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Abstract: Alzheimer’s disease (AD) is of great cause for concern in our ageing population, which
currently lacks diagnostic tools to permit accurate and timely diagnosis for affected individuals.
The development of such tools could enable therapeutic interventions earlier in the disease course and
thus potentially reducing the debilitating effects of AD. Glycosylation is a common, and important,
post translational modification of proteins implicated in a host of disease states resulting in a complex
array of glycans being incorporated into biomolecules. Recent investigations of glycan profiles, in a
wide range of conditions, has been made possible due to technological advances in the field enabling
accurate glycoanalyses. Amyloid beta (Aβ) peptides, tau protein, and other important proteins
involved in AD pathogenesis, have altered glycosylation profiles. Crucially, these abnormalities
present early in the disease state, are present in the peripheral blood, and help to distinguish AD from
other dementias. This review describes the aberrant glycome in AD, focusing on proteins implicated
in development and progression, and elucidates the potential of glycome aberrations as early stage
biomarkers of AD.
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1. Introduction

1.1. Alzheimer’s Disease (AD)—A Cause for Concern

There are currently over 50 million cases of dementia in the world, of which AD is the predominant
form, possibly making up 60–70% of cases [1,2]. Development of AD is related to advanced age and, as
life expectancy increases, it is expected that AD cases will increase four-fold by the year 2050 [3,4].
Sufferers of the disease experience deterioration of memory and cognition, which slowly worsens as the
disease progresses until they are eventually unable to care for themselves [5]. From initial diagnosis,
death typically occurs after 8–10 years [6].

1.2. AD Pathogenesis

AD is characterised by the formation of plaques composed of amyloid beta (Aβ) peptides,
which are formed from abnormally processed amyloid precursor protein (APP) protein, and the
presence of neurofibrillary tangles derived predominantly from hyperphosphorylated tau protein, in
the brain [7]. Hyperphosphorylated tau (AD P-tau) aggregates, causing paired helical filaments (PHFs)
to form, accumulation of which leads to neurofibrillary tangle formation [8]. Intraneuronal tau and
extraneuronal amyloid plaques, contribute to neuronal cell death and loss of synaptic function [9,10].
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Neurofibrillary tangles progressively spread from the entorhinal cortex to other parts of the brain
such as the hippocampus and cerebral cortex, and these brain regions are associated with significant
neuronal loss and physical shrinkage [11–13]. The cortex and hippocampus are strongly associated
with cognition, thought, memory, learning and awareness [14,15]. Hippocampal atrophy is severe and
has been used as a diagnostic and prognostic marker of AD [16,17]. Earlier diagnostic markers in these
brain regions would be invaluable.

1.3. Treatments for AD and the Urgency of An Early Diagnosis

A deficit in the cholinergic system is a major characteristic of AD [18]. AD treatments
currently available aim to correct the altered neurotransmission, but these are symptomatic as
the individual will still eventually succumb to the disease [19,20]. Disease modifying treatments under
investigation aim to reduce Aβ plaque formation by inhibition or modulation of secretases involved
in the amyloid pathway [21,22], or increase Aβ clearance by immunological approaches [23,24].
Immunological removal of tau aggregates is also under investigation [25], in addition to prevention
of tau hyperphosphorylation using kinase inhibitors, as kinases induce the hyperphosphorylation of
tau [26,27]. However, the success of interventions in clinical trials has been very poor to date [28,29].
To compound matters, often current treatments are only significantly effective in mild AD sufferers,
but not in moderate AD sufferers [30,31]. There is therefore a critical need to diagnose patients as
early as possible so that they may derive maximum benefit from existing therapies and initiate disease
modifying therapies, when they become available, as early in the disease course as possible.

1.4. AD Diagnosis—Invasive and Inconclusive

Aside from advanced age, the apolipoprotein E4 gene is the biggest risk factor for late onset AD;
some 64% of sporadic AD sufferers and 80% of familial AD sufferers have at least one copy of the
gene [32]. Mutations in APP, presenilin (PS)1 and PS2 genes almost guarantee that an individual will
develop early onset AD, which occurs before 65 years of age [33]. However, early onset AD accounts
for only 1–2% of AD cases [34].

At present, AD is routinely diagnosed via cognitive and learning assessments, however, this
merely identifies AD as the most probable cause of symptoms which have presented. Distinguishing
AD from other types of dementias is difficult as memory-related symptoms and physical changes in
the brain are also observed in other neurodegenerative disorders, as well as in the normal, ageing
brain [35–38]. Characteristic whole-brain and hippocampal tissue atrophy seen in AD [11] is identified
using magnetic resonance imaging (MRI) and computed tomography (CT) [39], however, this atrophy
is present in other forms of dementia [40–42]. Post mortem identification of pathological defects in the
AD brain is necessary for definitive diagnosis [43].

