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Abstract

Studying sets of genomic features is increasingly popular in genomics, proteomics and metabolomics since analyzing at set
level not only creates a natural connection to biological knowledge but also offers more statistical power. Currently, there
are two gene-set testing approaches, self-contained and competitive, both of which have their advantages and
disadvantages, but neither offers the final solution. We introduce simultaneous enrichment analysis (SEA), a new approach
for analysis of feature sets in genomics and other omics based on a new unified null hypothesis, which includes the
self-contained and competitive null hypotheses as special cases. We employ closed testing using Simes tests to test this
new hypothesis. For every feature set, the proportion of active features is estimated, and a confidence bound is provided.
Also, for every unified null hypotheses, a P-value is calculated, which is adjusted for family-wise error rate. SEA does not
need to assume that the features are independent. Moreover, users are allowed to choose the feature set(s) of interest after
observing the data. We develop a novel pipeline and apply it on RNA-seq data of dystrophin-deficient mdx mice, showcasing
the flexibility of the method. Finally, the power properties of the method are evaluated through simulation studies.
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Introduction
In a typical genomics study, one would measure over a
thousand features, e.g. DNA sequence, structural variation or
gene expression. The goal is to detect features that are active
(e.g. differentially expressed) under a certain phenotype
condition. Traditionally, association of each feature with the

phenotype is tested, and using multiple testing procedures,
a long list of P-values with a controlled error rate is created.
A well-established alternative is to define sets as groups of
homogeneous features (e.g. similar function or location) and
test their association with the phenotype [1]. Testing feature sets
rather than individual features allows more direct interpretation
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of the underlying biological processes as well as giving more
power to detect subtle effects.

If many feature sets are tested, multiple testing correction
must be used. Controlling false discovery rate (FDR) is common
for genomics studies; however, some authors have argued that
control of family-wise error rate (FWER) is more appropriate
when testing feature sets [2–4]. Feature sets of interest are gen-
erally determined based on one or many feature-set collections,
for example Gene Ontology (GO) [5], Kyoto Encyclopedia of Genes
and Genomes (KEGG) [6], Molecular Signatures Database [7],
Panther Database [8], WikiPathways [9] etc. Since the choice of
database can greatly affect the analysis result, it is very tempt-
ing to use several databases. However, current multiple testing
methods require that the feature sets are chosen independent
from the data at hand. Using many databases simultaneously
results in a severe multiple testing correction.

There are many options to test for association of a given
feature set with phenotype [10, 11]. Broadly, we can distinguish
two types of approaches by their choice of null hypothesis [12].
Methods testing the competitive null test whether features
in the feature set of interest are more often active than
features outside the feature set. Methods testing the self-
contained null test whether there are any active features in
the feature set of interest. Examples of competitive methods
are Fisher’s exact test [13], Gene Set Analysis (GSA) [14],
Significance Analysis of Function and Expression (SAFE) [15]
and Gene Set Enrichment Analysis (GSEA) [1]. Self-contained
methods include global test [16], GlobalANCOVA [17] and
FORGE [18].

The two approaches may produce widely different results
[19], and there is an ongoing debate over the suitability of self-
contained versus competitive methods. Self-contained methods
are criticized for ignoring the information in the complement of
the feature set: detecting at least one active feature in the feature
set is not very informative if the complement of the feature set
has more active features than the set itself [20, 21]. Competitive
methods have been criticized for relying on an unrealistic
assumption of independence of features [22, 23]. Moreover,
the competitive null hypothesis is not always statistically
as well defined. Wu [22] suggest that competitive tests are still
used despite their methodological drawbacks because there are
no statistically sound alternative methods that would ‘maintain
the direct interpretation of competitive tests’. Attempts have
been made to avoid the assumption of independence of
features in competitive methods by a permutation approach.
However, Maciejewski [24] convincingly argued that in general
the resulting methods do not in fact test the competitive but
the self-contained null. Only in the case of GSEA, did Debrabant
[25] show under restrictive assumptions that the permutation
version of GSEA tests the competitive null. So far, there is no
general method that tests the competitive null hypotheses and
is valid under dependence of features.

This article proposes a novel approach unifying competitive
and self-contained testing into a single framework. We introduce
a general null hypothesis, related to the partial conjunction
hypothesis [26], that asserts that the proportion of truly active
features is less than some threshold. By varying the threshold,
the self-contained and competitive null hypotheses are included
as special cases. We embed this general null hypothesis in a
multiple testing framework that controls FWER for all unified
null hypotheses for all thresholds simultaneously. Remarkably,
therefore the framework also includes all competitive and self-
contained null hypotheses of all possible feature sets, i.e. all sub-
sets of the total set of features. Consequently, the choice for test-

ing a competitive or self-contained null hypothesis may even be
postponed until after seeing the data. Since FWER is controlled
over all possible feature sets, even the database of feature sets
may be chosen after seeing the data without compromising type
I error control. The method gives FWER-adjusted P-values for the
null hypotheses for any set of interest for any threshold. More
importantly, it also gives a simultaneous confidence interval for
the proportion of active features in the set.

