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Treatment planning plays an important role in the process of radiotherapy (RT). The quality

of the treatment plan directly and significantly affects patient treatment outcomes. In

the past decades, technological advances in computer and software have promoted

the development of RT treatment planning systems with sophisticated dose calculation

and optimization algorithms. Treatment planners now have greater flexibility in designing

highly complex RT treatment plans in order to mitigate the damage to healthy tissues

better while maximizing radiation dose to tumor targets. Nevertheless, treatment planning

is still largely a time-inefficient and labor-intensive process in current clinical practice.

Artificial intelligence, including machine learning (ML) and deep learning (DL), has been

recently used to automate RT treatment planning and has gained enormous attention

in the RT community due to its great promises in improving treatment planning quality

and efficiency. In this article, we reviewed the historical advancement, strengths, and

weaknesses of various DL-based automated RT treatment planning techniques.We have

also discussed the challenges, issues, and potential research directions of DL-based

automated RT treatment planning techniques.

Keywords: artificial intelligence, machine learning, deep learning, automated learning, radiotherapy

INTRODUCTION

As one of the cancer treatment modalities, radiotherapy plays an important role in the treatment of
numerous types of malignant tumors. Treatment planning is an important process of radiotherapy.
Advanced algorithms are used to calculate dose deposition and optimize a treatment plan by taking
into account the planning computer tomography (CT) images and a range of dosimetric objectives.
Radiation beam parameters, including aperture shapes at each gantry angle and dose deposition for
each aperture, are also determined during the treatment planning process. The beam parameters
are subsequently transferred to radiotherapy machines to enable radiation delivery so that the
prescribed dose distribution can be delivered as planned to achieve satisfactory tumor control while
preserving normal tissue function (1).

The current practice of treatment planning is largely amanual process, which is time-consuming
and labor-intensive, typically taking hours, or days to complete one case. The plan optimization
parameters need to be manually adjusted and determined by planners. Hence, the plan quality
heavily depends upon the planner’s experience. It is a trial-and-error process through multiple
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iterations to balance the trade-off between tumor control and
normal organs complications, which requires plenty of human
interactions. The iterative nature of manual treatment planning
makes it a tedious process. It requires experienced planners,
particularly for highly complex plans, leading to prodigious
human efforts, expertise, and time commitment. Consequently,
the quality of a plan created by different planners can be largely
inconsistent and limited by practical considerations, such as the
proficiency of planners and inadequate efforts made to design
an “optimal” treatment plan, even though the plan is clinically
acceptable (2).

Automated treatment planning (ATP), which is developed to
overcome the challenges mentioned above of manual treatment
planning, is capable of generating treatment plans that are
of sufficiently high quality and high consistency in a time-
saving manner (3). Automated treatment planning has evolved
from simple template-based, atlas-based automation execution
to machine learning, and deep learning-based DVHs or dose
distribution prediction, to direct plan parameters generation. The
current ATP solutions include automated rule implementation
and reasoning (ARIR), and modeling of prior knowledge-based
approaches. AutoPlanning from Philips Pinnacle treatment
planning system (TPS) is an example of ARIR based methods
(4–6), which firstly constructs a template including many kinds
of clinical protocols, such as target and organ-at-risk (OAR)
prescriptions. The TPS then begins plan optimization just
like a planner and finally obtains a solution based on the
selected clinical protocol, to avoid excessive radiation dose being
deposited to healthy tissue while maximizing tumor coverage.
In the optimization process of AutoPlanning, some supporting
structures are created to improve the OAR sparing. RapidPlan,
a built-in automated knowledge-based planning (KBP) module
in Varian (Varian Medical System) Eclipse TPS, is an example
of modeling of prior knowledge. It utilizes a large amount of
historical patients’ planning data to fit a principal component
analysis-based regression model for predicting a new patient’s
dose-volume histograms (DVHs), which are subsequently used
to guide the generation of a new treatment plan (7–16).

No spatial dose distribution information was considered in
the DVH-based prediction methods. Compared with the DVH-
based prediction algorithms, algorithms for directly predicting
3D dose distribution have significant advantages in a way
that it could provide a reference for clinical adjustment for
distribution of isodose lines. To solve the problem of lack of
spatial dose distribution, and the degeneracy issue of KBP DVHs
estimations, recent developments in ATP have focused on voxel-
level dose prediction (17, 18). With the rapid advancement of
machine learning and deep learning (19, 20), the accuracy of
these prediction methods was increased substantially (17, 21).
Artificial intelligence (AI) includes all approaches to imitate
human intelligence by machines. ML is a branch of AI, and deep
learning is a form of ML. The idea of DL was inspired by the
structure and function of brain (19, 20). The first DL method was
an artificial neural network algorithm, and the neural network
was composed of numerous nodes and connection weight, analog
to the neurons and connection of neurons in the brain. A variety
of DL techniques has been explored and investigated over the

