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B-vitamins are recognized as essential organic growth factors for many organisms, although
little is known about their abundance and distribution in marine ecosystems. Despite
their metabolic functions regulating important enzymatic reactions, the methodology to
directly measure different B-vitamins in aquatic environments has only recently been
developed. Here, we present the first direct measurements of two B-vitamins, thiamin
(B1), and pyridoxine (B6), in the Amazon River plume-influenced western tropical North
Atlantic (WTNA) Ocean, an area known to have high productivity, carbon (C) and dinitrogen
(N2) fixation, and C sequestration. The vitamins B1and B6 ranged in concentrations from
undetectable to 230 and 40 pM, respectively. Significantly higher concentrations were
measured in the surface plume water at some stations and variation with salinity was
observed, suggesting a possible riverine influence on those B-vitamins. The influences
of vitamins B1 and B6 on biogeochemical processes such as C and N2 fixation were
investigated using a linear regression model that indicated the availability of those organic
factors could affect these rates in the WTNA. In fact, significant increases in C fixation
and N2 fixation were observed with increasing vitamin B1 concentrations at some low
and mesohaline stations (stations 9.1 and 1; p value <0.017 and <0.03, respectively). N2
fixation was also found to have a significant positive correlation with B1 concentrations at
station 1 (p value 0.029), as well as vitamin B6 at station 9.1 (p value <0.017). This work
suggests that there can be a dynamic interplay between essential biogeochemical rates
(C and N2 fixation) and B-vitamins, drawing attention to potential roles of B-vitamins in
ecosystem dynamics, community structure, and global biogeochemistry.
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INTRODUCTION
The Amazon River has the largest freshwater discharge of any
river into the world ocean, resulting in an influx of low-
salinity, nutrient-rich water into the western tropical North
Atlantic (WTNA) Ocean (Subramaniam et al., 2008). The envi-
ronmental conditions resulting from the river plume, influencing
approximately two million km2 in the WTNA, contributes to phy-
toplankton species succession, high rates of primary production,
and a significant carbon (C) sink (Subramaniam et al., 2008).
The neritic, high-nutrient areas of the plume are dominated by
diatoms that utilize the nitrogen (N) and silicate (Si) supplied by
the river leading to nutrient depletion in the water column. Fol-
lowing nutrient draw down, a shift in community composition
occurs beginning with diatom-diazotroph associations (DDAs) as
N becomes limited but sufficient supplies of Si are still present.
This is followed by a subsequent community shift to more typ-
ical oceanic N2 fixing organisms such as Trichodesmium spp.
(Wood, 1966; Capone et al., 1997; Carpenter et al., 1999; Foster
et al., 2007). The succession of phytoplankton species supports
an extensive area of increased C and dinitrogen (N2) fixation
resulting in a C sink of approximately 1.7 Tmol annually (Sub-
ramaniam et al., 2008). Although many of the factors that limit

C and N2 fixation in this region have been extensively studied,
the roles of organic growth factors such as B-vitamins have not
been investigated despite their biological importance. With recent
advances in analytical methodologies that directly measure B-
vitamins in marine systems (Sañudo-Wilhelmy et al., 2012), we
can now start understanding the processes influencing the distri-
bution and concentrations of B-vitamins in the world ocean. River
and groundwater inputs are thought to be sources of B-vitamins
as their concentrations have been inversely correlated with salin-
ity (Gobler et al., 2007) and river plumes have previously been
shown to transport macronutrients and trace metals to the ocean
(Boyle et al., 1982; Tovar-Sanchez and Sañudo-Wilhelmy, 2011).
However, the transport of dissolved B-vitamins from rivers to the
coastal ocean has never been evaluated. This study represents the
first attempt to establish the importance of the Amazon River as a
source of some B-vitamins to the WTNA Ocean.

B-vitamins are essential coenzymes for many diverse biochem-
ical reactions, including enzymes in the Calvin cycle, amino acid
biosynthesis, the tricarboxylic acid cycle (TCA cycle), and nucleic
acid metabolism (Voet et al., 2001). Fitting with their central role
in metabolism, B-vitamins were recognized as important pro-
moters of bacterial growth as early as the 1930s (McDaniel et al.,
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1939) and by the 1950s were found to be essential for the cultiva-
tion of many marine and freshwater algae (Provasoli and Pintner,
1953). Recent studies have confirmed the ecological relevance of B-
vitamins in the environment by demonstrating their ability to limit
or co-limit phytoplankton growth and biomass (Panzeca et al.,
2006; Bertrand et al., 2007), including harmful algal blooms (Tang
et al., 2010). Furthermore, Sañudo-Wilhelmy et al. (2012) recently
showed that large areas of the ocean are vitamin depleted. How-
ever, no study has addressed the influence of some B-vitamins on
C and N2 fixation in the Atlantic Ocean, and herein we describe
the potential relationship between two B-vitamins, thiamin (B1),
and pyridoxine (B6), concentrations and biogeochemical rates in
the Amazon-influenced WTNA Ocean.

Vitamin B1 is an essential organic growth factor required by
most organisms, and plays an integral role in biogeochemical
reactions involving C transformations (Henkes et al., 2001; Jor-
dan, 2003; Pohl, 2004). It functions by associating with a number
of important enzymes including pyruvate dehydrogenase, which
bridges glycolysis and the citric acid cycle, as well as transketolase,
which plays a critical role in the Calvin cycle (C fixation reactions
of photosynthesis) and the pentose phosphate pathway (Henkes
et al., 2001; Jordan, 2003). Many bacteria and Protista have been
shown to require vitamins.

Vitamin B6 was first identified in 1932 by Ohdake (Ohdake,
1932), and is now known to catalyze over 160 biochemical reac-
tions that mainly involve amino acid transformations (Snell, 1953;
Percudani and Peracchi, 2009). Because the role that the amino
acids glutamine and glutamate have in the assimilation of ammo-
nia (NH3), the product of N2 fixation, which is incorporated into
two amino acids (Staley et al., 2007), we hypothesized that vitamin
B6 concentrations and availability could therefore also influence
the N cycle.