Our approach is based on the All-Resolutions Inference (ARI)
of Goeman and Solari [27] and Goeman et al. [28], which uses
a combination of closed testing [29] and the Simes test [30]. A
similar approach has recently been advocated for testing brain
regions in neuroimaging [31]. This approach is valid under cer-
tain forms of dependence between features, as long as the Simes
inequality can be assumed to hold for the set of all non-active
features. This is the same assumption required for the validity
of FDR control by the widely accepted method of Benjamini and
Hochberg (BH) [32].

The paper is organized as follows: first, we present a brief
review of the properties of self-contained and competitive tests.
Next we introduce the unified null hypothesis and show that it
encompasses both earlier definitions. Then we briefly revisit the
ARI and adapt it to test the unified null. We apply simultaneous
enrichment analysis (SEA) to an RNA-seq data set and suggest a
general pipeline for testing sets of genomic features. Finally, we
study the power of the new method in comparison to previous
approaches by a simulation experiment.

Self-contained versus competitive methods
Various statistical methods have been established for feature-
set testing since its inception, and many studies have com-
pared them in terms of power, false positive rate, sensitivity and
reproducibility, for a recent review refer to [33]. As mentioned
above, these methods are broadly categorized as self-contained
or competitive. In this section, we briefly review the advantages
and disadvantages of each category.

Self-contained methods aim to test H0
self : ‘None of the fea-

tures in the set are active’ [12]. This is a very classical type of
null hypotheses in statistics (familiar from e.g. ANOVA models).
Therefore, self-contained tests are typically based on classical
and sound statistical models that have the subject as the sam-
pling unit. Consequently, whether based on subject permutation
or on parametric methods, correlations between features are
correctly taken into account. Self-contained methods are statis-
tically well founded: this is the main selling point of these meth-
ods. As a consequence, self-contained methods have been found
to be highly reproducible: there is a high chance of achieving
similar results with a new set of subjects [33]. Moreover, self-
contained tests are powerful for feature sets of all sizes and can
even be meaningfully applied to the feature set of all features
and to singleton feature sets [12].

However, self-contained tests have been criticized for being
too powerful. This is because the null hypothesis is too specific:
it is false even if a single active feature is present in a set of
many features. If many features in the data are active, then the
self-contained null hypotheses will generally be false for almost
all feature sets, especially for large ones. This means that self-
contained methods can be less specific in distinguishing feature
sets that are associated with e.g. polygenic phenotypes [20].

Competitive methods aim to test H0
comp: ‘Features in the set

are at most as active as the background features’. The back-
ground (or reference) features are all the features that are not in
the feature set of interest. Feature sets for which the competitive
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null hypothesis is not true are called enriched with active fea-
tures. Competitive hypotheses are more specific because they
look for feature sets that stand out in comparison with other
feature sets. This way, competitive tests correct for the bio-
logical processes in the background. It has been claimed that
not only the undesired and shared biological effects but also
genome-wide confounding effects are excluded [20]. Thereby,
the approach adds biological relevance to the analysis. This is the
main reason for using competitive methods. It is especially rele-
vant if there are many active features in the data set. Obviously,
the background should be chosen with care to ensure proper
biological interpretation, and any feature filtering steps should
be properly taken into account [34–36].

Most competitive tests rely on the crucial assumption that
features are independent, either explicitly or because they cal-
culate P-values by feature permutation [24]. An advantage of
this assumption is that the methods can be used even for a
study with only two biological samples [37, 38]. However, the
assumption of independent features is almost always highly
unrealistic. If this assumption is violated, the results of com-
petitive methods cannot be trusted. Even in the presence of
small correlations between features competitive methods have
excessive type I errors, as has been demonstrated by many
authors [14, 22, 23, 35, 39–41].

Some competitive methods, such as SAFE, GSA and GSEA,
avoid the problematic independence assumption by switching to
subject permutation to calculate P-values. Such hybrid methods
[12] indeed have lower false-positive rates than other competi-
tive methods [41]. Critically, Maciejewski [24] showed that GSEA
and SAFE do not actually test the competitive null hypothesis,
which makes the results difficult to interpret. In fact, the null
hypothesis of such hybrid methods is false if any feature either
in or out of the set is active. This means that hybrid methods do
not in general provide valid statistical tests for the competitive
null hypothesis. Only for the case of GSEA and under strong
assumptions, did Debrabant [25] suggest that the method truly
tests the competitive null hypothesis.

Both approaches have their advantages and disadvantages.
Self-contained methods are statistically well founded but may
not always test the biologically relevant null hypothesis. Com-
petitive methods do test the biologically relevant null hypoth-
esis, but all available methods rely on strong or unrealistic
assumptions.

The unified null hypothesis

We now unify the self-contained and competitive methods into
a single null hypothesis HU

0 , that contains both types of null
hypothesis as special cases.

Suppose that a genomics experiment is performed with m
features. Denote the set of all features by W. An unknown subset
T of these are truly active (A). We are interested in testing
feature-set S. We denote the number of truly active features in S
as A(S) = |S ∩ T| where | · | refers to the size of set. Define π(S) =
A(S)/|S|, the proportion of active features in S. The competitive
and self-contained null hypotheses can now both be formulated
in terms of π .