Positron emission tomography (PET) is another imaging technique which uses radiotracers of
biomarkers in an AD diagnosis [44]. 2-[18F]fluoro-2-Deoxy-D-glucose (FDG) is a common PET tracer
which identifies the reduction of cerebral metabolic rates of glucose (CMRglc) seen in AD [45]. However,
this disturbed CMRglc metabolism is seen in other types of dementias, making it non-specific to the
disease state [46]. PET tracers of Aβ peptides, such as Pittsburg compound B, have emerged which
bind specifically to amyloid plaques in the brain [47]. However, it appears that Aβ plaque formation
does not correlate directly with cognitive decline [48], making it unreliable as a disease progression
indicator. Promising tau-specific PET tracers have recently been developed but will require further
clinical validation studies [49].

The difficulties in AD diagnosis indicates a significant clinical need to develop non-invasive
diagnostic tests, ideally from peripheral blood. The popular approaches to biomarker testing today
are costly neuroimaging, as discussed, and cerebrospinal fluid (CSF) analysis. CSF may be assessed
for elevated total tau and AD P-tau levels, and decreased Aβ peptide levels, which requires patients
to undergo a painful lumbar puncture [50]. As this review will explore, there are many reported
changes in the AD glycome occurring early in the disease pathogenesis, many of which are present in
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the periphery and could be exploited as biomarkers of AD. Before these changes are discussed, it is
important to understand glycosylation and the role it plays in human health and disease.

2. Glycosylation Overview

2.1. What is Glycosylation?

Glycosylation is an enzymatic process where glycosyltransferase enzymes use activated sugar
donor molecules to attach monosaccharides to growing glycans via a glycosidic linkage [51–53].
Glycosidases and glycosyltransferases, involved in the synthesis of glycans, are each specific to a
particular sugar and to their type of linkage [54,55]. N- and O-linked glycosylation are the most
common types of protein glycosylation. O-linked glycans are linked to the hydroxyl group of threonine
or serine in a protein, whereas N-linked glycans are linked to the nitrogen atom of an asparagine
residue [56,57]. However there is no site specific addition of O-glycans to serine or threonine residues
and the core structure of an O-glycan is variable, therefore O-glycan synthesis is not always initiated
by the same glycosyltransferase [58]. The focus of this review is on N-glycans which are present in
90% of glycoproteins [59], are the most characterised of all glycans and strongly implicated in the AD
pathogenesis [60–64]. A single enzyme known as oligosaccharyltransferase initiates glycan synthesis in
the N-linked pathway. All N-glycans have a common core, and oligosaccharyltransferase specifically
catalyzes the addition of the growing N-glycan to asparagine at the sequences asparagine-X-serine or
asparagine-X-threonine, X being any amino acid except proline [52]. The synthesis of N-glycans begins in
the endoplasmic reticulum and continues into the Golgi, occurring co- and post-translationally [52,65].
N-glycans may be either high mannose, complex or hybrid types depending on the additional
sugar modifications extending from their core structure of two N-acetyl glucosamine (GlcNAc)
monosaccharides and three mannoses [66–69].

2.2. Approaches to Glycoanalysis

Glycans may be analysed after cleavage from the respective protein, or glycoproteins may
be analysed intact [70]. N-glycan cleavage may be achieved chemically by hydrazinolysis [71]
or enzymatically by peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase, typically known
as PNGase F, digestion which cleaves glycans at asparagine residues, the exclusive site of
N-glycosylation [72]. Since the attachment sites of glycans to the peptide backbone are different
depending on the type of glycosylation, there is no single method which may be used to cleave
glycans from the respective glycoproteins. Liquid chromatography (LC), porous graphitic carbon
chromatography (PGC), and capillary electrophoresis are commonly used chromatographic separation
methods for released glycan analysis [73].

Glycans are typically fluorescently labelled prior to LC analysis as they lack natural
chromophores [74]. Hydrophilic interaction LC offers the advantage of identifying structural isomers
as well as determining linkage information in some cases, which other LC modes cannot [75]. Weak
anion exchange high performance liquid chromatography (HPLC) is sometimes used as an orthogonal
method for the separation of similar glycans or those containing negatively charged sialic acids [76].
Databases such as GlycoStore have been established to give information related to the separated glycan
structures [77].

