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The present study aimed to determine changes in brain network integration/segregation during thermal pain using methods
optimized for network connectivity events with high temporal resolution. Participants (n = 33) actively judged whether thermal stimuli
applied to the volar forearm were painful or not and then rated the warmth/pain intensity after each trial. We show that the temporal
evolution of integration/segregation within trials correlates with the subjective ratings of pain. Specifically, the brain shifts from
a segregated state to an integrated state when processing painful stimuli. The association with subjective pain ratings occurred
at different time points for all networks. However, the degree of association between ratings and integration/segregation vanished
for several brain networks when time-varying functional connectivity was measured at lower temporal resolution. Moreover, the
increased integration associated with pain is explained to some degree by relative increases in between-network connectivity. Our
results highlight the importance of investigating the relationship between pain and brain network connectivity at a single time point
scale, since commonly used temporal aggregations of connectivity data may result in that fine-scale changes in network connectivity
may go unnoticed. The interplay between integration/segregation reflects shifting demands of information processing between brain

networks and this adaptation occurs both for cognitive tasks and nociceptive processing.
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Introduction

The subjective perception of pain is associated with inter-
actions between brain regions involved in nociceptive
processing (Jensen et al. 2016) and regions supporting
cognition and emotion (Cheng et al. 2018; Geuter et al.
2020). In terms of brain function, it has been recog-
nized that human cognition and emotion require a bal-
ance between functional specialization and integration
(Tononi et al. 1994; Fair et al. 2007; Cohen and D’Esposito
2016; Shine et al. 2016), although it is unclear how this
balance is achieved during processing of pain. To further
our understanding of the interplay between networks
supporting the experience of pain, neuroimaging data
can be modeled with network theory (Zaki et al. 2007;
Baliki et al. 2014; Kim et al. 2019). A network-based
approach to model brain connectivity offers the potential
to go one step beyond simple identification of brain activ-
ity by inferring mechanistic properties relating to the
flow of information between brain regions (Bertolero and
Bassett 2020). Moreover, variables derived from network-
based modeling of functional brain imaging data may
have the potential to act as biomarkers of brain disease
(Kaiser 2013), notably also for chronic pain conditions
(Baliki et al. 2008, 2011).

In contrast to commonly reported “time-aggregated
connectivity” data, where results are based on the aver-
age from an entire experiment, the subfield of time-
varying functional connectivity (TVC) quantifies “fluctu-
ations in functional connectivity” over time (Lurie et al.
2020; see Fig. 1A). Previous research has shown that time-
varying properties of network integration and segrega-
tion can accurately characterize how changes in cogni-
tive processing arise to meet task demand (Cohen and
D’Esposito 2016; Shine et al. 2016). This should be of
central importance also for pain research as the percep-
tion of pain is dynamic and fluctuates even for short
periods of time. Moreover, the time dependence of pain
perception has implications for the study of chronic pain
conditions (Apkarian et al. 2009) as core features of pain
pathology are related to cognitive flexibility and neural
plasticity, and may not be elucidated when using con-
ventional time-aggregated neuroimaging data, as certain
properties may get averaged out.

Today, there is a variety of methods to estimate and
quantify TVC, some of which are used to study neural
mechanisms related to pain. In a previous study, the
relationship between pain and mind wandering (Kucyi
et al. 2013) was explored using the sliding window
(SW) approach (Allen et al. 2014) and quantified by
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Figure 1. A schematic of our approach to compute brain network segregation and integration. (A) BOLD time series were used to compute TVC. TVC was
computed both at the level of individual trials and per measured time point (TR =2.0) using a window-size W equal to the length of a trial or to a single
time point (using the jack-knife method), respectively. (B) The single parameter SID that provides a measure of integration versus segregation is based
on estimates of time-resolved within- and between-network degree centrality. (C) TVC data were analyzed in four steps. The first two steps considered
TVC measured at the trial level and the last two steps treated the data at the single time point level. For each temporal resolution, we compared “high”
and “low” thermal corresponding to the two lowest and two highest intensities (analyses 1 and 3). Ratings were given after each trial allowing us to
correlate TVC data measured at the trial timescale (analysis 2). Finally, TVC data at the higher resolution were used to investigate degree of correlation
between ratings and TVC at different time points within trials (analysis 4).

calculating the standard deviation (SD) for correlated  experimental designs where the sampling rate is low
functional magnetic resonance imaging (fMRI) time (in the order of 2-3 s for fMRI; Thompson et al. 2018).
series. However, our previous findings suggest that SW  Typically, SW connectivity is based on long temporal
is not optimal for tracking fast trial-by-trial changes  windows (between 40 and 80 s). Aside from the problem
in brain connectivity expected from event-related  of long temporal windows in SW, the use of SDs as



quantitative markers of TVC; as used in a previous study
of pain; Kucyi et al. 2013) may be problematic, as it
captures the underlying static functional connectivity,
making a separation between static and time-varying
brain connectivity difficult (Thompson and Fransson
2015, 2016).