By the definition from [12], the self-contained null hypothesis
says that the proportion of active features is zero, so it is defined
as

Hself
0 (S) : π(S) = 0.

Similarly, the competitive null hypothesis says that the propor-
tion of active features in S is at most equal to the proportion

in the background. The background is the complement of the
set S, denoted by Sc. The competitive null is therefore defined as
Hcomp

0 (S) : π(S) ≤ π(Sc).
As we show in Methods, Hcomp

0 (S) is logically equivalent to

Hcomp
0 (S) : π(S) ≤ π(W).

To understand this, assume that the feature-set S has a smaller
proportion of active features than its complement Sc, then it
must also have a smaller proportion of active features than
the set of all features W. Conversely, if the set has a smaller
proportion than the set of all features, this must be because the
complement has a larger proportion than the set itself. A formal
proof is provided in the supplementary material.

We see that both hypotheses are special cases of the unified
hypothesis

HU
0 (S, c) : π(S) ≤ c,

for c ∈ [0, 1]. By varying c, we may obtain the competitive test
by taking c = π(W) or the self-contained test by taking c = 0.
However, we may also take other values of c. By testing the
unified null hypothesis for all values of c, we automatically test
both the self-contained and the competitive null hypotheses. We
note that π(S) is always a multiple of 1/|S|, so only values of c that
are a multiple of 1/|S| make sense to test.

All-resolutions inference

In practical applications, we are not interested in making infer-
ences about a single feature set but about multiple feature sets.
Moreover, we are not necessarily interested in a single value of
c. The ARI approach [27, 28, 31] allows testing the unified null
hypothesis for all S and all c, while controlling the FWER at
level α. This means that with probability at least 1 − α no type
I error is made, where a type I error is defined as rejection of any
true unified null hypothesis HU

0 (S, c) for any S, c. This is a huge
multiple testing burden, involving 2m − 1 sets S and many values
c for every S. This burden is surmounted by ARI using the closed
testing procedure [29], which exploits the overlaps between the
various sets S to great effect. Technical details are given in the
Methods section and in [27] and [28].

Control of FWER for all S and c allows the user to postpone the
choice of S and c until after seeing the data without incurring
additional type I errors due to this data peeking. Thereby, we
do not need to choose feature sets from a single feature-set
database but allow ourselves to combine many such databases.
A feature set may even be chosen on the basis of the data
without reference to any database. By testing all values of c
simultaneously, we will be testing both the self-contained and
the competitive null hypotheses for all feature sets. If multiple S
and c are chosen, the final results have automatic FWER control.
This FWER control also encompasses the individual features, i.e.
singleton feature sets.

For every feature-set S, ARI produces an estimate π̂ (S) and a
95% confidence bound π̄(S) for the proportion of active features
in S. These have the properties that π̂(S) ≤ π(S) simultane-
ously for all S with probability at least 50% and that π̄(S) ≤
π(S) simultaneously for all S with probability at least 95%. The
simultaneous confidence interval for π(S) is therefore [π̄(S), 1]. It
always contains the estimate π̂(S) but is not necessarily centered
on it. The confidence intervals are necessarily one sided: it is
impossible to prove that features are non-active since we cannot
prove a null hypothesis.

Based on this confidence interval, ARI rejects HU
0 (S, c) if and

only if π̄(S) ≥ c. A FWER-adjusted P-value can be calculated for
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every HU
0 (S, c), as we show in the Methods section. It is defined

as the smallest α-level that allows rejection of HU
0 (S, c) within the

ARI framework. Consequently, this P-value is smaller than 5% if
and only if π̄(S) > c. By testing all c for all S, we automatically test
the competitive null hypothesis for all S. However, the definition
uses c = π(W), which is not known. Practically, we may plug
in an estimator of π(W). It should be remarked that the FWER
control is guaranteed for the unified null at the plugged-in
threshold. Control at the real value of π(W) is only guaranteed
if correlations between features are low, as explained in the
Methods section.

ARI is not assumption free. It requires that the Simes inequal-
ity [30] holds for the subset U of truly inactive features. It has
been shown to hold whenever the P-values are independent
or positively correlated [42]. The assumption needed for ARI is
needed for the validity of BH [32] as an FDR-controlling proce-
dure. It is a much less restrictive assumption than the inde-
pendence assumption that is invariably made by competitive
methods.

Methods
In this section, we present details on the ARI method of Goeman
and Solari [27] and its use to test the unified null hypothesis
simultaneously for all feature sets. Within this framework, we
create a closed testing procedure for all self-contained null
hypotheses first. From this, we derive simultaneous confidence
intervals for the proportion of active features in all feature sets,
which are in turn used to test the unified null hypothesis.

Simes tests

We will first construct a multiple testing procedure for all 2m − 1
self-contained null hypotheses and then explain how the
same procedure can actually be used to test all unified null
hypotheses. To test the self-contained null hypothesis of a set
S, we use the Simes test. This test rejects the self-contained
null hypothesis at level α if and only if PS ≤ α, where PS =
min1≤i≤|S| |S|

i P(i:S) and P(i:S) stands for the ith ordered P-value among
features in S.

