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Human mobility continues to increase in terms of volumes and reach, producing growing global
connectivity. This connectivity hampers efforts to eliminate infectious diseases such as malaria through
reintroductions of pathogens, and thus accounting for it becomes important in designing global,
continental, regional, and national strategies. Recent works have shown that census-derived migration data
provides a good proxy for internal connectivity, in terms of relative strengths of movement between
administrative units, across temporal scales. To support global malaria eradication strategy efforts, here we
describe the construction of an open access archive of estimated internal migration flows in endemic
countries built through pooling of census microdata. These connectivity datasets, described here along with
the approaches and methods used to create and validate them, are available both through the WorldPop
website and the WorldPop Dataverse Repository.
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Background & Summary
According to the International Organization for Migration1 and The World Bank2, without accounting
for seasonal and temporary migrants, more than 1 billion people are currently living outside their places
of origin, with about 740 million of them classified as internal migrants. Additionally, in 2014 around
67 million passengers travelled on international and domestic flights every week3 and hundreds of
millions are estimated to commute daily by public transport and private vehicles4. Human mobility is
expected to continue rising in volume and reach, producing increasing global connectivity that has a
range of impacts, including rising numbers of invasive species, the spread of drug resistance, and disease
pandemics. In this context, quantifying human mobility across multiple temporal and spatial scales,
becomes crucial for quantifying its effects on society5–7, evaluating its relationship with the
environment8,9, better understanding human-related processes such as urbanization and land use
change10–13, and providing a strong evidence base to support both development14–16 and public
health17–19 applications and policies.

In public health, the role of human mobility in the spread of infectious diseases is exemplified by the
presence of HIV/AIDS in areas outside where it first emerged at the beginning of the twentieth
century20–22, the 2003 SARS epidemic23, the 2007 Chikungunya outbreaks in Italy and France24,25, the
2009 H1N1 pandemic26, the 2014 Ebola outbreak in Western Africa27, the resurgence of malaria cases in
areas where the disease was once eliminated28, and the worldwide spread of drug resistant pathogens29.
Consequently, it is clear that to provide better informed guidelines, both at the national and international
level, the effects of human mobility and connectivity in driving disease dynamics need to be better
understood and accounted for refs 30–33.

Local malaria elimination and global malaria eradication are rising up the international agenda34–36.
Evidence from the previous global malaria eradication program37, as well as from recent studies, control
campaigns, and elimination efforts38–41 highlight the importance of accounting for human mobility in
designing elimination plans. Infected people may unknowingly transport malaria parasites (potentially
including antimalarial-resistant strains42) into new areas. Parasites can be imported either from other
countries43 or from other areas within the same country44. Thus, because of the flow of imported cases
from high- to low-transmission settings, the latter will face difficulties in achieving elimination and
maintaining malaria-free status if it is achieved43. Nevertheless, despite the importance of these dynamics
being long recognized45,46, attempts to translate human mobility model outputs into malaria policy are
still rare47.

As detailed in Tatem7, sources of human mobility data potentially useful for modelling pathogen
movements include: air and sea travel data records (including open access modelled versions of them);
census migration data; travel history and displacement surveys; GPS tracking data and volunteered
geographic information (with the latter including geolocated social media data), and even satellite night-
time light data. In particular, patient travel history data, containing detailed demographic information
and travel motivations, are traditionally used to understand malaria parasite importation patterns48–50.
Recently, mobile phone call detail records (CDRs) have been increasingly used for measuring short-term
human movements51,52 and thus, either alone38,53,54 or in combination with travel history data55 and
malaria case data, for supporting malaria control and elimination strategic planning.

However, because of difficulties in sharing and accessing CDRs (mostly due to commercial and
privacy concerns)7,56,57, alternative datasets are required in order to quantify and map internal
connectivity across continental scales. To this end, using CDRs, Wesolowski et al.56 and Ruktanonchai
et al.58 demonstrated that widely-available and easy-to-obtain census-derived internal migration flow
data can serve as reliable proxies for the relative strength of within-country human connectivity across
multiple temporal scales.

