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Summary 
u is a plasmid-encoded protein tyrosine phosphatase (PTPase) secreted by pathogenic Yersinia. 
Although the enzyme likely acts to dephosphorylate eukaryotic proteins during Yersinia infection 
of the mammalian host, the targets of YopH have not been identified. We infected the murine 
macrophage-like cell line J774A.1 with Yersinia pseudotuberculosis and investigated the specificity 
of YopH and YopHC403A, a catalytically inactive mutant derivative, for eukaryotic phosphoproteins. 
Upon infection, YopH specifically and rapidly dephosphorylated a macrophage protein of 120 
kD. The 120-kD protein and a previously detected 55-kD substrate of YopH coprecipitated with 
YopHC403A. Coprecipitation of these proteins required tyrosine phosphorylation and could 
be competitively inhibited with excess phosphotyrosine. The 120- and 55-kD proteins that 
copredpitate with YopHC403A exhibited the in vitro activity of protein tyrosine kinases (PTKases), 
suggesting that YopH dephosphorylates activated tyrosine kinases in vivo. 

T Yrosine phosphorylation is a key component of the signal 
transduction processes that control the growth and 

differentiation of eukaryotic cells (1). Cellular levels of tyro- 
sine phosphate are modulated by the concerted action of pgo- 
tein tyrosine kinase (PTKase) 1 and protein tyrosine phos- 
phatase (PTPase) activities (2). Altering levels of tyrosine 
phosphorylation in the mammalian host is of fundamental 
importance for the virulence of two microbial pathogens that 
encode FTPases, vaccinia virus (3) and the pathogenic bac- 
teria of the genus Yersinia (4, 5). The pathogenic Yersinia in- 
fect both animals and humans, share a marked predilection 
for the reticuloendothelial system of the host, and cause dis- 
ease ranging from mild gastroenteritis and mesenteric lymph- 
adenitis (Y  enterocolitica and Y pseudotuberculosis) to bubonic 
plague (Y pestis) (6). 

Attachment and entry of Y pseudotuberculosis into mam- 
malian cells is mediated by invasin (7), and the Yersinia adhesin 
(Yad) (Bliska and Falkow, manuscript in preparation). These 
proteins recognize multiple members of the ~/1 integrin family 
of extracellular matrix receptors (8). In addition, the capacity 
of these bacteria to proliferate extracellularly in the hostile 

1 Abbreviations used in this l~per: GST, glutathione-S-transferase; PDGF, 
platelet-derived growth factor; PTKase, protein tyrosine kinase; PTPase, 
protein tyrosine phosphatase; FTyr, O-phospho-t-tyrosine; Yad, Yersinia 
adhesin. 

environment of the mammalian reticuloendothelial system 
is associated with the expression of a set of plasmid-encoded 
secreted proteins called Yops that are essential determinants 
of the bacterium's virulence (9). Yops are coordinately syn- 
thesized and released by Yersinia grown at 37~ in low cal- 
cium (Ca 2+) medium (10). Several of the regulatory and 
secretory proteins required for Yop expression are homolo- 
gous to proteins found in other prokaryotes (11, 12). YopH 
and YopM contain functional homology to eukaryotic signal 
transduction proteins, a finding which has led to the assign- 
ment of their molecular functions (4, 13). 