The Simes test is valid under quite general dependency struc-
tures between the P-values, including independence but not
when too many negative correlations between P-values occur
[42, 44–46]. The conditions under which the Simes test con-
trols type I error are weaker than those required by the FDR
controlling procedure of BH [32], to which it is closely related.
The BH procedure requires the P-values to satisfy the ‘positive
regression dependence on a subset (PRDS)’ property, which is
generally assumed to hold for genomics data [43]. For the Simes
test, the ‘positive regression dependence within nulls (PRDN)’ is
sufficient, which is a weaker assumption than PRDS [47].

Closed testing

To control FWER over the self-contained null hypotheses for all
subsets, we use the closed testing procedure. In closed test-
ing, the hypothesis for a set S is rejected if and only if the
hypotheses for all supersets of S, including S itself, have also
been rejected. Closed testing guarantees that FWER is controlled
for all hypotheses for all 2m − 1 sets S.

In general, closed testing procedures have an exponential
computational load, but for the case of closed testing with Simes
tests, the computations can be done much more efficiently. As

shown by [28], Hself
0 (S) is rejected if and only if for some 1 ≤ i ≤ |S|,

we have

hαP(i:S) ≤ iα, (1)

where

hα = max{i ∈ {0, ..., m} : iP(m−i+j) > jα, for j = 1, ..., i}. (2)

The dependence of hα on α is made explicit by its subscript. Note
that hα does not depend on S. hα can be interpreted as the size
of largest feature-set S for which Hself

0 (S) is not rejected at level α.
We also have that π̄(W) = (m−hα)/m. Meijer et al. [48] introduced
an algorithm to calculate hα for all values of α simultaneously
in linearithmic time. After hα has been found, deciding whether
Hself

0 (S) is rejected takes only linear time in |S| for each S.

Estimates and confidence intervals

It was shown by [27] that any closed testing procedure can be
used to make simultaneous confidence intervals for π(S). The
reasoning is briefly as follows: suppose that all subsets of S of
size k have been rejected by the closed testing procedure. If the
closed testing procedure did not make a type I error, then every
subset of S of size k must contain at least one active feature.
Consequently, S must contain at least |S| − k + 1 active features.
Since the probability that the closed testing procedure makes no
error is at least 1 − α, we have P(π(S) ≥ (|S| − k + 1)/|S|) ≥ 1 − α.
For every S, we find the smallest value of k, say k̄, such that
all k̄-sized subsets of S have been rejected by the closed testing
procedure. Then π̄(S) = (|S| − k̄ + 1)/|S|. Importantly, since the
event that the confidence interval does not cover π(S) is the
event that the closed testing procedure makes an error, which is
the same for every S, the confidence intervals are automatically
simultaneous. We have

P(π(S) ≥ π̄(S) for all S) ≥ 1 − α. (3)

The simultaneity in (3) means that the true values of π(S) for
all S are all within these bounds with probability at least 1 −
α. This implies that also any selected S is within the bounds.
Simultaneity of confidence bounds makes them robust against
selection.

In general, calculation time of π̄(S) is exponential. For the case
of Simes tests, however, calculations simplify. Goeman et al. [28]
showed that π̄(S) = Ā(S)/|S|, where

Ā(S) = max
1≤u≤|S|

1 − u + |{i ∈ S : hαPi ≤ uα}|.

Taking α = 5%, we obtain the confidence lower bound, leading
to the confidence interval [π̄(S), 1]. Taking α = 50%, we obtain
the point estimate π̂(S). The probability of the true proportion
π(S) of active features exceeding the estimate is at most 0.5 (the
estimate is ‘median unbiased’). More liberal than the confidence
bound, this estimate is useful to get a conservative impression
of the likely amount of activation in the selected set S. Since the
50% confidence intervals that give rise to the point estimate are
still simultaneous, this estimate retains its property of median
unbiasedness even over selected S.
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Testing unified null hypotheses

Clearly, (1) tests HU
0 (S, c) for c = 0 for all S since this is the self-

contained null hypothesis. To test the unified null hypothesis,
we reject if and only if π̄ (S) > c. To see that this is a valid test,
let HU

0 (S, c) be true, so that π(S) ≤ c. Then we have P(π̄(S) >

c) ≤ P(π̄(S) > π(S)) ≤ α. Simultaneity over all S and all c,
and consequently FWER control, follows immediately from the
simultaneity of the confidence bounds. If the closed testing
procedure did not make an error, which happens with probability
at least 1 − α, no unified null hypothesis, for any S or any c, is
falsely rejected.

For closed testing with Simes tests, we reject HU
0 (S, c) if and

only if there is an 1 ≤ i ≤ |S| − k such that

hαP(i+k:S) ≤ iα, (4)

where k = �c ∗ |S|�.
To test the competitive null hypothesis, we should use the

unified null hypothesis with c = π(W). However, usually π(W) is
unknown, and we need to replace it with an estimate π̃ (W). Then,
we reject the competitive null hypothesis for S if π̄(S) > π̃(W).