Within the framework of the WorldPop Project (www.worldpop.org), and following the approaches
described in Henry et al.59 and Garcia et al.60 (Fig. 1), internal census-based migration microdata
available through the online IPUMS-International (IPUMSI) database61, along with a number of other
ancillary datasets, were assembled and processed to produce an open access archive of estimated 5-year
(2005–2010) internal human migration flows for every Plasmodium falciparum and Plasmodium vivax
(hereafter simply referred as Pf and Pv, respectively) endemic country62,63 (Supplementary Table 1).

Methods
Estimating internal migration flows between administrative units
Following Garcia et al.60 a gravity model-based approach was used to estimate the total number of people
migrating from one administrative unit to any other administrative unit, between 2005 and 2010,
within each malaria endemic country located in Africa, Asia, Latin America and the Caribbean62,63

(Supplementary Table 1).
The simplest gravity-type spatial interaction model, proposed by Zipf64, considers the total population

in a location of origin i and in a location of destination j (henceforth simply indicated as i and j), and the
distance between the two locations to predict the migration flow (MIGij) between them. Thus, migration
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flows between administrative units can be estimated using the following function:

MIGij ¼
Pα
i P

β
j

dγij
ð1Þ

where Pα
i and Pβ

j represent the populations in the location of origin i and of destination j, respectively,
and dγij represents the distance between i and j; with α, β, and γ being parameters, used to indicate the
magnitude of the effect for each covariate, that are typically estimated in the statistical modelling
framework.

In this study, following the notation from Henry et al.59 and Garcia et al.60, the basic gravity-type
spatial interaction in equation (1) was extended in order to include additional geographical and
socioeconomic factors described in detail in the Data collection and preparation subsection below. Since
the census-based migration microdata extracted from the IPUMSI database61 represent only a sample of
the total census, a logistic regression was used to model the proportion of people migrating between
administrative units65. In particular, the logistic regression was used to model the proportion of people
residing in j in the census year who were in i ‘n’ years prior to the census. Thus, the proportion of
migrants in j in the census year that were previously residing in i was estimated using the following
logistic regression function:

pij ¼
eβ0þβ1Piþβ2Pj - β3dij

1þ eβ0þβ1Piþβ2Pj - β3dij
ð2Þ

where pij ¼ MIGij=TOTj; with MIGij and TOTj representing the number of people residing in j in the
census year that were in i ‘n’ years prior to the census and the total population residing in j in the census
year, respectively.

Initially, a separate vector β= (β0, β1, …, βn) of coefficients was used in the linear predictor of the
gravity model for each country (including malaria non-endemic countries), in Africa, Asia, Latin America
and the Caribbean, for which migration data were available in the IPUMSI database61 (hereafter referred
as IPUMSI countries; Table 1).

However, since the main aim of this study was to estimate internal human migration flows for malaria
endemic countries for which migration data are not available, ultimately, models where the linear

For each country located in 
Africa, Asia, Latin America 

and the Caribbean, 
download the most recent 
census-based migration 

microdata available

For each country, match the 
migration microdata to the 

corresponding administrative 
units

For each country, calculate the 
response variable ‘proportion of 
migrants’ as the proportion of 
people in each administrative 
unit in the census year (unit of 

destination) that were residing in 
any other administrative unit n -

years prior to the census (unit of 
origin)

Process global datasets 
representing migration push 
and pull factors into a set of 
covariates calculated at the 
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"proportions of migrants" in 
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the predicted "proportions of 
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destination to estimate 
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Figure 1. Schematic overview of the approach used to estimate the 5-year (2005–2010) internal human

migration flows for every Pf and Pv endemic country. The preparation of the response variable and covariates is

described in the yellow and orange panels, respectively. The modelling steps are outlined in the green panels

and the estimation of the 5-year internal migration flows is described in the blue panel.
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predictors were common across all countries located in the same continent were constructed (under the
assumption of homogeneity of the process along the space). To investigate possible nonlinear
relationships, models where linear predictors were replaced by additive predictors, using a Generalized
Additive Modelling (GAM) framework66, were also explored.

GAM is a type of regression that, while preserving the functionality of using linear terms, allows
covariates to have different and possibly opposite effects on the response variable by incorporating
regression coefficients with smooth nonlinear form (Fig. 2).