The advent of ultra-high performance liquid chromatography (UPLC) and sub-2 µm particle size
columns has permitted quicker separation and improved separation capacity [78–80]. Separation of
glycan mixtures is still difficult because isomeric glycans, that are commonly present [81], will co-elute.
Exoglycosidase sequencing is therefore often used to delineate isomeric glycans identified by the initial
separation, while also providing conclusive linkage information of the monosaccharides present [82–84].
Figure 1 illustrates a typical N-glycan profiling approach employing PNGase F digestion, fluorescent
labelling, exoglycosidase sequencing and UPLC analysis of a glycoprotein mixture.
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Figure 1. N-glycan profiling of a glycoprotein mixture. N-linked glycans are cleaved from 
glycoproteins by PNGase F digestion and fluorescently labelled in preparation for exoglycosidase 
sequencing and subsequent ultra-high performance liquid chromatography (UPLC) analysis. 
Terminal monosaccharides are removed from the non-reducing end of a glycan structure during an 
exoglycosidase digestion. Black dotted lines indicate the points of enzymatic digestion in this example 
of an exoglycosidase digestion. ASN, Asparagine residue in a protein chain; UPLC, ultra high 
performance liquid chromatography; PNGase F, peptide-N4-(N-acetyl-β-glucosaminyl) asparagine 
amidase. Images were created using Adobe Photoshop. 

Lectins are commonly employed in glycoprofiling studies [85–87] and are useful in the analysis 
of intact glycoproteins, as well as the localisation of these glycoproteins in cells and tissues [88,89]. 
Mass spectrometry (MS) is another widely used and accurate method to analyse glycan structure 
without derivatization, which allows for analysis of intact glycoproteins [90]. MS is often used as an 
orthogonal technique in LC/MS or LC/MS-MS, to give an overall comprehensive analysis of 

Figure 1. N-glycan profiling of a glycoprotein mixture. N-linked glycans are cleaved from glycoproteins
by PNGase F digestion and fluorescently labelled in preparation for exoglycosidase sequencing and
subsequent ultra-high performance liquid chromatography (UPLC) analysis. Terminal monosaccharides
are removed from the non-reducing end of a glycan structure during an exoglycosidase digestion. Black
dotted lines indicate the points of enzymatic digestion in this example of an exoglycosidase digestion.
ASN, Asparagine residue in a protein chain; UPLC, ultra high performance liquid chromatography;
PNGase F, peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase. Images were created using
Adobe Photoshop.

Lectins are commonly employed in glycoprofiling studies [85–87] and are useful in the analysis of
intact glycoproteins, as well as the localisation of these glycoproteins in cells and tissues [88,89]. Mass
spectrometry (MS) is another widely used and accurate method to analyse glycan structure without
derivatization, which allows for analysis of intact glycoproteins [90]. MS is often used as an orthogonal
technique in LC/MS or LC/MS-MS, to give an overall comprehensive analysis of glycoproteins by
providing greater separation of structural or geometric glycan isomers [91–94], in addition to confirming
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structural linkages identified using exoglycosidase approaches [95,96]. Nuclear magnetic resonance
spectroscopy is another excellent method for detailed structural analysis of glycans, but requires a
relatively large quantity of purified glycans [70].

2.3. Glycosylation and Disease

N-glycans are vital for a multicellular organism’s survival [97,98]. Glycoproteins are on the
extracellular surface of the plasma membrane, the extracellular matrix of cells, and are also secreted
into bodily fluids. Almost all proteins in human serum and on mammalian cell membranes are
glycosylated [59]. Glycans ensure proper protein folding, trafficking, and functionality in addition to
facilitating cell signaling and cell-cell communication [99–101]. Changes in the physiological state may
alter glycans found on glycoproteins at the same location [102,103]. Glycosylation changes also occur
in many disease states. Changes in glycosylation patterns is a hallmark of cancer [104]. Breast [105],
stomach [106], and liver [107] cancers all have altered serum glycoprofiles. Rheumatoid arthritis
is associated with reduced IgG galactosylation and sialic acid termini [108]. Congenital disorders
of glycosylation (CDGs) are a group of illnesses caused by aberrant glycosylation rooted in genetic
defects in the enzymes and biomolecules involved in glycan synthesis. Over 100 CDGs exist, common
examples being ALG1-CDG, PMM2-CDG and MPI-CDG, each named after the defective gene in the
respective CDG [109]. Such disorders result in symptoms affecting multiple organs, commonly the
brain and nervous system, due to the far reaching impact of glycosylation on the functionality of the
human proteome [110,111].