To keep type I error control, it is important that π̃(W) under-
estimates π(W) at most as much as π̄ (S) underestimates π(S).
Goeman et al. [28] showed that the bounds π̄(S) are more con-
servative for small sets S than for larger sets. Consequently,
we know that on average π̄ (W) underestimates π(W) less than
π̄(S) underestimates π(S). Therefore, we propose to use π̃S(W) =
	π̄(W) ∗ |S|
/|S|.

Like above for the unified test, we use a constant c that is
an integer multiple of 1/|S|. However, instead of rounding down
as we could with a fixed c in the unified test, we now round
up in order to conserve the necessary property that π̃(W) does
not underestimate π(W) too much. Consequently, the estimate
π̃S(W) depends on S.

FWER control of the unified null hypothesis at c = π̃S(W)

does not formally guarantee control of FWER for the true unified
null with c = π(W). However, we found that in practice FWER
control still holds, certainly under independence of features.
Only when features within S are much more strongly correlated
than features outside S did we encounter lack of FWER control
for the competitive null. In practice, it is not that important
that π(W) is not known, since the unified framework tests all
values of c simultaneously. Rather than putting much effort into
estimating π(W) precisely, we recommend that a user simply
uses the values of π̄(W) or π̂(W) as a loose guideline to choose
a biologically meaningful value of c post hoc. FWER control is
guaranteed for the unified null hypothesis for any selected value
of c.

Adjusted P-values

Instead of just reporting rejection or non-rejection of hypothe-
ses, users may want to report adjusted P-values. By definition,
the adjusted P-value of a hypothesis is the smallest α that allows
rejection of that hypothesis within a multiple testing procedure.
Consequently, a hypothesis is rejected by the multiple testing
procedure at level α if and only if its adjusted P-value is less
than α.

We can calculate the FWER-adjusted P-value P̃c
S of HU

0 (S, c) as
follows. We note from (4) that HU

0 (S, c) is rejected if and only if
hαPc

S ≤ α, where Pc
S = min1≤j≤|S|−k P(j+k:S)/j and k is defined as

in (4). Now the calculation of the adjusted P-value is completely

analogous to the calculation of adjusted P-values for individual
features in Hommel’s procedure as given in [48]. The adjusted
P-values for HU

0 (S, c) is therefore given by

P̃c
S = min(tPc

S, αt), (5)

where t = max{i ∈ {1, ..., m + 1} : (i − 1)Pc
S ≤ αi} and αi = min{0 ≤

α ≤ 1: hα < i}.

Simulation experiment set-up

We designed a small simulation experiment to evaluate the
power of the unified approach. Our aim is not to show that
the new method is more powerful than existing self-contained
or competitive methods. If fact, we expect many such meth-
ods to be more powerful because they do not offer the same
flexibility that our approach offers. Our aim is merely to show
that the proposed method has comparable power to commonly
used approaches. Therefore, we did not conduct an exhaustive
simulation with many competing approaches, but compared
only with the most popular and basic method, which is the
Fisher’s exact test. Among enrichment methods, Fisher’s exact
test is most comparable with ARI because the two methods have
the same definition of enrichment: an increased proportion of
active features. There are many simulations comparing Fisher’s
exact test to competing methods, which can be used for cross-
comparisons [49,50].

The simulation set-up is as follows: we defined 24500 fea-
tures based on ENSEMBL identifiers. The GO database was used
to make 12252 feature sets. For each simulation, a small (50),
moderate (100) or large (200) pathway was selected randomly
as the active pathway. The proportion of active features in the
active pathway and in the background varied between 0.1, 0.3, 0.5
and 0, 0.05, 0.1, respectively. These proportions were held fixed,
but the precise active genes were randomly selected. We gener-
ated z-scores for each feature independently. For the non-active
features, these were standard normally distributed. For active
features, z-scores were assumed to follow a normal distribution
with mean μ = 2, 3, 4 or 5, and unit variance. From the z-scores,
we calculated the corresponding one-sided P-values. Varying all
5 parameters over the values mentioned led to 108 scenarios
in total. For each scenario, the adjusted P-value of the truly
active set was calculated for our novel competitive test and for
Fisher’s test. In the latter case, we corrected for multiple testing
of 12252 GO terms using 2 approaches. FDR was controlled using
BH method, and FWER was controlled using Hommel’s method.
Power was defined as the proportion of adjusted P-values < 0.05
for our assumed truly active set in 1000 repetitions. Results of the
simulation are presented in Figure 3 and Supplementary Figures
3 and 4. R source code that was used for simulations is also
provided in the supplementary data.

Implementation
The following data analysis pipeline based on SEA approach,
includes simple steps, but provides powerful error control and
flexibility. All the mentioned calculations can be done through
the rSEA R package that has the ARI algorithms.

The required input is simply the features with their feature-
wise P-values. For any collection of feature sets of choice, the
researcher obtains the estimate and confidence bound for the
proportion of active features, as well as the adjusted P-values for

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz074#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz074#supplementary-data
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Figure 1. Suggested pipeline for testing feature sets in genomics. Solid lines are mandatory, e.g. confidence bounds are always used to test the unified null hypothesis.