The aim of the present study was to determine changes
in network integration/segregation during thermal pain,
using methods optimized for network connectivity
events with high temporal resolution.

Materials and Methods
Participants

The data set used in the present study was the func-
tional pain neuroimaging data openly available at Open-
Neuro portal with accession number ds000140 (https://
openneuro.org/datasets/ds000140) (Woo et al. 2018). In
brief, a total of 33 right-handed volunteers were included
in the study (mean age: 27.9, SD=9.0, 22 females). Par-
ticipants reported no history of psychiatric, neurologic,
or pain disorders. Detailed information regarding the
participants can be found in Woo et al. (2015). Out of the
33 participants, 25 were included in the analysis. Data
from two participants were removed due to the presence
of excessive movement (framewise displacement [FD]
values above 0.5 for more than 20% of the total number
of acquired image volumes). Data from six participants
were excluded due to mechanical issues for the stimuli
equipment or excessive variability in the exact tempera-
ture stimuli given.

Overview

First, we used the jack-knife correlation (JC) method
to quantify TVC, which is sensitive to rapid changes
in functional connectivity (Richter et al. 2015; Thomp-
son et al. 2018). Second, we estimated the properties
of TVC using measures from temporal network theory
(Thompson et al. 2017). We estimated the fluctuations of
integration and segregation at every time point relative
to its average value (Fransson et al. 2018). Thus, in the
present study, we combined the JC method with the time-
resolved estimates of the degree of network segregation
and integration. This strategy effectively provided us
with a means to quantify pain-related fluctuations of
connectivity that are independent of the static functional
connectivity (Fransson and Thompson 2020). The fact
that we use time-resolved information about magnitude
change in functional connectivity allowed us to asso-
clate brain network segregation and integration with
subjective pain reports. A schematic description of our
approach to assess network segregation and integration
is given in Figure 1.

Experimental Procedures

The experimental protocol that the data set belonged to
consisted of a total of nine varying fMRI runs. In our
analysis, we used only the five fMRI runs where the
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participants actively responded after each stimulus. Each
run consisted of 11 trials where participants received
thermal stimulation and each run consisted of coun-
terbalanced stimuli. The remaining four fMRI runs not
considered here employed either manipulated pain sen-
sations with cognitive upregulation or downregulation or
investigated contextual effects of increasing each tem-
perature by one step. At each trial, thermal stimula-
tion was delivered to the left inner forearm. During the
first 3 s, stimulus intensity was gradually ramped up,
followed by a plateau phase lasting for 7.5 s at target
temperature. Finally, the stimulus intensity was ramped
down during 2 s before being turned off. Thus, the total
duration of each trial was 12.5 s and the target tempera-
tures employed were 44.3, 45.3,46.3,47.3, and 48.3 °C. In
between each trial, participants first rated whether they
felt any pain or not. If they felt pain, they rated their pain
on a visual analogue scale from 0 (no pain at all) to 100
(worstimaginable pain). If they did not feel any pain, they
rated the warmth of the stimuli from 0 (not warm at all)
to 100 (very hot). Ratings of warmth were coded from 0
to 100 and ratings of pain were coded as 101-200. See the
original paper for more details (Woo et al. 2015).

fMRI Data Acquisition

Whole-brain fMRI data were acquired on a 3T Philips
Achieva TX scanner at Columbia University’s Program
for Imaging in Cognitive Science. Structural images were
acquired using high-resolution T; spoiled gradient recall
images for anatomical localization and subsequently
warped to a standard space. Functional images were
acquired using an echo-planar imaging (EPI) sequence
with TR = 2000 ms, TE = 20 ms, field of view = 224 mm,
64 x 64 matrix, 3x3x3 mm3 voxels, 42 interleaved
slices, parallel imaging and SENSE factor 1.5. Stimulus
presentation and behavioral data acquisition were
controlled using E-Prime software (PST Inc.).

fMRI Data Preprocessing

Data were preprocessed with fMRIPrep (version 20.0.5). A
full description of all the preprocessing steps is given in
the Supplementary Materials.