The 51-kD YopH protein, encoded by the virulence plasmid 
plB1, contains functional homology to the conserved cata- 
lytic domains of the PTPase family (4). The role of PTPase 
activity in Yersinia pathogenesis was demonstrated by changing 
an essential cysteine residue to an alanine residue in the cata- 
lytic domain of the protein (see Fig. 1). This single amino 
acid change abolished YopH PTPase activity and significantly 
reduced the virulence of Y pseudotuberculosis in a murine in- 
fection model (5). Mutational inactivation of YopH activity 
either by the C403A codon substitution (our unpublished 
observations) or by deletion of yopH (14), has been shown 
to reduce the invading microbe's ability to resist phagocy- 
toffs by murine macrophages. This observation suggests that 
the interruption of the phagocytic process by YopH-mediated 
dephosphorylation of host proteins is a major pathogenic 
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strategy of Yersinia. Consistent with this model was the 
demonstration that YopH specifically dephosphorylated pro- 
teins of 120 and 55 k.D (previously termed 60 k.D) in J774A.1 
macrophage-like cells infected with Y pseudotuberculosis (5). 
To better understand the effect of YopH on host cell func- 
tion, we have sought to determine the identity and function 
of the 120- and 55-kD substrates. Here we show that the 
120- and 55-kD proteins that are dephosphorylated by YopH 
in vivo are coprecipitated with YopHC403A and exhibit the 
in vitro activity of PTKases. These findings raise the possi- 
bility that YopH acts to subvert signal transduction within 
host cells by reversing the phosphorylation state of host PTKase 
molecules. 

Materials and Methods 
Bacterial Growth and Tissue Culture Infection Conditions. The 

strains of Y. pseudotuberculosis used and their growth conditions have 
previously been described (5). J774A.1 cells were grown and pre- 
pared for infection assays as described (5). Before infection, the bac- 
teria were pregrown to mid-log phase at 37~ in Lennox base broth 
(Gibco BRL, Gaithersburg, MD). Monolayers of J774A.1 calls (2 x 
106 cells) in 60 x 15 mM dishes were placed on ice and overlayed 
with ice-cold serum-free DMEM supplemented with 25 mM Hepes, 
pH 7.4 and 0.4% BSA. Bacteria (2 x 107 CFUs) were inoculated 
onto the monolayers, and the dishes were briefly centrifuged at 
4~ (7). After allowing for the bacteria to associate with the cells 
on ice for 90 min, the media overlaying the monolayers was replaced 
with media prewarmed to 37~ Before the temperature upshift, 
or at various times thereafter, the cultures were lysed on ice with 
0.25 ml lysis buffer (150 mM NaC1, 1.0% NP-40, 0.5% deoxycho- 
late, 0.1% SDS, 50 mM Tris pH 8.0, 0.2 raM NaVO4, 10 mM 
NaF, 0.4 mM EDTA) as described (5). 

Antibodies. The antiphosphotyrosine mAb 4G10 was purchased 
from Upstate Biotechnology, Inc. (Lake Placid, NY). The poly- 
clonal rabbit antibody specific for the platelet-derived growth factor 
(PDGF) receptor was supplied by Oncogene Science, Inc. (Man- 
hasset, NY). The RAYS1 antibody was raised against recombinant 
Yop51, a homolog of YopH expressed by Y. enterocolitica (15). The 
Yop51 protein was purified as a glutathione-S-transferase (GST) 
fusion by affinity binding to glutathione agarose (Sigma Chemical 
Co., St. Louis, MO) using a procedure similar to that previously 
described (16). Yop51 was subsequently isolated from the GST do- 
main by thrombin (Sigma Chemical Co.) cleavage. Polyclonal 
P-.AY51 antibodies were raised by a series of three monthly injec- 
tions of female New Zealand white rabbits with 200/zg Yop51 
in adjuvant (Ribi ImmunoChem Research Inc., Hamilton, MT). 
Antisera was collected and affinity purified on a column consisting 
of Yop51 coupled to Affigel 10 (Bio-Rad Laboratories, Pdchmond, 
CA) using a procedure as described (17). 