Dashed lines can be repeated as needed, e.g. defining HU
0 (S, c) based on a different threshold values c is allowed. Dotted lines are optional, e.g. set S may be selected

based on biological knowledge, data set, both or neither.

any value of c, two default options are zero and estimated overall
TDP value.

Figure 1 portrays the pipeline graphically. As emphasized in
the figure, users may iterate the procedure as many times as they
like, reconsidering the choice of database as well as the value of
c. All reported results have guaranteed FWER control regardless
of the number of hypotheses or the number of iterations.

Results
DMD study

The data from a mouse model for Duchenne muscular dystrophy
(DMD) have been used to illustrate the application of our method
in the context of an RNA-seq experiment. For a more detailed
description of the data set and analysis steps, refer to sup-
plementary data. Count data were pre-processed and analyzed
conventionally. Feature-wise P-values were computed based on
a linear model for 13985 features. The estimated proportion of
overall active features in the data set was 0.235. An enrichment
analysis was performed based on SEA and simultaneous 0.05-
level confidence bounds were built for the 213985 − 1 possible
sets. Using these confidence bounds, we tested the unified null,
HU

0 (S, c), for two thresholds, c = 0 and c = 0.235, and 13278
feature-sets S. By setting the threshold to zero, HU

0 tests the self-
contained null hypothesis. Setting 0.235, it will resemble the
competitive null hypothesis. Feature sets were defined based on
the mice pathways from GO (11881 sets), Reactome (1188 sets)
and WikiPathways (209 sets) databases.

A proper enrichment method should not depend on the size
of the pathway. We checked this property by plotting the adj.P-
values from SEA with c = 0.235 against pathway sizes for all
pathways from the three databases. As illustrated in Figure 2, the
P-values are not associated with the pathway size.

Figure 1 shows significantly enriched (competitive adj. P-
value< 0.05) pathways from WikiPathways based on SEA. The
SEA chart provides detailed information regarding the path size,
proportion of active genes and the test results. For instance,
oxidative damage includes 41 genes. In this data, 37 ([0.9 × 41])
of these genes are studied. The estimated lower bound for the
proportion of active genes is 0.27. So, there are at least 10 (=[0.9×
41 × 0.27]) differentially expressed genes in this pathway. The
unified null hypothesis HU

0 : π(oxidative damage) ≤ 0.235 is
rejected with an adjusted P-value of 0.038. This was expected

as the lower bound and the point estimate (0.351) is greater
than the threshold. Actually, as all pathways in this table are
significantly enriched, all the estimated values of TDP bounds
are greater than the threshold. On the other hand, according
to the adjusted P-value for the self-contained test (c = 0), all
these pathways include at least one active gene. This statement
is true for 169 sets (out of 209 sets) from WikiPathways, making
it hard to specify outcome-related pathways. Similar tables for
Reactome and GO databases are provided in supplementary data
(Supplementary Tables 1 and 2).

Furthermore, each gene set was divided into two portions,
up-regulated and down-regulated, based on the log-fold change
values. A similar pathway analysis was performed for each
portion. The corresponding unified null hypotheses were tested
against 0.181 and 0.216, which are the overall proportion of active
up- and down-regulated features in the data, respectively. The
estimated proportion of active genes for some pathways from
each database, separate for up- and down-regulated genes, are
presented in supplementary data (Supplementary Figures 1-3).
Note that, even though these additional pathways were defined
based on data, FWER is still controlled as discussed earlier.

To dive into the details of the analysis, we only considered the
competitive results. Feature sets from WikiPathways mapped to
inflammation, oxidative damage and fatty acid oxidation, which
are known to be affected in DMD [51–55]. These pathways are
highly relevant not only to explain the Duchenne pathophysi-
ology but also to understand the treatment mechanism. DMD
patients receive chronic treatment with corticosteroids, which
reduces inflammation, and multiple drugs are in development
to reduce the oxidative stress. Among the significantly enriched
sets with only up- or down-regulated features, we found muscle
contraction, focal adhesion, Akt/mTOR pathway, type II inter-
feron signalling, oxidative stress, (lung) fibrosis, toll-like receptor
signalling and FAS pathway, which are also known to be affected
in DMD [52, 56–60]. The unified null hypothesis was rejected for
the up-regulated portion of miRNA regulation of DNA damage
pathway; at least %20 of the 45 up-regulated features in the
pathway were active. Among the 137 significant sets from Reac-
tome, there were four sets related to DNA damage, namely: G2/M
DNA damage checkpoint, recognition of DNA damage by PCNA-
containing replication complex, p53-dependent G1 DNA damage
response and DNA damage recognition in GG-NER. A similar
pattern was observed in GO database. The intrinsic apoptotic
signaling pathway in response to DNA damage by p53 class

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz074#supplementary-data
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Figure 2. The log P-values obtained from testing the unified null hypothesis, HU
0 (S, 0.235), are plotted against the size of pathway S. There is no clear relationship

between the two variables.

Table 1. SEA chart for enriched sets from WikiPathways database

Pathway name Size Coverage TDP bound TDP estimate
Self-contained adj.

P-value
Competitive adj.