Previous field and laboratory studies have focused on the vita-
mins B1, B7, and B12 as they were thought to be required for
growth, while other B-vitamins (e.g., B6) were largely ignored
(Provasoli and Pintner, 1953; Droop, 1957; Burkholder and
Burkholder, 1958; Carlucci and Bowes, 1970, 1972; Strickland,
2009). This paradigm shifted when the genome of one of the
most abundant bacteria in the ocean, Pelagibacter ubique, was
first published revealing the absence of the genes required for the
biosynthetic pathways of vitamins B1 and B6 (Giovannoni et al.,
2005). P. ubique belongs to the SAR11 clade, which accounts for
a third of all heterotrophic cells present in surface waters (Mor-
ris et al., 2002), and thus plays a large role in the global carbon
cycle (C cycle). Subsequently, the genes required for the de novo
synthesis of B-vitamins were found to be absent from bacteria
belonging to the SAR86 clade, which are highly abundant uncul-
tured members of marine surface bacterial populations (Dupont
et al., 2011). In fact, over half of marine phytoplanktonic species
investigated thus far are auxotrophic, which includes some of the
most abundant and ubiquitous marine species (Croft et al., 2006),
highlighting the importance of external sources of B-vitamins,
including vitamin B1. These genomic data suggest that exoge-
nous B-vitamin pools are essential for the survival of some marine
plankton, as they rely solely on the environment to meet their
B-vitamin requirements. The availability of vitamins B1 and B6

may therefore play a significant role in N and C cycling, and may

be a previously unknown factors contributing to the regulation of
the “biological carbon pump.” However, little is known about the
sources and sinks of B-vitamins in marine systems, or how they
cycle between vitamin producers and consumers.

Despite the biologically important role vitamins B1 and B6 play
in ecologically relevant enzymes involved in C and N cycling, pri-
marily carbohydrate and amino acid metabolism, little is known
about their concentrations or distributions in marine systems. The
objectives of this study were (1) to provide the first directly mea-
sured depth profiles of vitamins B1 and B6 in a highly productive
region of the WTNA, (2) to determine the spatial distributions
of those vitamins in that region, (3) to determine the influence
of the Amazon River Plume on that spatial gradient, and (4) to
determine the importance of these vitamins in C and N cycles.

MATERIALS AND METHODS
Samples were collected in the WTNA on board the R/V Knorr as
part of the Amazon influence on the Atlantic: carbon export from
nitrogen fixation by diatom symbioses (ANACONDAS) project
from May 23 to June 22, 2010. Sampling stations were between
longitude −56.8◦E and −45.0◦E and latitude 4.3◦N and 12.4◦N
(Figure 1). Stations were grouped by sea surface salinity (SSS) and
designated as low-salinity (SSS < 30, stations 4, 9.1, 10, and 11),
mesohaline (30 < SSS > 35, stations 1–3, and 9), and oceanic
(SSS > 35, stations 7, 8, and 27).

Vitamin samples were collected from the top 150 ms using
a Niskin bottle rosette sampler and filtered through a 0.2-μm
Supor filter (PALL, Life Sciences) using a peristaltic pump. The
filtrate was collected in 250 ml acid cleaned high density polyethy-
lene (HDPE) bottles and frozen until analysis. Vitamin samples
were extracted and pre-concentrated according to the method
of Sañudo-Wilhelmy et al. (2012). Briefly, samples were passed
through solid-phase C18 resin at a flow rate of 1 mL/min to con-
centrate vitamins. Samples were adjusted to pH 6.5 before being
passed through the resin, and then adjusted to pH 2.0 to obtain

FIGURE 1 | Study sites in the western tropical North Atlantic (WTNA)

Ocean with degrees latitude north and degrees longitude west

shown. Stations clustered by sea surface salinity (SSS): low-salinity
stations (SSS < 30, yellow circles), mesohaline stations (30 <SSS>35,
green circles), and oceanic/open ocean stations (SSS > 35, blue circles).
Ocean data view (Schlitzer, 2011).
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maximum vitamin recovery. Vitamins were subsequently eluted
off the columns with methanol, dried, and dissolved in 200 μl of
MilliQ water. Vitamin concentrations were then quantified using
liquid chromatography/tandem mass spectrometry (LC/MS/MS).
Each extraction included a blank and spiked positive control to
test for contamination and extraction efficiency. Detection limit
of vitamins B1 and B6 were 0.81 pM and 0.61 pM, respectively
(Sañudo-Wilhelmy et al., 2012). Some controls used for estimating
extraction efficiency with a vitamin spike were compromised by
vitamin-contaminated DI water yielding in some cases efficiency
greater than 100%. However, for most of the samples, extraction
efficiency was close to 100%.

Chlorophyll a (Chl a) samples were collected from a Niskin
bottle rosette into 1L amber bottles, filtered onto 25 mm GF/F
filters and analyzed according to the EPA modified fluorometric
method 445.0 (Arar and Collins, 1997) in a Turner Designs Fluo-
rometer. Sample volumes ranged from 500 mL to 1 L depending
on biomass. In general, oceanic stations utilized 1L volumes, while
mesohaline and low-salinity stations had higher biomass allowing
only 500 mL volumes to be filtered.

N2 fixation and C fixation were performed according to the
method of Montoya et al. (1996) and Montoya and Voss (2006)
using 4 L polycarbonate bottles completely filled and equipped
with silicone rubber caps. Bottles were enriched with 3 mL of
99% 15N2 (Isotec) and 250 μL of 0.1 M NaH13CO3 (Sigma). After
on-deck incubation for 24 h at surface seawater temperature and
simulated conditions of light for the collection depth, bottles were
pre-filtered through 10-μm Nitex mesh onto pre-combusted GF/F
filters. Material on the 10-μm filter was washed onto GF/F filters.
Filters were dried and stored until mass spectrometric analysis in
the laboratory. Isotope abundances were measured by continuous-
flow isotope ratio mass spectrometry using a CE NA2500
elemental analyzer interfaced to a Micromass Optima mass
spectrometer.