Cleaning of fMRI Data

We used Teneto (v.0.5.2, https://github.com/wiheto/
teneto; Thompson et al. 2017) to extract blood-oxygen-
level-dependent (BOLD) signal time series from brain
regions defined by the Schaefer parcellation atlas
(Schaefer et al. 2018) with 400 regions of interest
mapped to 7 brain networks (Yeo et al. 2011). Following
the parcellation step, data regression of covariates of
no interest was done using Teneto (Thompson et al.
2017), implementing tools from Nilearn (version 0.7.0)
(Abraham et al. 2014). The confounds that were regressed
out included 24 motion parameters, the original 6
motion parameters, first temporal derivatives of the
motion parameters, and 12 quadratic terms of the
motion parameters and their temporal derivatives. Other
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regressors include the first six anatomical CompCor
components and the global signal, its derivative, and
their quadratic terms, FD and hemodynamic response
function (Glover) convolved with the events. The latter
regressor was removed to reduce the risk of correlations
being driven by common stimulus-evoked activation
instead of interaction among neural regions (Cole et al.
2019; Lurie et al. 2020). To address the issue of single
time points with high motion, fMRI data time series
were scrubbed by removing values at time points that
exceeded 0.5 in FD and estimating missing values with
cubic spline interpolation.

Deriving Estimates of TVC

We calculated time-varying connectivity estimates at
two different temporal scales: 1) single time point esti-
mation and 2) per trial (seven time points). Time points
in the BOLD time series corresponding to events were
concatenated after data cleaning and scrubbing, and
we used the JC approach to calculate estimates of TVC
(Richter et al. 2015). Both positive and negative edges
of brain connectivity were kept in the analysis. For the
analysis at a single time point (t) temporal scale, the
jack-knife connectivity estimate at t was the Pearson
correlation when t was left out (a leave-one-out esti-
mate). This procedure entails one connectivity estimate
for each time point. For the per trial temporal scale
analysis, Pearson correlations were calculated but the
seven time points associated with the trial were left out
(a leave-seven-out estimate). This procedure yielded one
estimate per trial (11 per thermal intensity). After JC
estimates for both methods, the issue of sign inversion
was corrected by multiplying by —1. Furthermore, the
variance compression was corrected by scaling each time
series to have a mean of 0 and SD of 1. This interpretation
means that the “average connectivity”is at 0, and relative
increases or decreases throughout in the time series are
reflected by the JC estimates. A detailed description of
the jack-knife method is given in (Richter et al. 2015;
Thompson et al. 2018).

Estimation of the Segregation Integration
Difference between Pairs of Networks
After computing TVC matrices, we applied temporal net-
work measures to compute the degree of segregation
and integration between pairs of networks. This sum-
mary measure consists of two components, the mean
within-network degree centrality and the mean between-
network degree centrality (Fransson et al. 2018).

The within-network degree centrality for a given net-
work G at time t is defined as

D! 2
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where Al is the connectivity matrix at time point t and
Ng is the number of nodes in network G.

The between-network degree centrality at time t for
networks G1 and G, is defined as:

1
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where N4 and N, are the number of nodes in Gy and G,
respectively.

Once we have computed within- and between-network
degree centrality, we can calculate the segregation inte-
gration difference (SID) (20) between the two networks G,
and G, at time t as:

2 1
SID: =(—  pt - ——_pt .
1.2 (N1<N1—1) 61 NpN, 6162

Thus, SIDg, ¢, is defined by considering the degree
centrality within a subset of nodes, which in this case
resides in network G1, and subtract the degree centrality
for all edges (connections) that link together nodes in G,
and G,. Note that SIDGl’G2 * SIDleGZ' The global SID
for a network G is then computed as the average SID
across all other networks. SID¢ is then used to mean “the
segregation of G with all other networks with respect to
the degree of integration of G with all other networks”.
If SID for a network G at t is positive, then G displays
a higher degree of segregation from all other networks.
Conversely, a negative SID value implies that G displays
a higher degree of integration with all other networks.