P-value

Irinotecan pathway 10 0.40 0.500 0.500 < 0.001 < 0.001
Microglia pathogen phagocytosis
pathway

41 0.95 0.487 0.539 < 0.001 < 0.001

Macrophage markers 10 1 0.600 0.800 < 0.001 < 0.001
TYROBP causal network 58 0.97 0.571 0.607 < 0.001 0.001
Statin pathway 19 0.63 0.333 0.333 < 0.001 0.002
Fatty acid beta oxidation
(streamlined)

32 0.81 0.423 0.577 < 0.001 0.007

Matrix metalloproteinases 29 0.69 0.350 0.350 < 0.001 0.007
Fatty acid beta oxidation 34 0.88 0.400 0.567 < 0.001 0.008
Nuclear receptors in lipid
metabolism and toxicity

30 0.60 0.389 0.389 < 0.001 0.009

Mitochondrial LC-fatty acid
beta-oxidation

16 1 0.438 0.563 0.003 0.012

Oxidative damage 41 0.90 0.270 0.351 < 0.001 0.038

mediator was found to be over-represented in the proportion
of active genes. Pathways identified by WikiPathways were mir-
rored in Reactome including degradation of the extracellular
matrix, VEGF pathway, activation of matrix metalloproteinases
and pyruvate metabolism [61–64].

Further matching to the Reactome database showed inter-
esting associations with e.g. molecules associated with elas-
tic fibers, among which the latent TGF-β binding proteins are
known. Interestingly, it has been recently reported that latent
TGF-β binding protein 4 can modify the course of the diseases
in dystrophic mice and patients [65, 66].

Reactome mapping highlighted how DCC signalling is
affected in mdx mice. Members of this pathway such as neogenin

have been shown to promote muscle fiber formation in vitro
[67], which can be connected to the capacity of muscle to
regenerate and form new muscle fibers. The DCC pathway is
involved in axon attraction. Other pathways providing evidence
of axon growth were found to be significant in the Reactome
database such as L1 signal transduction, which can act via
NF-κB signalling [68]. Another significant association with the
Reactome database showed involvement of the unfolded protein
response with pathways such as calnexin/calreticulin cycle.
This observation is in line with a recent paper showing how
the unfolded protein response is specifically affected in mdx
mice [69]. Interestingly, five significant pathways from Reactome
involved Runx2 and Runx3, which have not been linked to
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Figure 3. Simulation results. Power to detect a moderate-sized pathway (100 features) truly active feature set is compared for the three approaches. In general, power

of Fisher’s exact test with FDR and FWER corrections is the same, so the corresponding line appears as a single dot-dashed line. When there are no active features in

the background, the three methods have very similar power. As the difference between set and background TDP decreases, ARI gains power compared to Fisher’s exact

test.

Duchenne in literature. Studies are required to unravel the
potential link between these proteins and the pathophysiology
of DMD. The 56 enriched GO terms were mostly referring
to inflammation, immune reaction, myogenesis and energy
production supporting the findings from WikiPathway and
Reactome. Detailed GO pathways clarified that cytokines and
T cells are mainly at the core in the inflammatory process as
shown in the literature [70].

Power comparison

We performed a simulation experiment as described in
Simulation Experiment Set-up to compare power properties
of SEA with Fisher’s exact test. Despite the flexibility of SEA,
we found it to have acceptable power over the whole range of
simulation scenarios. We present the results for a moderate
(100 features) feature set in Figure 3. Small (50 features) and
large (200 features) feature sets follow a similar pattern, and the
corresponding graphs can be found in the supplementary data
(Supplementary Figures 4 and 5).

First, we note that FDR (BH) or FWER control (Bonferroni)
hardly matters for the Fisher’s exact test approach. This was
expected since only one highly enriched set was assumed. All
three approaches successfully control the type I error rate at 0.05
under the null hypothesis, as shown in the bottom left panel.
This is natural as all simulation scenarios use independent

P-values, so both methods are valid. As expected, power for both
Fisher’s exact test and for ARI increases as the effect-size μ per
feature increases and as the difference between set TDP and
background TDP increases. In case of no active features in the
background, the methods have remarkably similar power. Dif-
ferences in power occur when there is signal in the background.
Fisher’s exact test has great difficulty detecting small differences
between set and background TDP: even when all active features
are detected as active the Fisher exact P-value is not always
small enough to survive the multiple testing correction. On
the other hand, Fisher’s exact test starts to gain over ARI if
this difference in signal between feature set and background
becomes large. For larger or smaller feature sets (results shown
in the supplemental information), we can say that power for
both methods is lower for small feature sets than for large
ones. ARI loses less power over Fisher’s exact test if the feature
set gets smaller but conversely gains less if the feature set
gets larger.

To properly interpret the results of the simulation, we should
emphasize that the methods are not really comparable because
the way they handle multiple testing is so different. On the
one hand, 12252 feature sets is a large number, leading to a
heavy multiple testing burden for Fisher’s exact test. In some
applications, the number of tests may be smaller, leading to more
power for Fisher’s exact test. In this sense, the simulation can be
seen as unfavorable to Fisher’s exact test. On the other hand, ARI

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz074#supplementary-data
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actually corrects for multiple testing for 224500 ≈ 107375 feature
sets, while Fisher’s exact test is only required to correct for 12252.
In this sense, the simulation experiment is unfavorable to ARI.