3. Glycosylation and AD

3.1. Glycosylation of Proteins Implicated in AD in the Brain

Glycosylation has been implicated in AD pathology in many studies. Numerous changes have
been detected in the AD brain. Immunoprecipitation and lectin blotting of β-site APP-cleaving enzyme
1 (BACE1), the N-glycosylated enzyme [112] responsible for the toxic β-secretase cleavage of APP [113],
from the brains of AD patients revealed increased levels of bisecting GlcNAc, and crucially this increase
was observed in both early and late stage patients [112]. A later study found that this increase in
bisecting GlcNAc on BACE1 stabilises the protein under oxidative stress conditions [114], a feature
characteristic of AD pathology [115].

APP is modified with O-GlcNAc [116] and studies have indicated that the mucin-type
O-glycosylation of APP has a negative impact on Aβ production [117,118]. One of these studies
revealed an increase in expression levels of transferases responsible for this mucin-type O-glycosylation
in the early and late stage AD brain versus non-AD controls through quantitative real-time polymerase
chain reaction (RT-PCR) analysis of human brain tissue [117]. N-acetylglucosaminyltransferase III
(GnT-III) is the glycosyltransferase responsible for adding bisecting GlcNAc [119]. RT-PCR analysis of
GnT-III mRNA revealed an increase in its expression in AD patient brains [119].

Findings suggest N-glycosylation occurs before hyperphosphorylation of tau, where
non-hyperphosphorylated tau in AD brain exhibited N-glycan specific lectin staining versus an
observed absence of this in normal tau in healthy controls [120]. In fact glycosylation of tau may
induce hyperphosphorylation as the N-glycosylated form of the protein proved to be a better substrate
for kinase than its native form [120]. The N-glycans found on phosphorylated tau and PHFs also
differ, with more truncated glycans found on PHF-tau, identified in human AD brain tissue using
complimentary analyses by HPLC, exoglycosidase digestions and MS [121].

Polysialylated neural cell adhesion molecule (PSA-NCAM) is recognized for its role in central
nervous system development but is also reported to function in the connectivity of interneurons in the
adult cerebral cortex [122]. A study revealed significantly decreased immunostaining of PSA-NCAM
in the entorhinal cortex of AD brain tissue taken post mortem, relative to healthy controls. The same
study found the decrease in PSA-NCAM load in the AD entorhinal cortex to be inversely proportional
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to hyperphosphorylated tau load [123]. This indicates a reduction in PSA-NCAM load specific to
a brain region known to be severely affected in the AD pathogenesis [11–13], and shows that this
change is potentially related in some way to increases in hyperphosphorylated tau load. Despite these
findings, the identification of glycosylation changes in the AD brain is clearly not diagnostically viable.

3.2. Glycosylation Biomarkers of AD in the CSF and Blood

A study of the glycosylation changes in both pre-dementia and AD patient CSF using
matrix-assisted laser desorption/ionization-MS showed an increase in bisect type N-glycans and
a decrease in sialylated species in both pre-dementia and AD cases, indicating that AD related
glycosylation changes occur before clinical symptoms manifest [124].

Detection of alterations in the AD glycome via peripheral serum and plasma would be
advantageous diagnostically, given the invasive nature of CSF sampling. An obstacle in the analysis of
serum is that many brain derived proteins are not present in the blood due to their inability to cross
the blood brain barrier [125]. However, the N-glycoprofiles of a mouse model of neurodegeneration
revealed decreases in specific glycans in the serum and cerebral cortex, and the changes correlated to
learning and memory deficiencies [126]. In humans, AD patient serum exhibited increased bisect-type
and highly branched glycoforms in a study which employed glycoblotting and MS analysis of patient
serum samples [127]. The same study similarly showed an increase in these particular species of glycan
in AD patient CSF versus non-AD controls [127]. Of note, bisect type glycans are atypical of serum,
but are common “brain-type” glycans [128]. Reduced sialyltransferase activity has been observed in
AD patient serum using a radio-enzymatic assay [129]. It is interesting to note that the gene for a sialic
acid binding receptor, known as Siglec 33, is implicated in late-onset AD [130].