Thus, all possible combinations of covariates (listed in Table 2 and Supplementary Table 2) were
tested in a logistic regression model and then only the linear predictors of all continuous covariates of the
best predictive logistic regression model were also modelled using a GAM.

For each continent, the overall combinations of covariates and model types were explored using a
multi-step approach to identify the model with the greatest predictive power in countries for which
migration data were not available. The best model was then selected using a leave-one-out cross-
validation approach67 in which the observed proportion of migrants in j previously residing in i for all
countries except one were used for fitting models, that were subsequently used to predict the proportion
of migrants in j previously residing in i in the withheld country. The correlation coefficient (R2) was
selected to measure the variance explained after verifying homoscedasticity and testing overdispersion
using a chi-squared test. This process was then repeated through iteratively withholding one country at
the time. For each model, the R2 values for all withheld countries were averaged and used to rank each
models according to their predictive power averaged across all withheld countries (Fig. 3). The overall
best predictive model for each continent (Supplementary Table 3) was then used to predict the
proportion of migrants residing in j who were previously residing in i for every malaria endemic country
located in the corresponding continent (refer to Supplementary Table 4a,b and c for summary statistics of
each best predictive model for Africa, Asia, and Latin America and the Caribbean, respectively).

Finally, in order to estimate the total number of people that migrated from i to j between 2005 and
2010 (Figs 4–6), for each country the predicted proportion of migrants residing in j was multiplied by the
2010 total population in j; with the latter calculated using either the corresponding WorldPop68–70 or the
Gridded Population of the World version 4 (GPWv4)71 dataset adjusted to match United Nations
Population Division (UNPD) estimates for 2010 (ref. 72). Refer to the Data collection and preparation
subsection section below for a detailed description of how the population datasets mentioned above were
identified and used.

Both model selection and prediction were performed using an R73 script contained in the WorldPop-
InternalMigration-v1 code74 briefly described in the Code availability subsection below.

Data collection and preparation
In most of the countries available through the online IPUMSI database, internal migration variables were
recorded by asking respondents either their administrative unit of residence 15, 5, or 1 prior to the
census, or their previous residence and the number of years they are residing in the current locality.
Considering that 5-year was the temporal interval available for most of the countries in the IPUMSI
database and the fact that it has been demonstrated that both 1- and 5-year census-based internal
migration data generally align well with shorter-term population movements in terms of relative strength
of connections56,58, the 5-year migration data were used in this study. This maximised the amount of data
that could be used to fit the gravity models subsequently used for predicting internal migration flows for
every malaria endemic country. Thus, for each country listed in Table 1, harmonized, census-based
5-year internal migration data were extracted from the most recent census microdata available through
the IPUMSI database61, downloaded locally, and eventually uploaded into a PostgreSQL database using a
Microsoft Visual Studio 2010 user interface. The IPUMSI data stored in the PostgreSQL database were
subsequently queried, using SQL, to quantify the number of people that migrated from each subnational
administrative unit i to every other subnational administrative unit j during the 5-year timespan. These
numbers were then matched to the corresponding country administrative unit spatial dataset, extracted
from either the Global Administrative Areas (GADM)75 or the Global Administrative Unit Layers
(GAUL)76 database, in a GIS environment. This was done by manually adding a unique ‘ID’ to each
spatial unit corresponding to the one in the PostgreSQL database (hereafter referred as ‘IPUMSID’). In
some cases, depending on the country, either the spatial detail of the IPUMSI migration data had to be
reduced to match the lower spatial detail of the corresponding administrative unit dataset or spatially
contiguous units in the administrative unit dataset had to be merged together to match the lower spatial
detail of the IPUMSI migration data. In some other cases, ‘IPUMSIDs’ had to be edited or spatially
contiguous units in the administrative unit dataset had to be merged together to match the reorganisation
of the administrative units during the 5 years prior to the census. Finally, before calculating the migration
flows between administrative units, another SQL query was used to classify each person in the census
sample as either an internal migrant (1) or not (0). Examples of SQL queries used to perform the tasks
described above are included in the WorldPop-InternalMigration-v1 code74 briefly described in the Code
availability subsection below.
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Continent ISO code Census Year Census sample
(%)

