREM1 may be a potential
candidate for immunotherapy targets in breast cancer and may
be used as a prognostic marker for DFS (Zhang et al., 2020).
However, the roles and mechanisms of STAC2 and FREM1 in
tumors are still largerly unclear. Our results showed that
STAC2 and FREM1 were specifically downregulated and
their low expressions predicted low RFS and OS (p < 0.05)
in LumB-subtype breast cancer. The prognostic result of
FREM1 is consistent with that in all breast cancer, while
low STAC2 expression predicted high OS (p < 0.05) in all
breast cancer. Thus, FREM1 may play the similar roles and
prognostic values, whereas STAC2may play different roles and
prognostic values in breast cancer and LumB-subtype breast
cancer. Further studies are needed to determine the exact roles
prognostic values of STAC2 and FREM1 in breast cancer and
LumB-subtype breast cancer.

AKR1C2 has an inhibitory effect in the development of
squamous cell carcinoma and breast cancer (Li et al., 2016b;
Wenners et al., 2016). However, it is a positive regulator in
promoting liver cancer metastasis (Li et al., 2016a). We found
that AKR1C2 was specifically downregulated, and the low
expression predicted increased OS in LumB-subtype breast
cancer. Therefore, AKR1C2 may play an important role in
LumB-subtype breast cancer. Further studies are required to
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determine the function of AKR1C2 in LumB-subtype breast
cancer.

High IL6 expression can eliminate the anti-tumor effect of the
inhibitor RO4929097 in lung cancer and glioma (He et al., 2011).
HOXA4 is overexpressed in colorectal cancer and epithelial
ovarian cancer (Bhatlekar et al., 2014), and its overexpression
can inhibit cancer cell growth and invasion which is associated
with Wnt pathway in lung cancer (Cheng et al., 2018). In breast
cancer, HOXA4 exhibits increased DNA methylation and
decreased gene expression (Li et al., 2019). Here, IL6 and
HOXA4 were found to be specifically downregulated, and their
low expression predicted low RFS in LumB-subtype breast cancer
(p < 0.05), and the prognostic analysis result of IL6was consistent
with tha in all breast cancer. The data suggested that IL6 and
HOXA4 may play key roles in LumB-subtype breast cancer.

In general, the analytical data suggest that STAC2, FREM1,
and AKR1C2 may be involved in the tumorigenesis to improve
OS of patients with LumB-subtype breast cancer. CNTD2,
NEURL, STAC2, IL6, FREM1, and HOXA4 may be involved
in recurrence of LumB-subtype breast cancer. Moreover, STAC2,
AKR1C2, and HOXA4 can be used as the specific prognostic
markers for LumB-subtype breast cancer.

In addition, the independent validation reveal that the
expressions of the selected key specific DEGs are highly
consistent with TCGA data, whereas the expressions of the
selected key common DEGs seem to be very different in the
independent BRCA samples of GSE65216 database, which may
explain the relatively consistent prognostic values for key specific
DEGs in each subtype but very different prognostic values for the
common DEGs in different subtypes to some extent.

The poor prognosis of the different breast cancer subtypes is
mainly due to the lack of effective therapeutic targets. Therefore,
finding new therapeutic targets for improving the subtypes’
prognosis is essential. We believe that these key genes may be
potential markers for the different breast cancer subtypes.
Although these findings have great potential value, our study
still has some limitations. The specific prognostic values of these
genes need to be verified in independent large cohorts. The
precise roles and mechanisms of the candidate genes are
required to explore by experimental studies to enhance the
molecular basis of these genes in the future clinical
application. In summary, our findings may provide new

insights into the characteristics of each subtype of breast
cancer and provide potential new therapeutic targets for
different subtypes in the future.
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