Sera levels of a bi-galactosylated core fucosylated bi-antennary glycan were shown to decrease with
age in a study employing a glycoanalytical tool known as DNA sequencer-assisted, fluorophore-assisted
carbohydrate electrophoresis (DSA-FACE) [131]. However, in another study employing DSA-FACE,
sera levels of the same glycan were shown to decrease significantly more in AD patients in comparison
to healthy controls and could additionally distinguish AD patients from other non-AD patients [132].
This is significant from a diagnostic standpoint, due to the difficulty in distinguishing AD from
other neurodegenerative disorders, if it could be identified in a clinical setting using a higher
throughput approach.

O-glycan changes in AD are widely reported [133–140]. Recently it was observed that
neuroinflammation induced by Aβ modifies mucin-type O-glycosylation in rat hippocampus, which
was observed by injection of Aβ into rat brain hippocampus followed by lectin analysis [141].
Interestingly, Aβ immunopurified from AD and non-AD CSF revealed a unique O-glycosylation of a
specific tyrosine residue upon LC-MS/MS analysis, and the ratio of this tyrosine glycosylation in Aβ

to the respective unglycosylated form was found to be up to 2.5 times more prevalent in the CSF of
the AD patients compared to healthy and non-AD controls [142]. Aside from these general glycomic
changes at play, glycosylation changes have been observed in all of the major AD related proteins, and
crucially some changes are occurring at early stages in the disease state [60–62].

3.3. The Direct and Indirect Impact of BACE1 Glycosylation in AD Pathology

Cleavage of APP in neurons by α-secretase followed by γ-secretase yields a soluble peptide
under normal physiological conditions [143]. Soluble APP has neuroprotective functions against
excitotoxicity [144] and Aβ toxicity [145] in neurons. In AD, β-secretase and γ-secretase cleave APP
sequentially, resulting in the formation of toxic Aβ peptide [146]. As stated previously, BACE1 is
the enzyme responsible for the toxic β-secretase cleavage of APP [113] and is N-glycosylated [112].
Alteration of N-glycosylation sites in aspartyl protease 2, now known to be BACE1, was shown to
reduce its proteolytic activity [147]. GnT-III knockout in mice resulted in reduced Aβ deposition and
improved short term memory [112]. It therefore appears that aberrant N-glycosylation of BACE1 has a
direct role in AD pathology. β-secretase additionally functions in protein glycosylation, specifically



Medicines 2019, 6, 92 7 of 21

in cleaving sialyltransferases [148,149]. An in vitro study where a particular sialyltransferase was
overexpressed in order to induce increased sialylation of APP, resulted in increased production of Aβ

peptides [150]. Another in vitro study showed that overexpression of BACE1 enhances sialylation of
soluble secreted glycoproteins through lectin analysis [151]. Elucidating the effects of BACE1 on the
glycoprofiles of specific AD related glycoproteins may make its role more clear in the AD pathology.

3.4. APP Glycans as Protective Mechanisms in AD

Several studies indicate that APP sorting, secretion, transport and localisation are affected by its
N-glycosylation [150,152–154]. Therefore glycoforms of this major AD related protein are likely to have a
significant effect on the pathology of the disease. An in vitro study where mouse neuroblastoma cells
were transfected with either wild-type APP or APP mutants related to AD, revealed increased levels of
bisecting GlcNAc and core fucose N-glycan alterations on APP mutants compared to wild-type APP upon
analysis of isolated glycans by HPLC [155]. GnT-III may act as a protective mechanism in the presence of
amyloid plaques, as a study additionally revealed a decrease in Aβ production in GnT-III transfected
mouse neuroblastoma cells when Aβ concentrations in culture supernatants were determined using
enzyme-linked immunosorbent assay (ELISA). What is more, an increased activity of the neuroprotective
α-secretase was also observed in GnT-III transfected cells [119]. A disintegrin and metalloproteinase
10 (ADAM10) is the major α-secretase in neurons responsible for normal, non-amyloidogenic cleavage
of APP [156]. ADAM10 is key to neurodevelopment [157] and synaptic plasticity [158]. It interacts
with APP and other proteins, and levels of ADAM10 are reduced in AD patient blood [159]. Although
N-glycosylation of this glycoprotein has been shown to be crucial to its functionality by mutation of
its second N-glycosylation site in vitro which caused both reduced enzymatic activity and proteolytic
activation [160], its glycoprofile in AD remains elusive and warrants investigation.