No. of
units

Unit level Census data source Administrative unit data
source

AFRICA CMR 2005 10 58 2 Central Bureau of Census and Population
Studies

GADM

AFRICA GHA 2000 10 10 1 Ghana Statistical Services GADM

AFRICA GIN 1996 10 34 2 National Statistics Directorate GADM

AFRICA MWI 2008 10 31 1 National Statistical Office GADM

AFRICA MLI 1998 10 47 2 National Directorate of Statistics and
Informatics

GADM

AFRICA SEN 2002 10 34 2 National Agency of Statistics and
Demography

GADM

AFRICA ZAF 2007 2 9 1 Statistics South Africa GADM

AFRICA UGA 2002 10 56 1 Bureau of Statistics GADM

AFRICA ZMB 2010 10 72 2 Central Statistics Office GADM

AFRICA EGY 2006 10 27 1 Central Agency for Public Mobilization and
Statistics

GADM

AFRICA MAR 2004 5 18 1 Department of Statistics GADM

ASIA ARM 2001 10 11 1 National Statistical Service GADM

ASIA KGZ 1999 10 39 2 National Statistical Committee GAUL

ASIA IND 1999 0.07 32 1 Ministry of Statistics and Programme
Implementation

GADM

ASIA IDN 2010 10 27 1 BPS Statistics Indonesia GADM

ASIA THA 2000 1 76 1 National Statistical Office GADM

ASIA KHM 2008 10 24 1 National Institute of Statistics GADM

ASIA CHN 1990 1 30 1 National Bureau of Statistics GADM

ASIA MYS 2000 2 15 1 Department of Statistics GAUL

ASIA PHL 2000 10 77 1 National Statistics Office GADM

ASIA VNM 2009 15 63 2 General Statistics Office GADM

ASIA MNG 2000 10 21 1 National Statistical Office GADM

ASIA FIJ 2007 10 8 2 Bureau of Statistics GADM

LAC ARG 2001 10 24 1 National Institute of Statistics and Censuses GADM

LAC BOL 2001 10 35 1 National Institute of Statistics GAUL

LAC BRA 2010 5 27 1 Institute of Geography and Statistics GADM

LAC COL 2005 10 35 1 National Administrative Department of
Statistics

GADM

LAC CRI 2000 10 7 1 National Institute of Statistics and Censuses GADM

LAC DOM 2010 10 32 1 National Statistics Office GADM

LAC ECU 2010 10 23 1 National Institute of Statistics and Censuses GADM

LAC SLV 2007 10 14 1 Department of Statistics and Censuses GADM

LAC HTI 2003 10 10 1 Institute of Statistics and Informatics GADM

LAC MEX 2010 10 32 1 National Institute of Statistics, Geography,
and Informatics

GADM

LAC NIC 2005 10 15 1 National Institute of Information
Development

GADM

LAC PER 2007 10 25 1 National Institute of Statistics and
Informatics

GADM

LAC VEN 2001 10 23 1 National Institute of Statistics GADM

LAC CUB 2002 10 15 1 Office of National Statistics GADM

LAC JAM 2001 10 14 1 Statistical Institute GADM

LAC URY 2011 10 19 1 National Institute of Statistics GADM

Table 1. Summary information about the edited IPUMSI 5-year internal migration microdata and the
administrative unit datasets used to estimate the 5-year (2005–2010) internal human migration flows for
every malaria endemic country In the 1st column, LAC stands for Latin America and the Caribbean. In the
2nd column, countries are indicated using their ISO three letter country codes94 (refer to http://www.
nationsonline.org/oneworld/country_code_list.htm for a list of all world countries and their ISO codes).
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Response variable and covariates
For each country, the response variable, or the proportion of migrants residing in j in the census year that
were residing in i 5 years prior to the census, was obtained by dividing the number of migrants residing in
j in the census year that were residing in i 5 years prior the census by the total population residing in j in
the census year; with both numbers based only on the information contained in IPUMSI census samples.