Statistical analysis was performed using SigmaPlot’s (Systat
Software Inc.) T-test except when assumptions of normality and
equal variance were violated resulting in the use of the non-
parametric Mann–Whitney rank sum test. The degree to which
C and N2 fixation correlated with each of the B-vitamins was eval-
uated by means of a Pearson product moment correlation test.
Linear regression models were performed using R v2.12.2 statis-
tical programming language (R Development Core Team, 2012).
Exhaustive step-wise general linear regression models and leave
one out cross validation for generalized linear models utilized the
following packages: boot (Canty and Ripley, 2012), leaps (Lumley
and Miller, 2009), random Forest (Liaw and Wiener, 2002), and
data analysis and graphics (DAAG; Maindonald and Braun, 2012).
Due to missing data, the parameters omitted from this analysis
were PAR, Chl a, and cell counts.

RESULTS
CONCENTRATIONS OF B-VITAMINS
Vitamin B1 in the WTNA varied widely among stations and
ranged from undetectable to 229 pM (Figure 2), except for
the surface sample at station 11 measuring 964 pM and was
suspected to be compromised by sample contamination. The low-
est concentrations of vitamin B1 were measured at the oceanic

stations (undetectable to 50 pM) followed by low-salinity stations
(2.5–184 pM), and the highest concentrations were observed at
mesohaline stations (undetectable to 229 pM, Figure 2). Vita-
min B6 concentrations also varied widely among stations ranging
from undetectable to 36 pM. B6 concentrations were lowest at the
mesohaline stations (undetectable to 7 pM) followed by oceanic
stations (undetectable to 20 pM), and were highest at low-salinity
stations (undetectable to 36 pM, Figure 2). In general, higher con-
centrations of B-vitamins were found at lower salinity stations and
were significantly higher in the surface plume water at some sta-
tions suggesting a riverine source (Table 1). There was no clear
spatial trend observed between the two vitamins suggesting they
function and behave differently from one another, and the high
variability suggests a dynamic behavior influenced by sources and
sinks.

POTENTIAL EFFECT OF B-VITAMINS ON BIOLOGICAL PROCESSES
N2 fixation rates were positively correlated with vitamin B1 con-
centrations at station 7, 8 (in the small size class), 9.1, and 10
(Table 2). N2 fixation rates were inversely correlated with vitamin
B1 at stations 1, 4, and 8 (in the large size fraction, Table 2). N2

fixation rates were positively correlated to vitamin B6 concentra-
tions at station 1 (in the small size fraction), 8, 9.1, and 10 (in
the large size fraction, Table 2). N2 fixation rates were negatively
correlated to vitamin B6 at stations 1 (in the large size fraction), 4,
7, and 10 (in the small size fraction, Table 2). However, significant
relationships between increases in N2 fixation rates and vitamin
B1 concentrations were only observed at station 7 in the small size
class (p value 0.045, Figure 3A). A significant inverse relationship
was observed at station 1 in the large size fraction (p value 0.029,
Figure 3B). Significant relationships between increases in N2 fix-
ation rates and vitamin B6 concentrations were only observed at
station 9.1 in the large size class (p value 0.017, Figure 3C).

Carbon fixation rates were positively correlated with vitamin B1

at stations 1 (in the small size fraction), 4, 7, 9.1, and 10 (Table 2).
Carbon fixation rates were inversely correlated to vitamin B1 at
stations 1 (in the large size class) and 8 (Table 2). Carbon fixa-
tion rates were positively correlated with vitamin B6 at stations 1,
9.1, and 10 (Table 2). Carbon fixation rates were inversely corre-
lated with vitamin B6 at stations 4, 7, and 8 (Table 2). However,
significant increases in C fixation rates with increasing B1 concen-
trations were only observed at station 9.1 in both size classes (p
values 0.000008 and 0.004, respectively, Figure 3D). No signifi-
cant relationships between vitamin B6 concentrations and rates of
C fixation were observed.

LINEAR REGRESSION MODELS
Linear regression models included data from all stations except
for station 9 where N2 and C fixation data were not available.
Tests were performed omitting Chl a, photosynthetically active
radiation (PAR), and/or cell counts due to missing data. The lin-
ear model showed that the factors correlating with C fixation in
the small size class included Si, vitamin B1, and water temper-
ature (Figure 4). The model was significant with a p value of
8.83 × 10−11, predictive error (the average deviation between the
known values and the models predicted values) of 721, and an R2

value of 0.522 (Table 3). The model predicting N2 fixation in the
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FIGURE 2 | Depth profiles of dissolved vitamins (B1 and B6) measured in

the WTNA Ocean; (A) low-salinity stations; (B) mesohaline stations; (C)

oceanic/open ocean stations. Stations are ordered by sea surface salinity
(SSS) moving from the lowest to highest SSS. Surface concentration of

vitamin B1 for station 11 (964.8 ± 426 pM) omitted due to concerns with
possible contamination and for visualization of variation within the depth
profile (average concentrations ± 1 standard deviation). Vertical lines show
the detection limit (D/L) of vitamin B1 (solid line) and B6 (dashed line).
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Table 1 | Statistical test results comparing B vitamin concentrations at surface depths with below surface or halocline depths. Vitamin B1

followed by B6, the specific statistical test, failedT -test assumptions, and p value for each station is listed.

Station Station type Surface

concentrations

Test Failed

assumption

p value

B1

1 Mesohaline Higher Mann–Whitney Normality 0.002

2 Mesohaline Lower Mann–Whitney Equal variance <0.001

7 Oceanic Higher T -test <0.001

9 Mesohaline Higher T -test <0.001

9.1 Low-salinity Higher Mann–Whitney Normality 0.044

10 Low-salinity Higher T -test 0.018

11 Low-salinity Higher Mann–Whitney Normality 0.009

27 Oceanic Higher T -test 0.006

B6

2 Mesohaline Higher T -test 0.001

7 Oceanic Lower Mann–Whitney Normality 0.005

Table 2 | Correlation coefficients of vitamins B1 and B6 with nitrogen and carbon fixation in the less than and greater than 10-μm size classes,

direction of relationships, correlation coefficients, and p values.