3.5. Tau Phosphorylation is Directed by its Glycosylation

A disruption to O-GlcNAc modification of proteins in AD has been reported [134–140]. Tau is
ordinarily O-glycosylated by single GlcNAc residues [161]. Tau protein is involved in microtubule
assembly and stabilisation [162], and is hyperphosphorylated in AD [163,164]. Decreased wheat
germ agglutinin (WGA) lectin blotting of tau was observed in phosphatase-inhibited human
neuroblastoma cells [165]. WGA is a lectin with a high affinity for GlcNAc [166]. This indicates that
hyperphosphorylation of tau, which is characteristic of AD, results in downregulation of O-linked
tau glycans. As O-linked glycans attach to threonine or serine, they occupy the principal sites of
phosphorylation [167]. Another study where decreased O-GlcNAcylation of tau was induced by
glucose starvation of mice to mimic AD pathology resulted in increased phosphorylation of tau upon
western blot analysis. This indicates that O-GlcNAcylation acts as a protective mechanism against
hyperphosphorylation of tau in AD, and that the impaired glucose metabolism may be causing the
reduced O-GlcNAc modification of proteins [168].

It appears that tau N-glycans are key to the stabilisation of PHF structures. The dephosphorylation
and deglycosylation of tau in PHF structures increased the release of tau and restored its microtubule
polymerization activity, further implicating the role of tau N-glycans in AD [169]. Tau is normally a
cytosolic protein [170] and because N-glycosylation normally only occurs in secreted or membrane
bound proteins [171], this may indicate a subcellular relocation of tau in AD pathogenesis.

3.6. Presenilin and Transmembrane Protein 59 (TMEM59) are Regulators of Protein Glycosylation

γ-secretase is partly composed of the protein presenilin [172]. Mutations in PS1 and PS2 genes are
associated with early onset familial AD [33]. Acetylcholinesterase (AChE) is known to complex with
presenilin, and a study conducted in transgenic mice with a PS1 mutation revealed altered mannose
termini and disturbed maturation of AChE, indicating PS1 affects AChE functionality [86]. Nicastrin is
the only protein in the γ-secretase complex that is N-glycosylated [173,174], and presenilin knockout
cells revealed a reduction in nicastrin N-glycosylation and maturation [175]. An in vitro study where
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AD-related PS1 was overexpressed in a human neuroblastoma cell line identified a reduction in
sialylation of neural cell adhesion molecule (NCAM) using lectin analysis [176].

TMEM59 expression is increased in late-onset AD [177]. An in vitro study showed that TMEM59
expression affects Golgi localised complex glycosylation, reducing galactosylation and sialylation of
key AD related proteins such as APP, BACE1 and nicastrin using western blot analysis. The study
also showed that α- and β-secretase shedding of APP and APP cell surface expression were both
suppressed by TMEM59 expression [178]. These findings indicate that presenilin [86,175,176] and
TMEM59 [178] regulate protein glycosylation. Further study of the effects of abnormal presenilin and
upregulated TMEM59 on relevant glycoproteins may be worth investigation.

3.7. Apolipoprotein Glycosylation Changes in AD

Clusterin, also known as apolipoprotein J (ApoJ), is known to be associated with AD
pathogenesis [179] and increased levels of clusterin are present in AD patient blood [180].
Specific glycans on clusterin were decreased in abundance in AD patients with high hippocampal
atrophy relative to those with low hippocampal atrophy, analysed using LC-MS/MS analysis [181].
Apolipoprotein D (ApoD) has been shown to modulate amyloid pathology in an AD mouse model [182].
ApoD in human plasma is N-glycosylated [183]. Overall the N-glycoprofiles of the different
apolipoproteins have not been investigated in detail and may be worth exploring given the indicated
implications this group of proteins have in AD pathology.

3.8. AD-Associated Glycosylation Changes to Transferrin are Different in CSF to Serum

Increased iron concentration and disturbed iron metabolism are associated with AD [184,185].
Transferrin was identified from AD patient CSF as having reduced sialic acid termini present by
lectin binding analysis and isoelectric focusing, confirmed by comparable levels of transferrin in
the CSF of AD patients and controls. Combination of the reduced transferrin lectin binding with
phosphorylated tau ELISA detection, this biomarker was determined to be highly specific and sensitive
at distinguishing AD from other dementias [186]. Conversely, transferrin sialylation was found to
be increased in AD patient serum using isoelectric focusing and immunoblotting [187]. As such,
the glycoprofile of transferrin in AD appears to be altered differently in the periphery to the central
nervous system.