The administrative units spatially matching the IPUMSI migration microdata were used to calculate
the distance between each pair of administrative units, their area, total population, and proportion
of urban population. These main covariates (Table 2), along with other covariates derived
from them (Supplementary Table 2), represent the pull and push migration factors, known to influence
internal migration59,60,77, that were used to extend the basic gravity model proposed by Zipf64.

Other factors, including environmental factors59,60, and country-specific factors, such as literacy and
percentage of male population59 or infrastructure and transportation78, were not used because (i) the
factors listed in the previous paragraph alone proved to be able to explain most of the variance in the
gravity models of Garcia et al.59, and (ii) only globally available datasets were explored in order to
consistently model internal migration across all countries.

Figure 2. Variation of the effect of the distance between administrative units (dij) on the predicted proportion

of migrants in j in the census year that were previously residing in i (solid line) and 0.95 confidence intervals

(dashed lines) as estimated by using a GAM. The rug plot (i.e., the vertical lines along the x axis) represents the

distribution of the observed dij values. This example shows the result obtained using data for all countries

located in Latin America and the Caribbean.

Dataset Temporal
coverage

Format Type Resolution Source Main covariate

Subnational administrative
unit boundaries

— Vector Categorical — GADM75 Distance (DISTIJ) and contiguity (CONTIJ)
between administrative units and their area
(AREAI and AREAJ)

Subnational administrative
unit boundaries

— Vector Categorical — GAUL76 Distance (DISTIJ) and contiguity (CONTIJ)
between administrative units and their area
(AREAI and AREAJ)

Population count (adjusted
to match UNPD estimates)

2010 Raster Continuous 3 arc seconds WorldPop79 Data
Citation 1

Total population (POPI and POPJ) in each
administrative unit

Population count (adjusted
to match UNPD estimates)

2010 Raster Continuous 30 arc seconds GPWv480 Total population (POPI and POPJ) in each
administrative unit

MODIS 500 m Global Urban
Extent

2000/2001 Raster Categorical
(binary)

15 arc seconds Schneider et al.81 Proportion of urban population
(URBANPROPI and URBAN PROPJ) in each
administrative unit

Table 2. Summary information about the source datasets and the main covariates tested in the spatial
gravity models and used to derive additional covariates (Supplementary Table 2) for improving the
predictive power of the models.

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160066 | DOI: 10.1038/sdata.2016.66 6



Calculating response variable and covariates
For each country, the total population in each administrative unit was calculated using the corresponding
WorldPop79 (Data Citation 1) or GPWv4 (ref. 80) population count raster dataset adjusted to match
UNPD estimates for 201072. The GPWv4 datasets were resampled to the spatial resolution of the
WorlpPop datasets and used only for countries for which the WorldPop datasets were not available
(Supplementary Table 1).

The area of each unit was calculated using each country vector administrative unit dataset projected to
the most appropriate country-specific projected coordinate system, in order to minimize areal distortion,
and ultimately reprojected to GCS WGS84.

The proportion of people in urbanized areas in each unit was calculated using the MODIS 500 m
Global Urban Extent raster dataset81,82. The latter was converted to vector polygons, using the ArcGIS
‘Raster to Polygon’ tool83, and intersected with the reprojected country vector administrative unit dataset
using the ArcGIS ‘Intersect’ tool83. Then, both the intersect output (containing polygons representing the
total urban area within each unit uniquely identified by its ‘IPUMSID’) and the country vector
administrative unit dataset were rasterized, at the resolution of the corresponding raster population
dataset (i.e., 3 arc seconds 3 arc equals to approximately 100 m at the equator), and co-registered with it.

The two raster outputs, along with the population count raster dataset, were then input to the ArcGIS
‘Zonal Statistics as Table’ tool83 to generate two tables containing the total population and urban

Figure 3. Boxplots showing the distribution of all R2-values, for each withheld country, for all logistic

regression (a,c,e) and GAM (b,d,f) models explored for Africa (a,b), Asia (c,d) and Latin America and the

Caribbean (e,f). The red lines represent the best averaged R2 values used to select the best predictive model for

each continent (Supplementary Table 3) while the red dots represent the R2 values, for all withheld countries,

calculated using the best predictive model referring to the continent in which they are located.
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population in each unit (with the rasterized administrative units and thus their ‘IPUMSIDs’ used to
define the zones). Subsequently, both tables were joined to the attribute table of the vector administrative
unit dataset, using the ‘IPUMSID’ field to perform the join operation, and the proportion of urban
population in each unit was calculated simply dividing its urban population by its total population.