Statistical Significance Testing

For all statistical tests, we compared the two lowest
thermal intensities with the two highest thermal
intensities. Hence, the third thermal intensity (46.3°)
was not included in the comparison between low
and high thermal intensities. For completeness, see
Supplementary Figures 1-3, which displays SID and
within- and between-network degree centrality for each
thermal intensity.

Statistical test for data averaged over trials was
performed with a permutation test implementing t test
for related samples using permtest_rel function from
netneurotools (version 0.2.2). Data were visualized as
rain plots implemented in the python package ptitprince
(Allen et al. 2019). To test for statistical differences
in brain connectivity between high and low thermal
intensities at the single time point scale, a permutation
test with cluster-level inference with threshold-free
cluster enhancement (TFCE) was implemented with
MNE tools (version 0.22.0; Gramfort et al. 2014) imple-
menting mne.stats.permutation_cluster_test with one-
way analysis of variance. There were 550 observations
(number of subjects, n=25 and number of trials, n=22)
for low and the same for high thermal intensities.
We tested for differences between thermal intensities
for seven time points from onset to offset of stimuli.
TFCE was used with 10000 permutations, with steps
of 0.2 starting from zero and default TFCE parameters



(Smith and Nichols 2009) for height (h=2) and extent
(e=0.5). The test was performed for each brain network
separately. Each time point across all brain networks was
corrected for multiple comparisons with False-discovery
rate (FDR) with the Benjamini-Hochberg procedure
(Benjamini and Hochberg 1995). Correction for multiple
comparisons was done separately for each measure (SID,
within- and between-network degree centrality).

To evaluate the relationship between subjective
pain ratings and temporal network measures (SID,
within- and between-network degree centrality), a
skipped Spearman’s rho was implemented (Pernet et al.
2012; Rousselet and Pernet 2012) with the python
package pingouin (Vallat 2018) (version 0.3.8). Skipped
Spearman’s correlation coefficient is based on the
minimum covariance determinant (MCD) and estimates
an association after removing bivariate outliers. That
is, the robust center of the data is first computed
using the MCD estimator. Then, outliers are identified
with the box-plot rule by first orthogonally projecting
data points onto lines joining each data point to the
robust estimate of location (the middle of the data
points). Finally, Spearman’s correlation is computed after
removing outliers. P values were corrected for multiple
comparisons with FDR. We associated subjective pain
ratings with temporal network parameters measured
both at the trial time-scale and at the single time point
scale. For the latter, association with subjective ratings
was accomplished by focusing at one time point within
trials at a time and P values were corrected for both time
points and brain networks.

In TVC analysis, preprocessing methods that include
global signal regression (GSR) has been shown to be the
most effective denoising strategies (Lydon-Staley et al.
2019). However, GSR is known to induce spurious neg-
ative correlations (Murphy et al. 2009). For complete-
ness, we reanalyzed all results without GSR. The fig-
ures and tables can be found in the Supplementary
Materials.

Results
Aggregated (Low vs. High Thermal Intensity) TVC

The differences between high and low thermal intensi-
ties were estimated by averaging estimates of network
connectivity across all trials of thermal stimulation
(see Fig.2). For six out of seven brain networks, high-
temperature trials showed an increased level of network
integration, that is, more negative values in the SID
parameter as demonstrated in Figure 1, compared
to low-temperature trials. The only exception to the
general trend toward increased integration during high
temperature was found in the limbic network. SID can
be driven by a decrease in within-network or an increase
in between-network degree centrality. To disentangle
the contributions, we quantified within- and between-
network centrality separately. We observed a general
increase in between-network connectivity following
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higher thermal intensities (Fig. 2C). There was also
increased within-network connectivity to some extent.
Permutation tests showed that the SID estimate of
brain network integration/segregation differed signif-
icantly only in the frontoparietal (FP) network when
comparing low versus high thermal stimulation, but
it did not survive multiple comparisons correction
(estimate: —0.128, P=0.02, Pcory =0.15). There were no
statistically significant differences between low and
high thermal intensities in any brain network with
regard to within- and between-network degree centrality.
Reanalyzing the data without GSR showed that only
the default-mode network (DMN) displayed the greatest
distinction between high and low thermal intensities,
yet this was not statistically significant after correct-
ing for multiple comparisons (Supplementary Fig. 4,
Supplementary Tables 7-9).