Immunoprecipitations, Electrophoresis, and Immunobtotting Tech- 
niques. Proteins were precipitated from the clarified lysates by the 
addition of 1/~g of4G10, P, AY51, or polyclonal rabbit anti-PDGF 
receptor as described (5). Where indicated, O-phospho-t-tyrosine 
(Sigma Chemical Co.) was added (10 mM) to the lysate before im- 
munoprecipitation. Immune complexes and prestained protein mo- 
lecular weight standards (Gibco BILL) were displayed by dectropho- 
resis on 8-15% polyacrylamide SDS gels and electrophoretically 
transferred to nitrocellulose falters (17). The immunoblotting tech- 
niques have been described (17). Imrnunoblotting with the 4G10 
antibody was as specified by the supplier. The RAY51 antibody 
was used at a concentration of 1/zg/ml. Antibody binding was 

detected with secondary anti-mouse or anti-rabbit antibodies con- 
jugated to alkaline phosphatase (Sigma Chemical Co.) and (5-bromo- 
4-chloro-3-indolyl-phosphate/nitroblue tetrazolium (BCIP/NBT) 
reagents purchased from Kirkegaard and Perry Laboratories, Inc. 
(Gaithersburg, MD). 

Kinase Assay and Phosphoamino Acid Analysis. Immune com- 
plexes were washed three times (1 ml each) with kinase assay buffer 
(50 mM Tris pH 7.5, 10 mM MgC12, 1 mM dithiothreitol, 0.05% 
BSA), and incubated in 10/zl of kinase assay buffer containing 60 
#M ATP and 5/zCi y_[32p] ATP (Amersham Corp., Arlington 
Heights, IL) for 30 rain at 37~ The reaction products and 14C- 
labeled protein molecular weight standards (Amersham Corp.) were 
resolved by electrophoresis on 8-15% polyacrylamide SDS gels, 
transferred electrophoretically to polyvinylidene difluoride (PVDF) 
membrane (Bio-Rad Laboratories), and labeled proteins were visual- 
ized by exposure of the filter to x-ray film at -70~ for 3 h. The 
portions of the PVDF filter containing the immobilized 120- and 
55-kD phosphoproteins were excised and subjected to phosphoamino 
acid analysis as described (18). 

Results 
We have previously demonstrated that witbin 3 h, two 

constitutively tyrosine-phosphorylated macrophage proteins 
of 120 and 55 kD are specifically dephosphorylated by YopH 
in J774A.1 cells infected with Ypseudotuberculosis (5). To better 
characterize these J774A.1 substrates, and to determine the 
kinetics ofdephosphorylation, an antiphosphotyrosine mAb 
was used in conjunction with immunoblotting techniques 
to detect the effect of YopH on host tyrosine phosphorylation. 

The appearance of tyrosine-phosphorylated proteins in 
J774A.1 cells over a time course infection is demonstrated 
in Fig. 2. Cell monolayers were infected on ice with strains 
of Ypseudotuberculosis to permit the bacteria to attach to host 
receptors (7) while preventing functional expression of the 
bacterial PTPase. At time zero, the cultures were warmed 
to 37~ and at various times thereafter detergent lysates were 
prepared in the presence of phosphatase inhibitors. Tyrosine- 
phosphorylated proteins in the lysates were detected by im- 
munoblotting with the antiphosphotyrosine mAb 4G10 (19). 
Several alterations in tyrosine phosphorylation were evident 
over the time course of infection. Dephosphorylation of a 
major 120-kD protein was specific to the bacterial infection 

Figure 1. Structure of the YopH protein and position of the catalytic 
mutation in YopHC403A. Shown is a representation of the yopH gene 
and its protein product. (1~) Catalytic domain homologous to eukaryotic 
PTPases. (1) Catalytic site containing the conserved cysteine (Cys) res- 
idue which was converted to alanine (Ala) at position 403 in YopHC4303A. 
(1~) NH2-terminal domain involved in secretion of the protein by the 
bacteria (28). 
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Figure 2. Time course infection assay of J774A.1 cells with Y. pseu- 
dotuberculosis. Strains of Y. pseudotuberculosis YPIII were pregrown at 370C 
and inoculated onto monolayers of J774A.1 cells on ice. After allowing 
for bacterial binding, the cultures were warmed to 37~ and at the times 
indicated, detergent lysates were prepared and analyzed by immunoblot- 
ting with the antiphosphotyrosine mAb 4G10. Samples shown were from 
uninfected macrophages (-)  (lanes 1 and 2), macrophages infected with 
wild-type YPIIIpIB1 (+) (lanes 3-7), and macrophages infected with the 
catalytic mutant YPIIIplB1C403A (c) (lanes 8-11). (~) Position of the 
120-kD substrate. Sizes of the molecular weight standards in kD are shown. 