Correlation coefficients (p value)

Station N fix <10 N fix >10 C fix <10 C fix >10

B1

1 −0.581 (0.304) −0.916 (0.029) 0.236 (0.703) −0.694 (0.194)

4 −0.072 (0.86) −0.358 (0.35) 0.183 (0.64) 0.073 (0.85)

7 0.820 (0.045) 0.215 (0.68) 0.597 (0.21) 0.103 (0.85)

8 0.288 (0.580) −0.189 (0.760) −0.174 (0.742) −0.416 (0.413)

9.1 0.430 (0.40) 0.395 (0.44) 0.998 (<0.001) 0.95 (0.004)

10 0.691 (0.129) 0.547 (0.261) 0.430 (0.394) 0.609 (0.200)

B6

1 0.315 (0.606) −0.697 (0.191) 0.659 (0.227) 0.177 (0.776)

4 −0.200 (0.61) −0.273 (0.48) −0.416 (0.27) −0.290 (0.449)

7 −0.392 (0.44) −0.301 (0.56) −0.394 (0.44) −0.024 (0.964)

8 0.627 (0.183) 0.307 (0.616) −0.0728 (0.891) −0.0547 (0.918)

9.1 0.780 (0.067) 0.892 (0.017) 0.58 (0.227) 0.645 (0.167)

10 −0.0741 (0.889) 0.133 (0.801) 0.190 (0.718) 0.195 (0.711)

larger size class showed the most important factors were temper-
ature, mixed layer depth (MLD), and vitamin B6 (Figure 4). The
model was significant with a p value of 3.92 × 10−4, predictive
error of 6.7 × 10−4, and an R2 value of 0.241 (Table 3).

DISCUSSION
This is the first study to measure directly the B-vitamins, B1 and B6,
in the WTNA euphotic zone within the influence of the Amazon
River plume. We observed high variability in the concentrations
and distributions of these vitamins in the area of study. Vita-
min B1 was found below the limit of detection at mesohaline

station 3 (31 and 51 m) and oceanic station 8 (2, 10, and 100 m),
and vitamin B6 was found to be below the limit of detection at
low-salinity station 4 (8 m), mesohaline stations 3 and 9 (51 and
100 m, respectively, and oceanic station 8 (10 m). The low con-
centrations of B-vitamins and high spatial variability observed
were consistent with previous studies. In fact, in large regions of
the Eastern Pacific Ocean between 24◦N and 34◦N, B-vitamins
were found to be below the limit of detection (Sañudo-Wilhelmy
et al., 2012). The ranges of vitamin B1 concentrations measured
in this study (0.05 to ∼1000 pM) are consistent with previously
published results from both bioassays and direct measurements
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FIGURE 3 | Carbon and nitrogen fixation rates in the less than and greater than 10-μm size classes with B vitamin depth profiles. (A) Station 7; (B)

Station 1; (C) Station 9.1; (D) Station 9.1.

(Table 4). The concentration of B1 measured using bioassays
ranged from 33 to 1633 pM in the North Pacific Ocean (Natarajan
and Dugdale, 1966), 36 to 1500 pM in the subarctic Pacific Ocean
(Natarajan, 1970), 16 to 133 pM in the Southern California Coastal
zone (Eppley et al., 1972), and direct measurements of vitamin B1

ranged from 200 to 600 pM in the Stony Brook Harbor channel and
Peconic River (Okabamichael and Sañudo-Wilhelmy, 2005), 0.7 to
30 pM in the North Atlantic ocean (Panzeca et al., 2008), and from
undetectable to 500 pM in the Southern California-Baja California
coast (Sañudo-Wilhelmy et al., 2012). Vitamin B6 concentrations
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FIGURE 4 | Multiple linear regression models. Nutrients; phosphate,
PO3−

4 ; silicate, dSi; thiamin, B1; mixed layer depth, MLD;
photosynthetically active radiation, PAR; fluorescence, fluor.; and
temperature (◦C), Temp. Stations are separated by sea surface salinity
(SSS), solid line below low-salinity stations, dotted line below mesohaline
stations, and dashed line below oceanic stations, (A) Carbon fixation
<10-μm size class, and (B) Nitrogen fixation >10-μm size class.

in the WTNA ranged from undetectable to 40 pM and were gen-
erally lower than previous measurements from the North Pacific
Ocean, specifically from the Santa Monica Basin (70–284 pM),
Rosario (255–386 pM), and Magdalena (40–393 pM) from the
upper 150 m, and Vizcaino (159–360 pM) from the upper 120 m
of the water column (Sañudo-Wilhelmy et al., 2012). However,
they fell within the range measured at Soledad (3.5–49 pM) from
the upper 150 m and Pescadero (4.6–180 pM) from the upper
180 m of the water column (Sañudo-Wilhelmy et al., 2012). In
summary, the concentrations of B-vitamins observed in this study
were consistent with previous results showing they vary spatially,
and are often found below the limit of detection.

Recent studies on the role that B-vitamins play in marine
ecosystems have shown that they can limit or co-limit primary
production (Panzeca et al., 2006, 2008; Bertrand et al., 2007; Gob-
ler et al., 2007; Tang et al., 2010). Although this study did not
directly investigate the effects of vitamin additions on biological
processes, some conclusions can be drawn from the correlations
between vitamin concentrations and rates of N2 and C fixation.
This study found a significant increase in C fixation with increas-
ing ambient B1 concentrations at low-salinity station 9.1 in both
size classes (p value ≤0.004, Table 2). At low-salinity station 4, the
lack of correlation between C fixation and B1 concentrations could
be explained by the high abundance of the diatom Coscinodiscus
sp. Based on isolates that have been studied it appears that this
diatom species does not require vitamin B1 (Croft et al., 2006) and
likely contributed to the majority of C fixation at this station. Sig-
nificant increases in N2 fixation were also found with increasing
B1 in the large size class at station 1 (p value 0.029) and oceanic
station 7 in the small size class (p value <0.045). These data suggest
that B1 may be limiting or co-limiting N2 fixation in some areas
of the WTNA since low PO3−