3.9. Other Glycoproteins Associated with AD Pathology

Glycosylation is further implicated in other proteins associated with AD pathology. Acetylcholine
has various functions in the nervous system, one of which is related to short term memory and
learning [188]. A deficit in acetylcholine is associated with AD [189]. Several studies indicate
glycoforms of AChE may present early in the disease state [190,191], however, conflicting findings
indicate that the changes are in fact not present at early stages [192], meaning it may not be reliable
early marker of AD. Reelin is a glycoprotein found in the extracellular matrix which has a role in
maintaining synaptic plasticity and can reverse Aβ synaptic dysfunction [193]. It is involved in
embryonic brain development [194] and adult brain functionality [195]. A change in mannose specific
lectin binding to reelin has been seen in AD patient CSF in comparison to controls [196]. Neprilysin is
a metalloproteinase [197] which is known to break down Aβ in the brain [198]. Neprilysin expression
is downregulated in AD [199], and mutation of the N-glycosylation sites of neprilysin was shown
to reduce its activity and cell surface expression [200,201]. The R47H variant of triggering receptor
expressed on myeloid cells 2 (TREM2), a transmembrane protein that is reported to be associated with
late-onset AD progression [202], was recently found to have an altered N-glycoprofile in comparison
to the wild type. The study determined that the R47H variant has increased complex oligosaccharide
alterations in comparison to the wild type, in addition to reduced stability [203].

A study in which the glycoprofiles of IgG in human blood were assessed using LC-MS/MS analysis
revealed significant glycan changes in the AD group relative to controls, with a lower abundance of
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specific complex galactosylated and sialylated glycans observed in the AD group. Interestingly, the
abundance of complex glycans in females reduced steadily from the pre-dementia cases to AD patients,
whereas the opposite trend was observed in males just prior to disease onset [204]. The characteristic
role of inflammation in AD [205] may explain the observed reduction in sialic acid modification of
IgG seen here, as removal of sialic acids from IgG causes a shift in its function from anti-inflammation
to pro-inflammation [206]. This is of interest as a readily available marker of AD which is in high
abundance in the blood [207], making analyses less complex.

Regarding biomarker discovery, the focus must now turn towards a more comprehensive analysis
of the AD glycome, elucidating both the well-known players in the AD pathogenesis in more detail in
addition to exploring the lesser known glycoproteins implicated in the AD pathogenesis, as mentioned
in this review. Crucially the methods employed should aim to provide a detailed structural analysis of
glycan structures and identify their respective proteins, as opposed to the many studies of the AD
glycome to date that have popularly employed approaches such as lectin analysis to gain a non-specific
insight into the changes at play.

4. Concluding Remarks

This review highlights an alteration to the glycan portion of many proteins involved in AD
pathogenesis at early stages in the disease state, some examples of which are illustrated in Figure 2.
With improved glycoanalytical technologies more readily available, a more detailed and comprehensive
analysis of the AD glycome is the appropriate approach in future studies. Table 1 presents promising
human AD biomarkers of the CSF and blood that have been reported here. Efforts of future studies
should be founded in the analysis of peripheral plasma or serum samples to make glycan biomarkers
of AD a viable diagnostic tool.Medicines 2019, 6, x FOR PEER REVIEW 10 of 23 

 

 
Figure 2. Examples of glycan alterations in disease related glycoproteins in Alzheimer’s disease (AD). 
(A) Tau, a central protein in the AD pathology, is O-GlcNAcylated which acts as a defense against 
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Figure 2. Examples of glycan alterations in disease related glycoproteins in Alzheimer’s disease (AD).
(A) Tau, a central protein in the AD pathology, is O-GlcNAcylated which acts as a defense against
hyperphosphorylation. In AD, O-glycosylation is downregulated and tau becomes uncharacteristically
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N-glycosylated. Both normal and hyperphosphorylated tau contain N-glycans in AD. Truncated
glycans are more abundant on paired helical filaments (PHF) which are present later in the disease
pathology. (B) Bisecting GlcNAc on β-secretase β-site APP-cleaving enzyme 1 (BACE1) occurs prior
to toxic Aβ formation in AD. In contrast, GlcNAc bisection on amyloid precursor protein (APP)
stimulates α-secretase production and acts as a protective mechanism against amyloid beta (Aβ)
peptide formation (not shown). (C) Decreased terminal sialic acids are present on AD cerebrospinal
fluid (CSF) glycoproteins, the major glycoprotein being transferrin which is critical to the survival of
neuronal cells. Additionally, BACE1 and presenilin, a subunit of γ-secretase, both have a direct role
in the sialylation of AD relevant proteins. Grey dotted lines indicate location of changes on glycan
structures. Alzheimer’s disease, AD; N-acetyl glucosamine, GlcNAc; amyloid beta, Aβ; amyloid
precursor protein, APP; cerebrospinal fluid, CSF; β-site APP-cleaving enzyme 1, BACE1; SER, serine;
THR, threonine; ASN, asparagine; pTau, hyperphosphorylated tau; PHF, paired helical filaments.
Images were created using Adobe Photoshop.