(lanes 3-11), whereas the other changes were related to the 
temperature shift, as these alterations occurred in uninfected 
cells (lanes 1 and 2). Dephosphorylation of the 120-kD sub- 
strate began rapidly, within 15 rain of the temperature up- 
shift (lane 5), and was complete by 90 rain (lane 7). Dephos- 

phorylation was specific to YopH. The 120-kD protein was 
not dephosphorylated in cells infected with bacteria expressing 
YopHC403A (lanes 8-11). As shown below, the 55-kD sub- 
strate is also present in these cells, but  was not detected in 
the experiment shown in Fig. 2, presumably because it 
comigrated with more abundant phosphoproteins. 

Although YopHC403A is catalytically inactive, it is func- 
tionally expressed by the bacteria (5), and we presume, must 
be introduced normally into the macrophage cell. Therefore, 
we looked for a possible interaction between YopHC403A 
and the substrates of YopH. Detergent lysates from infected 
macrophages were prepared and immunoprecipitated with 
an affinity-purified rabbit polyclonal antibody (RAY51) that 
recognizes YopH. The immune complexes were analyzed by 
immunoblott ing with the 4G10 or RAY51 antibodies (Fig. 
3). Multiple phosphoproteins were coprecipitated with the 
RAY51-YopHC403A complex (lanes 7 and 7'). At a reduced 
level, these proteins were also found in the RAY51-YopH com- 
plexes (lanes 6 and 6'). Coprecipitation of these proteins was 
dependent on the presence of  the bacterial PTPase (lanes 5 
and 5'). For reference, proteins immunoprecipitated with the 
4G10 antibody were analyzed in parallel (lanes 1-4). The 
120-kD YopHC403A-associated protein appeared to be iden- 
tical to the 120-kD protein dephosphorylated by YopH (lane 
3). Because the 55-kD YopHC403A-associated protein (lane 
7) comigrated with the H chain of the precipitation anti- 
body, in this assay we were unable to show that it was de- 
phosphorylated by YopH (lane 3). In other experiments in 
which 32p-labeled immunoprecipitated proteins were ana- 
lyzed by SDS-PAGE and autoradiography, we confirmed that 
the 55-kD-YopHC403A-associated protein comigrated with 
the 55-kD substrate (data not shown). 

Figure 3. Binding and dephosphorylation of macrophage proteins by 
the Yersinia PTPase. J774A.1 cells were left uninfected (lane 1), or infected 
with plasmid-cured YPIII (-)  (lanes 2, 5, and 5'), wild-type YPIIIplB1 
(+) (lanes 3, 6, and 6'), or mutant YPIIIplB1C403A (c) (lanes 4, 7, and 
7') for 180 min. Detergent lysates were prepared and immunoprecipitated 
with 4G10 (lanes I-4) or RAY51, an affinity-purified rabbit polyclonal 
antibody specific for YopH (lanes 5-7'). The immune comple~es were ana- 
lyzed by immunoblotting with the 4G10 antibody (lanes I-7) or the RAY51 
antibody (lanes 5'-7'). Equal portions of the same samples were analyzed 
in lanes 5-7 and 5'-7'. Positions of the prestained molecular weight markers, 
the heavy (H) and light (L) chains of the precipitation antibodies and YopH 
are indicated. 