4 concentrations were also measured
at station 7, and PO3−

4 has been previously shown to limit N2

fixation (Sañudo-Wilhelmy et al., 2001; Mills et al., 2004; Webb
et al., 2007; Moutin et al., 2008; Van Mooy et al., 2009). Hence,
vitamin B1 appears to be playing a role in C and N2 fixation in
both riverine influenced and open ocean stations. These results
are consistent with the role of B1 in C metabolism but the role B1

plays in N metabolism is less clear. However, pyruvate-ferredoxin
oxidoreductase, an enzyme crucial for electron transfer to nitro-
genase, requires thiamin (Brostedt and Nordlund, 1991; Bothe
et al., 2010) and some diazotrophs have been shown to be B1 aux-
otrophs, suggesting that B1 availability in the environment may
be limiting the N biogeochemical cycle. N2 fixation was found
to increase with increasing vitamin B1 at one low-salinity station;
however, this was not observed at other stations. Therefore, fur-
ther investigations such as vitamin addition experiments which
show an increase of N2 fixation with B1 amendments, are required
to fully understand the role of this vitamin in the WTNA N and
C cycles. However, the tight correlation between B1 and C fixa-
tion observed at station 9.1 (Figure 3D) suggests that this vitamin
may also be important for C fixation in the WTNA, and argues for
further study.

N2 fixation co-varied with vitamin B6 at low-salinity station
9.1; significant positive relationships were found in larger size
class between vitamin B6 and N2 fixation (p value < 0.017).
However, there was not a significant relationship between N2 fix-
ation and concentrations of vitamin B6 at the other stations. No
significant relationships were observed between C fixation and
vitamin B6 concentrations at any stations. Independence of vita-
min B6 and N2 fixation can be explained by other factors; for
instance, at station 7, low nutrient concentrations were observed
and dissolved P may have limited N2 fixation, while station 4
was dominated with the diatom Coscinodiscus sp. whose require-
ments for B6 are currently unknown. Thus, at some stations
N2 fixation appears dependent on B-vitamins, which appears to
be limiting or co-limiting biogeochemical cycles in the WTNA.
Since there were few correlations between vitamin concentra-
tion and rate measurements, either standing concentrations are
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Table 3 | Multiple linear regression model factor coefficients and statistical results for carbon fixation in the less than 10-μm size class and

nitrogen fixation in the greater than 10-μm size class.

Model Factor coefficients Intercept Predictive error Adjusted R -squared p value

C

Si B1 Temp

1.81E+00 −7.43E−02 4.25E+00 −1.04E +02 7.21E +02 5.22E−01 8.83E−11

N

Temp MLD B6

7.03E−03 4.72E−04 −1.21E−03 −1.80E−01 6.70E−04 2.41E−01 3.92E−04

Table 4 | Global B vitamin concentrations including current and previous studies. n/a not available, n/d not detectable.

Location Lat. Long Depth (m) Method Range (pM) Reference

B1

North Atlantic Ocean 4.3–12.4 −56.8 to −45 150 direct 0.05–1000 This study

North Pacific Ocean 58 134 to 137 150 bioassay 33–1633 Natarajan and Dugdale (1966)

Subarctic Pacific Ocean 52–58 153 to 170 150 bioassay 36–1500 Natarajan (1970)

Southern CA Coastal zone −117 to −119 32 to 34 80 bioassay 16–133 Eppley et al. (1972)

Stony Brook Harbor n/a n/a surface direct 230–310 Okabamichael and Sañudo-Wilhelmy (2005)

North Atlantic ocean 45–66 −14 to −24 surface direct 0.7–30 Panzeca et al. (2008)

Southern CA-Baja 113–119 34–23 180 direct 0.34–122 Sañudo-Wilhelmy et al. (2012)

B6

North Atlantic Ocean 4.3–12.4 −56.8 to −45 150 direct n/d to 40 This study

Santa Monica Basin −119.03 33.84 150 direct 70–284 Sañudo-Wilhelmy et al. (2012)

Rosario −116.08 29.8 150 direct 255–368 Sañudo-Wilhelmy et al. (2012)

Vizcaino −114.52 27.01 120 direct 159–360 Sañudo-Wilhelmy et al. (2012)

Soledad −112.71 25.22 150 direct 3.5–49 Sañudo-Wilhelmy et al. (2012)

Magdalena −111.57 23.2 150 direct 40–393 Sañudo-Wilhelmy et al. (2012)

Pescadero −108.2 24.28 180 direct 4.6–180 Sañudo-Wilhelmy et al. (2012)

a poor measure, auxotrophic phytoplankton are not commonly
abundant, or they are getting their vitamins through symbio-
sis (Croft et al., 2005). However, to determine the extent that
N and C cycles are actually dependent on vitamin B6, more
extensive studies including vitamin addition experiments will be
required.

Multiple linear regression models were used to identify the envi-
ronmental variables that correlated with biogeochemical cycles in
the WTNA Ocean during our study. Variables correlating to C
fixation in the small size class included Si, vitamin B1, and tem-
perature. Two of these variables, Si and water temperature, were
also identified as factors affecting the distribution of N2 and C
fixing organisms in previous studies (Coles and Hood, 2007; Fos-
ter et al., 2007; Webb et al., 2007; Sohm and Capone, 2008; Hynes
et al., 2009; Van Mooy et al., 2009; Sohm et al., 2011a,b). Model
results were consistent with the role that vitamin B1 plays in the
Calvin cycle and C metabolism (Natarajan, 1970; Jordan, 2003).
Our analysis showed that temperature, MLD, and vitamin B6 cor-
related to N2 fixation in the greater size fraction. Measured N2

fixation rates were on average an order of magnitude less than

modeled rates except at depths where the highest rates of N2 fix-
ation were measured. When the highest rates of N2 fixation were
observed, measured rates were an order of magnitude greater than
the modeled rates (Figure 4). This pattern was observed across
all station types and resulted in the models low R2 value. How-
ever, this is consistent with the role vitamin B6 plays in catalyzing
many diverse amino acid transformations (Percudani and Perac-
chi, 2009), specifically with the assimilation of NH3 into the amino
acids glutamine and glutamate. Collectively, these results suggest
that vitamin B1 and B6 could be important organic growth factors
affecting biologically mediated C and N2 fixation in the WTNA
Ocean.