The Relationship between TVC for Individual
Trials and Ratings of Pain

Each trial (i.e, the event of a thermal stimulation
lasting for seven time points/volumes) was followed
by a pain rating and we investigated the relationship
between TVC data and subjective ratings of pain
during individual trials (see Supplementary Fig. 2 for
trial data for each thermal intensity). The degree
of association between ratings and each temporal
network measure was estimated for each brain network
separately and then corrected for multiple comparison
(N=1100 [25 participants x 22 trials x 2 levels (low and
high intensities)]; degrees of freedom=N—2). There
was a statistically significant correlations between
ratings and SID values for the visual (Vis), salience
(SA), and limbic networks. The results were significant
at P<0.05 after correcting for multiple comparisons
for the Vis and SA networks (Fig.3; Vis network:
r=-0.091, 95% confidence interval [CI]=[-0.15, —0.03],
P=0.003, Peorr =0.023; limbic network: r=-0.071, 95%
CI=[-0.13, —=0.01], P=0.022, Pcory =0.051 and SA network:
r=-0.078, 95% CI=[-0.14, —0.02], P=0.011, Pcor =0.040).
See Supplementary Tables 1-3 for detailed results. In
Supplementary Figure 5, we show that only the Vis
network was statistically significant when analyzing the
data without GSR (Supplementary Tables 10-12).

The Temporal Evolution of TVC Networks
Measures Examined at the Level of Single Time
Point during Trials of Thermal Stimulation
Instead of analyzing TVC as an aggregated measure of
data covering an entire trial, this analysis tested if there
were any temporal changes of TVC within a trial, consist-
ing of seven time points. The results shown in Figure 4
indicate a higher degree of integration (i.e., lower SID
values) during the later phases in high thermal intensity
trials. A similar pattern was found for all thermal inten-
sities (see also Supplementary Fig. 3). There was a sta-
tistically significant difference in SID for the Vis, dorsal
attention (DA), and FP networks; however, only the DA
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Figure 3. The strength of the statistical relation between temporal network measures (SID, within-, and between-network degree centrality) and pain
ratings. Error bars show 95% CI. One star means Peor < 0.05 and two stars for Peorr < 0.01.

network was significant after correcting for multiple
comparisons (Fig. 4A) (Vis network: time point=7,
F=1.64, P=0.029, Pcory =0.10; DA: time point=7, F=2.72,
P=0.002, Peorr =0.017; FP: time points=3 and 4; F=1.48
and 1.52, P=0.046 and 0.041, Peorr=0.32, Peorr=0.29).

Time-resolved functional connectivity in the somatomo-
tor (SM) network, limbic network, SA network, and DMN
did not differ between high and low thermal intensities in
terms of segregation and integration. However, there was
a statistically significant difference between high and
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low intensities in terms of between-degree centrality for
all networks, with the exception of the limbic network,
at the sixth time point (F values between 1.56 and
2.52, uncorrected P value between 0.0117 and 0.04 and
FDR < 0.05).

Analyzing the data without GSR still showed that
there is more relative integration for high thermal
intensities (Supplementary Fig. 6). There was a sta-
tistically significant difference in SID between high
and low thermal intensities for the Vis network, SA
network, and DMN. However, only the DNM showed
statistically significant difference at one time point
that survived multiple comparisons (Vis: time point=6,
F=1.72, P=0.024, Pcory =0.100; SA: time point=6, F=1.68,
P=0.029, Pr=0.100; DMN: time point=6, F=2.40,
P=0.007, Peorr=0.036). There were no statistically sig-
nificant results for within- and between-network degree
centrality.

Correlations between Time-Varying Connectivity
at the Per Time Point Scale and Ratings of Pain

The statistical significance between network properties
and pain ratings at individual image volumes during
a trial was analyzed (N=1100 [25 participants x 22
trials x 2 levels (low and high intensities)]; degrees of
freedom=N—2). The results for the SID parameter
(Fig. 5A) suggest a relatively high degree of network
integration with higher pain ratings. All networks
displayed small but statistically significant correlation

with ratings (Peorr < 0.05). There were, however, notable
differences between time points. For example, the SM,
DA, SA, and FP network had positive yet not statistically
significant associations for early time points—a finding
that suggests a higher relative degree of segregation
associated with high pain ratings. From time point
four and onwards, this association is reversed, implying
increased integration with higher ratings. Figure 5B
shows that, for all networks except the limbic network,
there is a generally increased (positive) within-network
degree centrality for higher ratings; however, this was
not statistically significant. The limbic network, however,
showed one time point where negative within-network
degree centrality was associated with higher pain
ratings (r=-0.103, 95% CI=[-0.16, —0.04], P=0.001,
Peorr =0.049). This means that with higher ratings, the
limbic network displays lesser within-network degree
centrality. Figure 5C shows that there was a general
increase in between-network degree centrality with
higher ratings, especially from time point four and
onwards. The Vis, DA, and FP network showed time
points with statistically significant correlation with pain
ratings. Supplementary Tables 4-6 show the detailed
results for each metric.