The geodesic distance between each pair of administrative units, with the latter represented by their
centroids, was calculated using the ArcGIS ‘Generate Near Table (Analysis)’ tool83. The ‘IN_FID’ and
‘NEAR_FID’ fields (identifying the administrative unit of origin and destination, respectively) in the
output ‘distance’ table were then used for joining twice the ‘centroid attribute’ table using the centroid
‘ID’ field to perform the join operation. Since the ‘centroid attribute’ table contains the attributes of each
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administrative unit represented by the corresponding centroid, the join operation allowed to generate a
‘distance’ table containing all pairs of origin and destination administrative units along with their
‘IPUMSIDs’ and attributes including the unit’s area, total population, and proportion of urban
population. Origin and destination ‘IPUMSID’ fields were then renamed ‘NODEI’ and ‘NODEJ’,
respectively.

A ‘contiguity’ table containing information about spatial contiguity of administrative units (defined
based on polygons sharing an edge) was generated using the ArcGIS ‘Generate Spatial Weights Matrix’
tool83 and subsequently joined with the ‘distance’ table to obtain a new table containing all main
covariates, listed in Table 2, calculated at the unit level. This join operation (based on both the ‘NODEI’
and ‘NODEJ’ field the in the ‘distance’ table and the corresponding ‘IPUMSID’ and ‘NID’ field in the
‘contiguity’ table) was performed through two different R scripts depending on whether the country is an
IPUMSI or a non-IPUMSI countries. In particular, the R script for the IPUMSI countries added to the
new table a ‘MIGIJ’ field containing the number of people that migrated from each ‘NODEI’ to each other
‘NODEJ’ according to the IPUMSI migration microdata and calculated the response variable.

Finally, on a continent basis, all IPUMSI country tables were merged together and input to an R73

script that generated the additional covariates listed in Supplementary Table 2, identified the best
predictive model for each continent, as described in the previous section, and was used to estimate the 5-
year (2005–2010) internal human migration flows for every malaria endemic country using the best
predictive model selected for the corresponding continent.

All operations described above, excluding the reprojection of the vector administrative unit
datasets and the calculation of their surface areas, for all IPUMSI and non-IPUMSI countries, were
performed using the WorldPop-InternalMigration-v1 code74 briefly described in the Code availability
subsection below.

Code availability
The WorldPop-InternalMigration-v1 code74, used to produce the open access archive of estimated 5-year
(2005–2010) internal human migration flows described in this article, is publicly available through
Figshare. It consists of 1) a Microsoft Visual Studio 2010 user interface allowing users to upload
the IPUMSI census microdata to a PostgreSQL database; 2) example SQL queries that were used to match
the spatial detail of the IPUMSI migration data to spatial detail of the corresponding administrative
unit dataset and to identify internal migrants within the IPUMSI census samples 3) an ArcToolbox
geoprocessing tool82 that assigns a unique ID to each administrative unit and calculates the
corresponding total population and proportion of urban population; 4) a Python84/ArcPy83 script that
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creates two tables, one containing spatial contiguity information between each pair of administrative
units (‘contiguity.csv’) and another one containing the ISO country code, the continent in which the
country is located, the distance between each pair of administrative units, their total population,
proportion of urban population, surface area, and the geographic coordinates (GCS WGS84) of their
centroid (‘distance.csv’); 5) two R73 scripts, one for the IPUMSI countries used to query the IPUMSI
migration microdata loaded in the PostgreSQL database, calculate the response variable, and join the
query result with the two output tables of the python script, and another one for the non-IPUMSI
countries used just to join together the two output tables of the python script; and 6) an R73 script that
performs the model selection and estimates the 5-year (2005–2010) internal human migration flows
between subnational administrative units.
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Figure 6. Estimated internal human migration flows between subnational administrative units for every

malaria endemic country in Latin America and the Caribbean (Supplementary Table 1). Coordinates for all

three panels refer to GCS WGS 1984. For illustrative purposes, subnational unit boundaries are shown only in

the insets and the colour ranges used to represent the flows are country-specific (refer to Supplementary Fig. 3

for additional close-up views of internal migration flows in Latin America and Caribbean).
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All available sets of code are named progressively and must be run sequentially according to the order
in which they are presented above. They are also internally documented in order to both briefly explain
their purpose and, when required, guide the user through their customization.