Insights into the potential ecological importance of B-vitamins
have been investigated by determining half-saturation constants
(K s) for maximal growth for vitamins B1 and B12 for some
phytoplankton species (Tang et al., 2010). However, the K s for
diazotrophic microorganisms and B-vitamins have yet to be
determined. The K s of maximal growth rates for different phy-
toplankton species for vitamin B1 ranged from 6 to 184 pM.
Some of our measured concentrations of B1 were below the K s
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suggesting that vitamin B1 may be a limiting growth factor in the
WTNA. Future studies are needed to determine the K s for maxi-
mal growth on different B-vitamins of endemic WTNA plankton
species, which will help to establish the ecological framework
and importance of directly measured environmental B-vitamin
concentrations.

The influence of the Amazon River plume on B-vitamin con-
centrations and the sources of B-vitamins in the WTNA are still
unresolved. Although it has been hypothesized that fresh water
inputs from rivers and groundwater can be a source of B-vitamins
to marine systems (Gobler et al., 2007), clear patterns were not
observed to support this in the WTNA Ocean. As a general trend,
there was an increase in B-vitamins as salinity decreased but
no linear relationship was observed, suggesting that mixing of
river and seawater did not solely control it. An inverse corre-
lation was observed with vitamin B1 concentration and SSS (R
value 0.25, data not shown), but no correlation was observed
between vitamin B6 and SSS (R value 0.002, data not shown).
The surface water sampled during this cruise was estimated to be
nearly 30 days out from the mouth of the river, and may explain
the weak correlations found between SSS and B-vitamin concen-
trations. Further studies investigating B vitamin concentrations
near the discharge point of the Amazon River should help resolve

whether the river is a source of vitamins to the WTNA. In addi-
tion, the removal processes of B-vitamins are poorly understood,
and the half-life of these vitamins has yet to be determined. How-
ever, the half-life of some vitamins (B1 and B12) in seawater has
been shown to occur on time scales from days to weeks (Gold
et al., 1966; Carlucci et al., 1969), suggesting that they are highly
dynamic and that local production may be an important biolog-
ically available source of B-vitamins. Our understanding of the
ecological importance of B-vitamins in marine systems is con-
tinuing to increase, with the current study demonstrating that
B-vitamins are highly variable and could significantly influence
both N2 and C fixation in the WTNA Ocean. However, further
studies are needed to determine the sources, sinks, and cycling
of B-vitamins in oceanographic sensitive marine systems, such as
the WTNA.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
grant OCE-00934095 and OCE-0934073 to Patricia L. Yager and
Douglas G. Capone, respectively. The authors would also like to
thank Chief Scientist Patricia L. Yager for providing the opportu-
nity to collect field samples, and the Captain and crew of the R/V
Knorr.

REFERENCES
Arar, E. J., and Collins, G. B. (1997).

“Method 445.0: In vitro determi-
nation of chlorophyll a and pheo-
phytin a in marine and freshwater
algae by fluorescence. Revision 1.2,”
in Methods for the Determination of
Chemical Substances in Marine and
Estuarine Envioronmental Matrices,
2nd Edn. National Exposure Research
Laboratory, Office of Research
and development, USEPA, Cincin-
nati, OH.

Bertrand, E. M., Saito, M. A., Rose, J.
M., Riesselman, C. R., Lohan, M.
C., Noble, A. E., et al. (2007). Vita-
min B 12 and iron colimitation of
phytoplankton growth in the Ross
Sea. Limnol. Oceanogr. 52, 1079–
1093.

Bothe, H., Schmitz, O., Yates, M. G.,
and Newton, W. E. (2010). Nitrogen
fixation and hydrogen metabolism in
cyanobacteria. Microbiol. Mol. Biol.
Rev. 74, 529–551.

Boyle, E., Huested, S., and Grant, B.
(1982). The chemical mass balance
of the Amazon plume-II. Copper,
nickel, and cadmium. Deep Sea Res.
A 29, 1355–1364.

Brostedt, E., and Nordlund, S. (1991).
Purification and partial characteri-
zation of a pyruvate oxidoreductase
from the photosynthetic bacterium
Rhodospirillum rubrum grown under
nitrogen-fixing conditions. Biochem.
J. 279, 155–158.

Burkholder, P. R., and Burkholder, L.
M. (1958). Studies on B vitamins in
relation to productivity of the Bahia

Fosforescente, Puerto Rico. Bull. Mar.
Sci. 8, 201–223.

Canty, A., and Ripley, B. (2012). boot:
Bootstrap R (S-Plus) Functions. R
package version 1.3–4.

Capone, D. G., Zehr, J. P., Paerl, H.
W., Bergman, B., and Carpenter, E.
J. (1997). Trichodesmium, a globally
significant marine cyanobacterium.
Science 276, 1221–1229.

Carlucci, A., and Bowes, P. M. (1970).
Production of vitamin B12, thiamine,
and biotin by phytoplankton. J. Phy-
col. 6, 351–357.

Carlucci, A., and Bowes, P. M. (1972).
Determination of vitamin B12, thi-
amine, and biotin in Lake Tahoe
waters using modified marine bioas-
say techniques. Limnol. Oceanogr. 17,
774–777.

Carlucci, A. F., Severmann, S. B., and
McNally, P. M. (1969). Influence of
temperature and solar radiation on
persistence of vitamin B12, thiamine,
and biotin in seawater. J. Phycol. 5,
302–305.

Carpenter, E. J., Montoya, J. P., Burns,
J., Mulholland, M. R., Subrama-
niam, A., and Capone, D. G.
(1999). Extensive bloom of a N2-
fixing diatom/cyanobacterial associ-
ation in the tropical Atlantic Ocean.
Mar. Ecol. Prog. Ser. 185, 273–283.

Coles, V., and Hood, R. (2007).
Modeling the impact of iron and
phosphorus limitations on nitrogen
fixation in the Atlantic Ocean. Bio-
geosciences 4, 455–479.

Croft, M. T., Lawrence, A. D., Raux-
Deery, E., Warren, M., and Smith,

A. G. (2005). Algae acquire vitamin
B12 through a symbiotic relationship
with bacteria. Nature 438, 90–93.

Croft, M. T., Warren, M. J., and Smith, A.
G. (2006). Algae need their vitamins.
Eukaryot. Cell 5, 1175–1183.