We reran the analysis without GSR (Supplementary
Fig. 7). We see the same pattern as with GSR, with more
integration for higher pain ratings. However, there were
noticeable differences in time points and brain networks.
The Vis, DA, SA, FP, and DNM showed statistically
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time points with statistically significant correlation (P < 0.05, corrected across time points and brain networks).

significant correlation between SID and pain ratings.
Moreover, the between-network degree centrality was
statistically significant only for the Vis network. However,
the pattern of increased between-network connectiv-
ity is still visible, corresponding to time points with
increased integration. Supplementary Tables 13-15 show
the detailed results.

Discussion

The ability to track time-varying changes in connectivity
between brain networks is of importance for understand-
ing the mechanisms underlying the perception of pain.
We quantified the time-varying brain network connec-
tivity and measured the relative degree of segregation
and integration for seven canonical networks. Our results
showed that brain networks integrate with increased
pain. This was observed both at single time point within
trials and at time points corresponding to whole trials.
However, there were some differences in results between
timescales. At the trial timescale, the Vis and SA network
showed more integration for higher pain ratings. When
investigated at the single time point scale, all brain net-
works showed increased integration with pain ratings for
some time points within trials. These findings illustrate
the importance of probing TVC and how aggregating
brain network data over time can lead to results being
averaged out.

In a recent study, TVC was used to analyze fMRI data
acquired during an experiment using a n-back working
memory task (Fransson et al. 2018). In that study, there

was an overall increase in integration between networks
during the more demanding 2-back compared to the O-
back task. In this study, we see comparable patterns
of increased integration of brain networks during high
thermal stimulation. However, in that study, they could
single out the FP network, that is highly relevant to
the n-back task. In the current study, we note a signifi-
cant increase in integration of several brain networks for
higher thermal intensities (Fig. 2). This in line with previ-
ous findings of increased co-operation across the brain
to support pain perception (Geuter et al. 2020). Since
pain has high motivational value and serves as an alarm
system for threats to our bodily tissues (Craig 2003),it has
the potential to modulate other cognitive and emotional
functions. Our findings at the brain network level can
be interpreted in terms of increased attention to salient
signals to support the multifeatured experience of pain.
It is currently unclear if the brain becomes adjusted to
persistent pain processing in chronic conditions, and that
neural structures associated with attention and cogni-
tion become less integrated with time.

The finding of an association between brain integra-
tion and pain is in line with earlier findings showing
that network modularity decreases with pain (Zheng
et al. 2020). Using community detection, Zheng et al.
found a large integrated brain network, and reduced
between network connectivity to other networks. Here,
we used seven canonical resting-state brain networks,
and found increased between-network connectivity that
may influence the observed integration. This difference
is likely due to methodological choices in how brain



networks are defined. Furthermore, we unfold temporal
fluctuations in functional connectivity and show that
the integration/segregation of brain networks only at
certain time points within trials capture aspects of the
phenomenal experience of pain. For example, note that
the integration of the FP and SM networks correlate
with ratings for time points 4-6, but this correlation
diminishes, while integration of the DA and Vis network
continues to correlate with ratings (Fig. 5). We interpret
these findings as an increased attentional load associ-
ated with high pain levels, in line with the high saliency
of intensive pain and need to direct one’s attention to
possible dangers (Legrain et al. 2011). It is possible that
the DA network is recruited in a dose-response manner
to subjective pain intensity and may be an important
component for understanding differences in pain per-
ception in addition to traditional “pain networks.” Also,
the SA network, limbic network, and DNM show only
one time point where integration correlates with pain
ratings. Overall, the integration of brain networks could
influence the degree to which a stimulus is experienced
painful, or not. In contrast to integration, increases in
network segregation for lower thermal intensities might
reflect baseline values for integration and segregation
between resting-state networks. This notion is supported
by previous findings of increases in segregation during
baseline in between trials (Fransson et al. 2018) and for
innocuous stimuli (Zheng et al. 2020).