Data Records
All datasets described in this article, referring to all Pf and Pv endemic countries listed in Supplementary
Table 1, are publicly and freely available both through the WorldPop Dataverse Repository (Data
Citation 2) and the WorldPop website (http://www.worldpop.org.uk/data/data_sources/). However, it is
important to note that while the datasets stored in the Dataverse Repository represent the datasets
produced at the time of writing, and will be preserved in their published form, the datasets stored on the
WorldPop website may be updated as more recent IPUMSI migration data for the countries listed in
Table 1, become available. Similarly, the datasets stored on the WorldPop website may be updated as
IPUMSI census-based migration microdata become available for additional malaria endemic and
non-endemic countries located in Africa, Asia, Latin America and the Caribbean. Indeed, the availability
of migration data for additional countries may enable further improvements of the predictive power of
the gravity models used to estimate the internal migration flows. For each county, the corresponding
internal migration dataset, along with a point dataset showing the nodes of the migration network,
(Table 3) can be obtained by downloading the corresponding zipped archive associated with the
continent in which the country of interest is located.

Technical Validation
Goodness of fit and error p-value
All countries available in the IPUMSI database were used to assess the accuracy of the predicted
proportion of migrants in j in the census year that were previously residing in i 5 years prior to the census
by comparing them with the corresponding observed values from the IPUMSI migration microdata. For
each country, the goodness of fit (R2) between predicted and observed values and the corresponding error
P-value, representing the average probability that predicted migration values lay outside the distribution
of the observed values, are reported in Table 4 below. Both metrics were derived using (i) the observed
IPUMSI migration flows from each i to any other j and (ii) the predicted IPUMSI-based migration flows
calculated by multiplying the predicted proportion of migrants residing in j in the census year by the
IPUMSI-based total number of people residing in j in the census year.

Usage Notes
The estimated internal human migration flows between subnational administrative units can be used to
support a range of applications from planning interventions, to measuring progress, designing strategies,
and predicting response variables that are intrinsically dependent on migration flows and internal
connectivity.

Ongoing work involves the integration of these datasets with malaria prevalence raster datasets85–87

in order to inform local elimination and global eradication planning by identifying subnational
communities of malaria movement and sources and sinks of transmission within them36,43,58. Similarly,
these datasets could be used to better model the spread and improve understanding of the drivers of the
distributions of other infectious diseases, such as West Nile Virus, schistosomiasis, river blindness, and
yellow fever, which are endemic in some of the countries listed in Supplementary Table 1. Additionally
there are many uses of these data beyond infectious disease dynamics, in the fields of trade, demography,
transportation and economics, for example.

There are a number of limitations, caveats, and assumptions inherent in the approach that should be
considered when using the datasets outlined here. For consistency, internal migration flows were
estimated using a fixed set of pull and push factors common to all countries and thus only a limited
number of covariates were used to fit the gravity-type spatial interaction models and to create predictions.
For this reason, as is a trade-off in the production of generalizable models, the model fit varied between
countries and for some of them, such as Malawi, China, Cambodia, India, and Venezuela (Table 4), poor

Name Description Format

ISO_5yr_InternalMigFlows_2010 Estimated 5-year (2005–2010) internal human migration flows between subnational administrative units. CSV

ISO_AdminUnit_Centroids Centroids representing the subnational administrative units used to estimate the 5-year internal human migration
flows (with centroid ‘IPUMSIDs’ matching polygon NODEIs and NODEJs in the corresponding
ISO_5yr_InternalMigFlows_2010.csv dataset).