Figure 4. Inhibition of YopHC403A substrate binding by phosphotyro- 
sine. J774A.1 cells were infected as described in Fig. 3 and proteins were 
immunoprecipitated with RAY51 (lanes I-4 and 1'-4') or a control anti- 
body (RA, polyclonal rabbit anti-PDGF receptor) (lanes 5 and 5'). Before 
immunoprecipitation, O-phospho-t-tyrosine (PTyr) was added (10 mM) 
to the lysate analyzed in lanes 4 and 4'. Equal portions of each immuno- 
precipitated sample was analyzed by immunoblotting with 4G10 (lanes 
I-5) or RAY51 (lanes I'-5') antibodies. 
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The association of these proteins with YopHC403A might 
reflect the affinity of the PTPase for tyrosine-phosphorylated 
substrates. To investigate the importance of tyrosine phos- 
phorylation in YopHC403A-substrate binding, we tested 
whether or not binding could be competitively inhibited with 
excess phosphotyrosine. In the presence of 10 mM phos- 
photyrosine, the binding of the substrates to YopHC403A 
was completely inhibited (Fig. 4, lanes 3 and 4). Phosphotyro- 
sine did not affect the binding of YopHC403A to the anti- 
body (lanes 3' and 4'). 

A previous observation that the 120- and 55-kD substrates 
were constitutively phosphorylated on tyrosine (5) in the trans- 
formed J774A.1 cell line (20), led us to speculate that these 
proteins might be activated PTKases. Therefore, we incubated 
immunoprecipitated complexes from infected macrophages 
in an in vitro kinase reaction, and analyzed the 3zp-labeled 
products by SDS-PAGE and autoradiography (Fig. 5). 
Significant phosphorylation of the 120- and 55-kD proteins 
bound to YopHC403A was evident (lane 2). This pattern 
of labeling was similar to the labeled products of a 4G10 im- 
mune complex kinase assay (lane I). The specificities of the 
kinase activities were determined by phosphoamino acid anal- 
ysis of the 120- and 55-kD phosphoproteins. Both proteins 
were found to be phosphorylated preferentially on tyrosine 
(Fig. 6). This result is consistent with the idea that the 120- 
and 55-kD proteins dephosphorylated by YopH are in fact 
autophosphorylated PTKases that are constitutively activated 
in the J774A.1 cell. 

Figure 5. In vitro kinase activity as- 
sociated with YopHC403A. Detergent 
lysates were prepared from macrophages 
infected with YPIIIplBIC403A and pro- 
reins were immunoln'ecipitated with 4G10 
(lane I) or RAY51 (lane 2) after the stan- 
dard protocol. The immune complexes 
were incubated in an in vitro kinase reac- 
tion and the 32p-labeled products were 
resolved by SDS-PAGE, transferred elec- 
trophoretically to PVDF membrane, and 
labeled proteins were visualized by ex- 
posure of the filter to x-ray film. The 
positions of the 14C-labeled molecular 
weight markers are indicated. 

Figure 6. Phosphoamino acid analysis 
of the in vitro kinase reaction products. 
The portions of the PVDF filter con- 
taining the immobilized 120- and 55-kD 
phosphoproteins (Fig. 5, lane 2) were ex- 
dsed and subjected to phosphoamino acid 
analysis. (~) Approximate origins. Posi- 
tions of the ninhydrin stained markers are 
labeled (8) phosphoserine, (T) phos- 
phothreonine, and (Y) phosphotyrosine. 

Discussion 

To initiate oral infection of a mammalian host, the en- 
teropathogenic Yersinia cross the intestinal epithelium to re- 
side in a specialized lymphoid follicle known as the Peyer's 
patch (21). As part of the normal Peyer's patch function as 
an outpost of the host reticuloendothelial system, microbes, 
and other antigens from the bowel lumen are presented by 
the specialized M cell to lymphocytes and macrophages that 
patrol the underlying Peyer's patch. Because pathogenic strains 
of Y. pseudotuberculosis are able to grow and proliferate in this 
hostile environment, key targets of YopH likely include signal 
transduction processes in phagocytic and other immune cells. 
It was with this goal in mind that we initiated our studies 
to define the effect of YopH on cells involved in host resis- 
tance to bacterial infection using the J774A.1 macrophage- 
like cell line as a tissue culture infection model. 