Most networks, except the limbic network, showed
a difference between high and low thermal intensities
in terms of between-network degree centrality (Fig. 4C)
while only the DA network showed a statistically signif-
icant difference in terms of SID (Fig. 4A). However, SID
correlated the most with subjective ratings of pain at
the single time point scale (Fig.5). This suggests that
neural correlates of the subjective rating of pain can be
distinguished when incorporating the balance between
within- and between-network degree centrality, repre-
sented in the compound measure of the SID. The full
extent of an association between the interplay among
networks and subjective ratings of pain may therefore
not be evident when SID is decomposed into within- and
between-network connectivity.

This study is not without limitations. There is evidence
that neural processes associated with pain are highly
correlated to saliency (Legrain et al. 2011). Studies that
utilize pain stimuli should include salient nonpainful
control stimuli (Mouraux et al. 2011) to reveal TVC
as it pertains to pain more specifically. Furthermore,
putative effects from physiological confounds on the
time-varying connectivity properties reported cannot
be unconditionally ruled out. For example, even after
applying confound regression, correlation between time-
varying connectivity estimates still display correlation
with nuisance regressors (Nalci et al. 2019). A fluctu-
ating level of arousal has been identified as a possi-
ble confound of time-varying connectivity and could
potentially act as an influential factor in our analyses
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(Laumann et al. 2017). However, as argued elsewhere
(Lurie et al. 2020), it is likely that cognition and arousal
are so heavily intertwined that they should not be
attempted to be disentangled from each other (e.g., the
subjective experience of pain will likely correspond to
levels of arousal).

In TVC analysis, preprocessing methods that include
GSR have been shown to be the most effective denoising
strategies (Lydon-Staley et al. 2019). However, GSR is
known to induce spurious negative correlations (Murphy
et al. 2009). For completeness, we reanalyzed all results
without GSR. A comparison between the results obtained
with and without GSR suggests that removing the global
mean influences some brain networks more than oth-
ers for positive values of the temporal network mea-
sures employed here (Supplementary Fig. 8). However,
the association between integration and pain was still
visible for both analyses yet with differences appearing
with respect to brain networks and time points.

The results presented here open up for several new
research questions that may deepen our understanding
of the brain mechanisms involved in pain perception.
For example, it would be interesting to probe specific
network nodes and see how they contribute to the inte-
gration and segregation of brain networks during the
perception of painful stimuli. This avenue of research
would add specificity to our results. Furthermore, in this
study, we have assumed networks to be static collec-
tions of nodes and measured the degree of interaction
between networks that is fluctuating across time. Thus,
investigating dynamic network membership of the nodes
could provide important and detailed information on the
functional role of networks during painful conditions and
possibly increase our understanding of its role in a more
general setting or generalize to other clinically relevant
domains such as psychiatric symptoms. Previous find-
ings on static functional connectivity have shown that a
large module or subnetwork can be identified during pain
with community detection, with higher efficiency within
that network than across networks (Zheng et al. 2020).
Extending such work to dynamic community detection
could reveal how brain networks reconfigure to support
pain. Another avenue for further research would be to
examine putative behavioral correlates of spontaneous
increases and decreases in segregation of brain networks,
such as pain catastrophising.

By employing a single time point method to investigate
time-varying brain connectivity during different pain
intensities, we have shown that network properties
vary across brain networks and time, consistent with
the changing nature of the subjective experience of
pain. During processing of more intense thermal heat
stimuli, brain networks shift from a segregated to an
integrated state. This is evident both for estimates at
the trial timescale and single time point scale. There
were some noticeable differences, in that the association
between integration and pain ratings was averaged
out when TVC was estimated at the trial timescale.



4048 | Cerebral Cortex, 2022, Vol. 32, No. 18

We conclude that TVC measured at higher temporal
resolution tracks subjective reports more accurately,
compared to TVC at a lower resolution. The dynamic
interplay between network segregation and integration
presumably reflects shifting demands of information
processing between networks that are related to the
level of thermal stimuli. This adaptation occurs both
for cognitive tasks such as working memory and for
processing of painful stimuli and could possibly shed
light on other clinically relevant brain processes, for
example, anxiety.
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