Table 1. Candidate human biomarkers of glycosylation in AD blood and CSF.

Location Analysis
Method Biomarker Cohorts Additional Comments

Serum and
CSF

Glyco-blotting
and MS

Increased bisect type,
core fucosylated,
highly branched

species [127].

AD patients (n = 2–3)
versus sex-matched

non-AD controls
(n = 2–3).

Serum Radio-enzymatic
assay

Decreased
sialyltransferase

activity [129].

AD patients (n = 12)
versus age and sex
matched non-AD
controls (n = 12).

Although both moderate
and severe AD cases were

assessed, there was no
correlation between serum

sialyltransferase activity
and degree of AD.

Considerable variation in
the control group was

observed.

Serum DSA-FACE

Decreased
bi-galactosylated core

fucosylated
bi-antennary glycan

[132].

Population of
primarily

moderate/severe AD
patients (n = 48) versus
age and sex matched
healthy (n = 149) and

non-AD (n = 31)
controls.

Desialylated serum
assessed. Difference not

observed between non-AD
patients and age and sex

matched controls.
Discriminated AD patients

(n = 48) from non-AD
patients and healthy

controls (n = 180) with a
diagnostic accuracy of

85.7% ± 2.8%, 92%
specificity and 70%

sensitivity.

CSF
Matrix-assisted

laser de-sorption/
ionization-MS

Increased bisect type
species and decreased
sialylated species [124].

Pre-dementia (n = 11)
and sporadic AD

(n = 24) cases versus
age matched healthy

controls (n = 21).

40–50% of the diseased
patients had this altered

glycoprofile versus
controls. All pre-dementia
cases that converted to AD

displayed an altered
glycoprofile.

CSF LC-MS/MS

Increased ratio of
tyrosine linked

O-glycosylated Aβ

peptides to
corresponding
unglycosylated
peptides [142].

AD patients (n = 6)
versus non-AD
patients (n = 7).

Patients not cognitively
assessed in detail.

Diagnosis based on
sensitive and specific CSF

biomarker detection of
pathological tau and Aβ

levels.
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Table 1. Cont.

Location Analysis
Method Biomarker Cohorts Additional Comments

Plasma LC-MS/MS
Decreased

N-glycosylation of
clusterin [181].

Mild/moderate AD
patients with high

hippocampal atrophy
(n = 14) versus those

with low hippocampal
atrophy (n = 13).

N-glycans modified with
mannose, galactose, sialic

acid and GlcNAc.
Determined that decreased

glycans all present at a
common N-glycosylation

site on clusterin.

CSF
Lectin blotting,

isoelectric
focusing and MS

Decreased sialylation
of transferrin [186].

Diagnosed probable
AD patients (n = 43)

versus non-AD (n = 13)
and non-demented
(n = 32) controls.

Combined with
phosphorylated tau

detection, specificity and
sensitivity was 88.4% and
92.3%, respectively. CSF
transferrin levels did not
differ between groups.

Serum
Isoelectric

focusing and
immuno-blotting

Increased penta- and
hexa-sialylation of
transferrin [187].

AD patients (n = 11)
versus non-demented,
age-matched controls

(n = 14).

CSF Lectin blotting
Increased

mannosylated glycans
on reelin [196].

AD patients (n = 11)
versus non-demented,
age- and sex-matched

controls (n = 9).

Combining two lectin
stains increased

discrimination of AD from
controls. 10 of 11 AD cases

were below an arbitrary
cutoff point, and 7 of 9

controls were above this
cutoff.

Plasma LC-MS/MS

Decreased complex,
galactosylated and

sialylated glycans on
IgG [204].

AD patients (n = 31)
versus non-demented

controls (n = 26).

One such bi-antennary,
complex, bi-galactosylated

glycan decreased in
females (n = 93) steadily

prior to disease onset from
earlier to later stage cases,
but an inverse trend was
true for males (n = 65).

Mass spectrometry, MS; Alzheimer’s disease, AD; DNA sequencer-assisted, fluorophore-assisted carbohydrate
electrophoresis, DSA-FACE; cerebrospinal fluid, CSF; liquid chromatography, LC; amyloid beta, Aβ; N-acetyl
glucosamine, GlcNAc.
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