Droop, M. (1957). Auxotrophy and
organic compounds in the nutrition
of marine phytoplankton. J. Gen.
Microbiol. 16, 286–293.

Dupont, C. L., Rusch, D. B., Yooseph, S.,
Lombardo, M. J., Richter, R. A., Valas,
R., et al. (2011). Genomic insights
to SAR86, an abundant and unculti-
vated marine bacterial lineage. ISME
J. 6, 1186–1199.

Eppley, R., Carlucci, A., Holm-
Hansen, O., Kiefer, D., McCarthy,
J., and Williams, P. (1972). Evidence
for eutrophication in the sea near
Southern California coastal sewage
outfalls, July, 1970. Calif. Mar.
Res. Comm. CalCOFI Rept. 16,
74–83.

Foster, R., Subramaniam, A., Mahaffey,
C., Carpenter, E., Capone, D., and
Zehr, J. (2007). Influence of the Ama-
zon River plume on distributions of
free-living and symbiotic cyanobac-
teria in the western tropical north
Atlantic Ocean. Limnol. Oceanogr.
517–532.

Giovannoni, S. J., Tripp, H. J., Givan, S.,
Podar, M., Vergin, K. L., Baptista, D.,
et al. (2005). Genome streamlining
in a cosmopolitan oceanic bacterium.
Science 309, 1242–1245.

Gobler, C., Norman, C., Panzeca, C.,
Taylor, G., and Sañudo-Wilhelmy,
S. (2007). Effect of B-vitamins (B1,

B12) and inorganic nutrients on
algal bloom dynamics in a coastal
ecosystem. Aquat. Microb. Ecol. 49,
181–194.

Gold, K., Roels, O. A., and Bank,
H. (1966). Temperature dependent
destruction of thiamine in seawater.
Limnol. Oceanogr. 11, 410–413.

Henkes, S., Sonnewald, U., Badur,
R., Flachmann, R., and Stitt, M.
(2001). A small decrease of plas-
tid transketolase activity in antisense
tobacco transformants has dramatic
effects on photosynthesis and phenyl-
propanoid metabolism. Plant Cell 13,
535–551.

Hynes, A. M., Chappell, P. D., Dyhrman,
S. T., Doney, S. C., and Webb, E.
A. (2009). Cross-basin comparison
of phosphorus stress and nitrogen
fixation in Trichodesmium. Limnol.
Oceanogr. 54, 1438–1448.

Jordan, F. (2003). Current mecha-
nistic understanding of thiamin
diphosphate-dependent enzymatic
reactions. Nat. Prod. Rep. 20,
184–201.

Liaw, A., and Wiener, M. (2002). Clas-
sification and regression by random
forest. R News 2, 18–22.

Lumley, T. using Fortran code by
Miller, A. (2009). Leaps: Regression
Subset Selection. R Package Version
2.9. Available at: http://CRAN.R-
project.org/package=leaps

Maindonald, J., and Braun, W. J. (2012).
DAAG: Data Analysis and Graphics
data and functions. R package version
1.12. Available at: http://CRAN.R-
project.org/package=DAAG

www.frontiersin.org March 2013 | Volume 4 | Article 25 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Aquatic_Microbiology/archive


“fmicb-04-00025” — 2013/3/6 — 11:29 — page 10 — #10

Barada et al. North Atlantic Ocean thiamin and pyridoxine

McDaniel, L., Woolley, D., and Peter-
son, W. (1939). Growth factors for
bacteria. J. Bacteriol. 37, 259–268.

Mills, M., Ridame, C., Davey, M., La
Roche, J., and Geider, R. (2004).
Iron and phosphorus co-limit nitro-
gen fixation in the eastern trop-
ical North Atlantic. Nature 429,
292–294.

Montoya, J. P., and Voss, M. (2006).
“Nitrogen cycling in anoxic waters:
isotopic signatures of nitrogen trans-
formations in the Arabian Sea Oxy-
gen Minimum Zone,” in Past and
Present Water Column Anoxia (NATO
Science Series IV: Earth and Environ-
mental Sciences), ed. L. N. Neretin,
Dordrecht: Springer.

Montoya, J. P., Voss, M., Kahler,
P., and Capone, D. G. (1996).
A simple, high-precision, high-
sensitivity tracer assay for N2 fixa-
tion. Appl. Environ. Microbiol. 62,
986–993.

Morris, R. M., Rappé, M. S., Connon,
S. A., Vergin, K. L., Siebold, W. A.,
Carlson, C. A., et al. (2002). SAR 11
clade dominates ocean surface bac-
terioplankton communities. Nature
420, 806–810.

Moutin, T., Karl, D. M., Duhamel,
S., Rimmelin, P., Raimbault, P.,
Van Mooy, B. A. S., et al. (2008).
Phosphate availability and the ulti-
mate control of new nitrogen input
by nitrogen fixation in the tropi-
cal Pacific Ocean. Biogeosciences 5,
95–109.

Natarajan, K. (1970). Distribution and
significance of vitamin B12 and thi-
amine in the Subarctic Pacific Ocean.
Limnol. Oceanogr. 15, 655–659.

Natarajan, K. V., and Dugdale, R.
C. (1966). Bioassay and distribu-
tion of thiamine in the sea. Limnol.
Oceanogr. 11, 621–629.

Ohdake, S. (1932). Isolation of
“Oryzanin” (Antineuritic Vitamin)
from Rice-polishings. (First Report,).
Bull. Agr. Chem. Soc. Japan 8,
11–46.

Okabamichael, M., and Sañudo-
Wilhelmy, S. A. (2005). Direct

determination of vitamin B. Limnol.
Oceanogr. Methods 3, 241–246.

Panzeca, C., Beck, A. J., Leblanc,
K., Taylor, G. T., Hutchins, D. A.,
and Sañudo-Wilhelmy, S. A. (2008).
Potential cobalt limitation of vitamin
B12 synthesis in the North Atlantic
Ocean. Global Biogeochem. Cycles 22,
1–7.