Discussion
We have introduced a novel paradigm for enrichment analysis
of feature sets. It combines the pre-existing self-contained and
competitive approaches by defining a unified null hypothesis
that includes the null hypotheses of both approaches as special
cases. This null hypothesis is tested with ARI, an approach to
multiple testing that controls FWER based on closed testing and
Simes tests.

The new approach is extremely flexible. Not only does it allow
both self-contained and competitive testing but also it allows
the user to choose the type of test after seeing the data, namely
competitive or self-contained. Moreover, the choice of feature-
set database(s) may also be postponed until after seeing the data.
The data may even be used for the definition of feature sets, e.g.
by taking subsets of feature sets with a certain sign or magnitude
of estimated effect. Users may even iterate and revise the choice
of type of test and the definition of feature sets of interest on
the basis of ARI’s results. Still, family-wise error is controlled for
all final results. Family-wise error is even controlled for future
looks, i.e. new feature sets that could be of interest at some
later stage. The method controls for all feature sets of all sizes,
including singleton sets, so that it avoids inflated error rates
caused by separately testing feature sets and single features.

Notably, post hoc choice of the test value c adds even more
flexibility for different study goals. Larger c values will result in
a smaller list of highly enriched feature sets, appropriate for data
with many active features. In contrast, smaller c will result in a
longer list of potentially relevant feature sets, a desired property
for exploratory studies. The estimated value of π̄(W) is a good
starting value, but we emphasize that c may be freely tuned after
seeing the data.

Allowing post hoc tuning of c circumvents a fundamental
problem of competitive testing as it is classically defined. The
proportion π(Sc) of active genes in the background is very diffi-
cult to bound from below: it could be that all features in Sc have a
non-zero but negligible effect. In that case, we would have π(Sc) =
1, so that the competitive null hypotheses is true, even if many
more features in S than in Sc have detected signal. Rejecting
the competitive null hypothesis, therefore, requires proving that
π(Sc) < 1, which in turn means proving the null hypothesis for
at least some of the features in Sc. In most statistical models,
proving a null hypothesis is impossible without strong addi-
tional assumptions. The unified null hypothesis does not suffer
from the same problem since it uses a fixed threshold c. When
rejecting the unified null hypothesis at the threshold c = π̄(W),
we should realize that we did not reject the competitive null
hypothesis—which is impossible—but we simply proved that the
percentage of activation is at least π̄(W). Proving this is as close
as we can get to true competitive testing.

The new method uses only feature-wise P-values as input,
so that it can be used with any omics platform, experimental
design or model. ARI combines P-values using the Simes test.
The only assumption needed is therefore the Simes inequality,
which allows dependence between P-values, which is a much
less restrictive assumption than the independence assumption
that is invariably made by competitive methods. It is the same
assumption that is needed for the validity of the procedure of
BH as a method for FDR control. To the best of our knowledge,

our novel approach is the only enrichment approach with proper
error control in the presence of dependence between features.

Despite the flexibility and lack of independence assump-
tions, the new method has acceptable power compared to classi-
cal enrichment methods. Notably, the power of the method does
not depend on the number of feature sets tested. As a conse-
quence, classical methods will do better for a limited number
of candidate feature sets, while ARI outperforms other methods
when databases are large. In a simulation study, we found ARI to
be comparable in power to a classical method for a database the
size of GO. SEA is especially recommended when many feature
sets are of interest or when such feature sets cannot be specified
before seeing the data.

Importantly, ARI provides for each feature set not only an
adjusted P-value for enrichment but also a simultaneous lower
confidence bound to the actual proportion of active features.
Users obtain not just the presence or absence of enrichment but
also an honest assessment of the level of enrichment in each
feature set.

A drawback of ARI may be that it is very strict, as it only
has FWER control. For large values of c, this is not much of a
drawback, as only few hypotheses will be false, so the difference
between family-wise error and FDR is small. For smaller values
of c, power could be gained by switching to control of FDRs or
related measures. This is left to future method development.

Application of the method is fast, and the complexity of all
computations is linear or nearly linear in the number of features.
An implementation of ARI is available in the rSEA package in R

with some practical functions to make use of three genomics
databases (GO, Reactome and WikiPathways).

Key Points
• A unified null hypothesis states that ‘The proportion of

the truly active genes in the gene set of interested is less
than c.’

• Self-contained and competitive null hypotheses are
special cases of the unified null hypothesis.

• SEA of all gene sets is possible by testing the unified null
within closed testing framework.

• Closed testing provides an FWER control over all possi-
ble gene sets. Therefore, SEA does not require a priori
selection of the gene sets of the interest.

• A main advantage of SEA over current methods is the
freedom in choices of both feature set of interest and
threshold c. Moreover, it is possible to revise or make
new choices even after seeing the data without type I
error inflation.

• The application of SEA is not limited to gene-set analy-
sis.

Supplementary Data
Supplementary data are available online at https://academic.
oup.com/bib.
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