SHP

ISO_AdminUnit_Edits_README Description of the edits needed to match the spatial detail of the GADM/GAUL subnational administrative units to
the spatial detail of the IPUMSI census-based migration microdata.

TXT

Table 3. Name (ISO represent the country the dataset refers to), description, and format of all files
available for each county listed in Supplementary Table 1 Readme files are distributed along with the other
two datasets only if the administrative unit dataset has been edited, to match the spatial resolution of the
IPUMSI migration microdata, before extracting the centroids.
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fits could be improved by considering additional, locally-specific migration drivers that could help to
increase the percentage of variance explained60,78. Other limitations are the fact that migration models
were fitted using only a small sample (ranging between 0.07 and 10%) of the full census for each country,
and that in each sample a small number of households were swapped across administrative units.
Moreover, the spatial detail at which migration is captured and summarized varies by country. Because of
this, for some countries, the modelled role of some of the pull and push factors, may not have been
captured at the spatial level at which they influence migration as recorded in the census. It is also
important to consider that the underlying migration data are based only on permanent movements

Continent ISO code R2 Error P-value

AFRICA CMR 0.60 0.07

AFRICA EGY 0.21 0.20

AFRICA GHA 0.68 0.21

AFRICA GIN 0.39 0.09

AFRICA MAR 0.52 0.14

AFRICA MLI 0.51 0.14

AFRICA MWI 0.02 0.06

AFRICA SEN 0.54 0.12

AFRICA UGA 0.50 0.11

AFRICA ZAF 0.49 0.23

AFRICA ZMB 0.37 0.22

ASIA ARM 0.11 0.16

ASIA CHN 0.08 0.19

ASIA FJI 0.16 0.28

ASIA KGZ 0.23 0.08

ASIA IND 0.11 0.15

ASIA IDN 0.70 0.06

ASIA THA 0.27 0.09

ASIA KHM 0.15 0.11

ASIA MYS 0.76 0.14

ASIA PHL 0.35 0.06

ASIA VNM 0.23 0.13

ASIA MNG 0.61 0.14

LAC ARG 0.82 0.05

LAC BOL 0.62 0.07

LAC BRA 0.54 0.16

LAC COL 0.85 0.07

LAC CRI 0.57 0.17

LAC CUB 0.36 0.20

LAC DOM 0.71 0.08

LAC ECU 0.68 0.11

LAC SLV 0.77 0.08

LAC HTI 0.40 0.14

LAC JAM 0.52 0.12

LAC MEX 0.76 0.08

LAC NIC 0.46 0.15

LAC PER 0.66 0.10

LAC URY 0.84 0.04

LAC VEN 0.12 0.13

Table 4. Prediction accuracy of the best predictive models listed in Supplementary Table 3. The goodness
of fit (R2) and error P-value are provided for all IPUMSI countries (including those that are not malaria
endemic) listed in Table 1. Error P-value is here defined as the average probability that predicted migration
values do not belong to the observed migration dataset.
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captured by the census and other types of migrations, such as seasonal movements and forced
displacements, may be not captured by the model88–90.

The two main assumptions behind the approach presented here are that for each country (i) the
census samples are considered to be representative at the administrative unit level at which migration was
recorded and (ii) the percentage of people migrating between administrative units is considered to be
constant over time. Regarding the second assumption, it is important to highlight that the use of census
data from many years ago for some countries may have generated inaccurate estimates for the period
considered in this study (i.e., 2005–2010), for example because of major changes in the countries’ socio-
economic conditions from the time period covered by the census (e.g., the rapid economic development
and urbanization that has occurred in China during the last two decades91,92). Similarly, in some other
countries, either the presence of conflicts93 or the occurrence of natural disasters88,89 during the specific
time period covered by the census may have produced fluctuations in the number of internal migrants
and consequently biased results for the period considered in this study.

Finally, the estimated internal flows represent modelling outputs generated using ancillary covariate
datasets, and thus, to avoid circularity they should not be used to make predictions or explore
relationships with any of these ancillary datasets. It is also important to note that these ancillary datasets
are modelling outputs in themselves and thus they have a degree of uncertainty that will carry over into
the migration estimates.
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