Panzeca, C., Tovar-Sanchez, A., Agusti,
S., Reche, I., Duarte, C., Taylor, G.,
et al. (2006). B vitamins as regulators
of phytoplankton dynamics. Eos 87,
593–596.

Percudani, R., and Peracchi, A.
(2009). The B6 database: a tool
for the description and classification
of vitamin B6-dependent enzymatic
activities and of the corresponding
protein families. BMC Bioinformatics
10:273–281. doi: 10.1186/1471-2105-
10-273

Pohl, M. (2004). A new perspective
on thiamine catalysis. Curr. Opin.
Biotechnol. 15, 335–342.

Provasoli, L., and Pintner, I. J. (1953).
Ecological implications of in vitro
nutritional requirements of algal flag-
ellates. Ann. N. Y. Acad. Sci. 56,
839–851.

R Development Core Team (2012).
R: A language and environment for
statistical computing. R Foundation
for Statistical Computing, Vienna,
Austria.

Sañudo-Wilhelmy, S. A., Cutter, L.
S., Durazo, R., Smail, E., Gomez-
Consarnau, L., Webb, E. A., et al.
(2012). Multiple B-vitamin defi-
ciency in large areas of the coastal
ocean. Proc. Natl. Acad. Sci. U.S.A.
109, 14041–14045.

Sañudo-Wilhelmy, S. A., Kustka, A. B.,
Gobler, C. J., Hutchins, D. A., Yang,
M., Lwiza, K., et al. (2001). Phospho-
rus limitation of nitrogen fixation by
Trichodesmium in the central Atlantic
Ocean. Nature 411, 66–69.

Schlitzer, R., (2011). Ocean Data View.
Available at: http://odv.awi.de

Snell, E. E. (1953). Metabolic signifi-
cance of B-vitamins. Physiol. Rev. 33,
509–524.

Sohm, J. A., Subramaniam, A., Gun-
derson, T. E., Carpenter, E. J., and
Capone, D. G. (2011a). Nitrogen
fixation by Trichodesmium spp. and
unicellular diazotrophs in the North
Pacific Subtropical Gyre. J. Geophys.
Res. 116, 2156–2202.

Sohm, J. A., Webb, E. A., and Capone,
D. G. (2011b). Emerging patterns of
marine nitrogen fixation. Nat. Rev.
Microbiol. 9, 499–508.

Sohm, J., and Capone, D. (2008).
Assessment of relative Phosphorus
limitation of Trichodesmium spp. in
the North Pacific, North Atlantic,
and the North Coast of Aus-
tralia. Limnol. Oceangr. 53, 2495–
2502.

Staley, J. T., Guns alus, R. P., Lory,
S., and Perry, J. J. (2007). Micro-
bial Life, 2nd Edn. Sunderland, MA:
Sinauer Associates, Inc., 279–282,
775–776.

Strickland, J. D. H. (2009). Vitamin
B12, thiamine, biotin. The ecology of
the phytoplankton off La Jolla, Cal-
ifornia, in the period April through
September, 1967. Bull. Scripps Inst.
Oceanogr. 17, 23–31.

Subramaniam, A., Yager, P., Carpen-
ter, E., Mahaffey, C., Björkman,
K., Cooley, S., et al. (2008). Ama-
zon River enhances diazotrophy and
carbon sequestration in the trop-
ical North Atlantic Ocean. Proc.
Natl. Acad. Sci. U.S.A. 105, 10460–
10465.

Tang, Y. Z., Koch, F., and Gobler, C.
J. (2010). Most harmful algal bloom
species are vitamin B1 and B12 aux-
otrophs. Proc. Natl. Acad. Sci. U.S.A.
107, 20756–20762.

Tovar-Sanchez, A., and Sañudo-
Wilhelmy, S. A. (2011). Influence of
the Amazon River on dissolved and
intra-cellular metal concentrations
in Trichodesmium colonies along the
western boundary of the sub-tropical
North Atlantic Ocean. Biogeosciences
8, 217–225.

Van Mooy, B. A. S., Fredricks, H. F.,
Pedler, B. E., Dyhrman, S. T., Karl,
D. M., Koblížek, M., et al. (2009).

Phytoplankton in the ocean use
non-phosphorus lipids in response
to phosphorus scarcity. Nature 457,
69–72.

Voet, D., Voet, J. G., and Pratt, C.
W. (2001). Fundamentals of Biochem-
istry, 3rd Edn. New Jersey: Wiley,
449–450.

Webb, E. A., Jakuba, R. W., Moffett,
J. W., and Dyhrman, S. T. (2007).
Molecular assessment of phospho-
rus and iron physiology in Tri-
chodesmium populations from the
western Central and western South
Atlantic. Limnol. Oceanogr. 52, 2221–
2232.

Wood, F. E. J. (1966). A phytoplank-
ton study of the Amazon region. Bull.
Mar. Sci. 16, 102–123.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 02 October 2012; accepted:
30 January 2013; published online: 07
March 2013.
Citation: Barada LP, Cutter L, Mon-
toya JP, Webb EA, Capone DG and
Sañudo-Wilhelmy SA (2013) The distri-
bution of thiamin and pyridoxine in the
western tropical North Atlantic Amazon
River plume. Front. Microbiol. 4:25. doi:
10.3389/fmicb.2013.00025
This article was submitted to Frontiers
in Aquatic Microbiology, a specialty of
Frontiers in Microbiology.
Copyright © 2013 Barada, Cutter, Mon-
toya, Webb, Capone and Sañudo-
Wilhelmy. This is an open-access arti-
cle distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and subject to any copyright notices
concerning any third-party graphics etc.

Frontiers in Microbiology | Aquatic Microbiology March 2013 | Volume 4 | Article 25 | 10

http://dx.doi.org/10.3389/fmicb.2013.00025
http://dx.doi.org/10.3389/fmicb.2013.00025
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Aquatic_Microbiology/
http://www.frontiersin.org/Aquatic_Microbiology/archive

	The distribution of thiamin and pyridoxine in the western tropical North Atlantic Amazon River plume
	Introduction
	Materials and methods
	Results
	Concentrations of B-vitamins
	Potential effect of B-vitamins on biological processes
	Linear regression models

	Discussion
	Acknowledgments
	References