Our results demonstrate that two tyrosine-phosphorylated 
proteins of 120 and 55 kD are the primary targets of YopH 
in J774A.1 cdls. In a time course infection assay in which 
functional expression of YopH was highly synchronized, we 
found that the 120-kD substrate was rapidly and efficiently 
dephosphorylated by the bacteria. The speed of this dephos- 
phorylation event correlated well with the short time interval 
(<30 rain) in which the physiological effect of YopH on the 
macrophage phagocytic process can be detected (14) (our un- 
published observations). 

In 32p-orthophosphate labeling experiments, the 120- and 
55-kD proteins were initially detected as constitutively and 
highly tyrosine-phosphorylated components of the J774A.1 
cell (5). We believed that these proteins were activated PTKases 
that were constitutively autophosphorylated. Our results are 
consistent with this model, as we have shown that both pro- 
teins are tyrosine phosphorylated in vitro. It is important to 
note that we have not ruled out the possibility that the 120- 
and 55-kD proteins are substrates of an unidentified PTKase 
bound to YopHC403A. 

Activation of receptor PTKases, which involves autophos- 
phorylation, is the first step in the process of transducing 
an extracellular signal to a cellular response (1). Eukaryotic 
lYrPases are thought to be capable of modulating this event, 
and their activity may in large part be controlled by cellular 
localization (2). It is tempting to speculate that YopH acts 
as an unregulated PTPase that can reverse the activation of 
PTKases. There is precedence for a model in which YopH 
inhibits the phagocytic capability of macrophages through 
its effect on lrrKase function. Uptake of Yersinia into mam- 
malian cells is mediated by integrin receptors (8) (Bliska and 
Falkow, manuscript in preparation). In fibroblasts, the up- 
take process can be blocked by inhibitors of PTKase activity 
(22), and B1 integrin crosslinking stimulates tyrosine phos- 
phorylation of a 125-kD focal adhesion PTKase (23, 24). How- 
ever, attempts to identify the 120- and 55-kD proteins with 
antibodies has thus far failed. Two likely candidates we tested 
included the 125-kD focal adhesion lYFKase (23), and a 55-kD 
Src homolog called Fgr that is expressed in hematopoietic 
lineages (25). Based on the affinity of the 120- and 55-kD 
proteins for YopHC403A, we have therefore begun to purify 
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sufficient quantities of these potentially novel PTKases for 
sequencing studies and antibody production. 

The binding of tyrosine-phosphorylated proteins by 
YopHC403A is reminiscent of the interaction of Src homology 
2 (SH2) domains of eukaryotic signal transduction proteins 
with autophosphorylated PTKases (26). The phosphotyrosyl 
binding activity of the SH2 domain is thought to promote 
recruitment of cytoplasmic signaling proteins to activated 
PTKases to facilitate the transduction of external signals to 
second messenger pathways. Although the role of protein se- 
quence in specifying the binding of substrates by YopH has 
not been addressed here, sequence motifs are known to be 
important for SH2-mediated interactions (26). The associa- 
tion of YopHC403A and SH2 domains with their respective 
tyrosine-phosphorylated substrates is likely to be mechanisti- 
cally different, since the binding domains of these proteins 
do not share significant homology. 

A major impediment to the elucidation of PTKase func- 

tion has been the difficulty with which physiologically rele- 
vant substrates have been identified (1). Our demonstration 
that the substrates of YopH can be detected and character- 
ized by virtue of their association with a catalytically inac- 
tive form of the protein has been potentially important im- 
plications for the molecular analysis of other PTPases. 
Although the substrate specifidty of YopH appears to be broad, 
other PTPases are thought to be highly specific. One example 
is CDC25, which acts preferentially on a complex of CDC2 
and cyclin (27). By creating catalytically inactive forms of 
eukaryotic PTPases, it should be possible to purify and iden- 
tify substrates by virtue of their affinity for the enzyme. An 
extension of this approach could be the use of catalytically 
inactive PTPases as highly spedfic biochemical or cytological 
probes to detect the presence of tyrosine phosphate in sub- 
strates during the growth and differentiation phases of eu- 
karyotic cells. 
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