past decade. Initially, there were only input and output layers
in the first generation, called single-layer neural network. Multi-
layer neural networks have later evolved with hidden layers added
into the neural networks. The multi-layer neural network with
only one hidden layer was called shallow neural network, while
those with two or more hidden layers were called deep neural
networks—the origin of the nomenclature of deep learning
methods. From artificial neural network (ANN), convolutional
neural network (CNN), to generative adversarial network (GAN),
the emergence of different network structures has led to different
DL methods. The biggest difference of the three kinds of neural
networks is their structure. ANN is a mathematical model that
simulates the processing information of neurons, and it is usually
composed of three parts: input layer, hidden layer, and output
layer. However, for a very deep neural network (a network with
a large number of hidden layers), the Vanishing gradient or
exploding gradient problems arise when propagating backward.
CNN is the first true multi-layer structure learning algorithm,
which uses spatial relative relationships to reduce the number
of parameters to improve training performance. On the basis
of the original multi-layer neural network, a feature learning
part is added, which imitates the human brain’s classification of
signal processing. Therefore, compared with ANN, the specific
operation of CNN is to add a partially connected convolutional
layer and a dimensionality reduction layer in front of the original
fully connected layer, which are used for feature extraction from
different dimensions automatically. The GAN consists of two
parts: one is called generator, and the other is discriminator.
The generator tries to generate data that is close to real, and
the discriminator tries to distinguish between real data and data
generated by the generating network. The generator network uses
the discriminator as a loss function and updates its parameters
to generate more realistic looking data. On the other hand, the
discriminator network updates its parameters in order to better
identify fake data from real data. So its performance has become
better. This cat and mouse game continues until the system
reaches the so-called “balance.” After reaching the balance, the
data created by the generator looks realistic enough, so all the
discriminator can do is random guessing.

The DL methods can be divided into three classes:
supervised DL, unsupervised DL, and reinforcement learning.
The main differences between the three classes are the input
terms used in different deep learning network architectures.
The training dataset of supervised deep learning algorithms
consists of input and corresponding output data, while for the
unsupervised learning methods; only input data is included in
the dataset without labeled output data. Compared with these
two techniques, reinforcement learning requires different types
of data: the input, partial corresponding output, and grade for
output. By training these datasets, a deep learning model can be
obtained for predicting the output results.

In recent years, a number of deep learning (DL)-based ATP
techniques have been proposed using various DL neural networks
(18–33). Several review articles on AI in radiation oncology (34–
36), and radiotherapy treatment planning (37–39), have been
published, which demonstrated the interests on AI and the
significance of ATP, summarization of the achievements and
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challenges, as well as insightful discussion on future studies.
No comprehensive review specifically focused on deep learning-
based automated radiotherapy planning was published. In this
review, we will summarize the historical advancement and
current status of automated radiotherapy planning using deep
learning, including the advantages, and limitations of various
DL-based ATP techniques. The challenges, practical issues, and
potential research directions of DL techniques in ATP are
also discussed.

DEEP LEARNING FOR AUTOMATED
TREATMENT PLANNING

Conventional radiotherapy treatment planning usually
consists of inverse optimization with trial and error (40).
Correspondingly, the automated treatment planning can be
summarized into three steps: automated beam orientation
selection, automated dose map prediction, and automated
fluence map and delivery parameters generation. A detailed
introduction is carried out in the following text.

AUTOMATED BEAM ORIENTATION
SELECTION

In 2020, Barkousaraie et al. (41) proposed a supervised DL
algorithm mimicking the column generation (CG) method
for beam direction optimization, saving time to seconds, and
increasing the possibility of clinical use. In the algorithm, 57
prostate cancer patients were utilized for training and validation,
13 patients for testing. The result showed that the differences
between plans generated by CG and by DL algorithm in the dose
coverage of PTV were about 0.2%. The mean dose differences
received by organs at risk were under 6%. Additionally, a
reinforcement learning method was developed for improvement
of the deep learning algorithm (42). It can be summarized into
two steps: Firstly, the possible next beam distribution is predicted
based on patient anatomy, by training a supervised deep neural
network; and, to find better solutions, a guided Monte Carlo
tree search method, combined with the network, is utilized for
decision. The result showed that the differences between plans
generated by CG and by reinforcement learning algorithm in the
dose coverage of PTV were similar. The mean dose differences
received by organs at risk could be reduced except for bladder,
which had a slight increase of 1%. These two deep learning
methods have been proved more accurate than the state-of-art
CG method. It is a promising direction for automated beam
orientation selection.

AUTOMATED DOSE MAP PREDICTION

In 2016, Shiraishi et al. (18) developed a three-dimensional (3D)
dose distribution prediction method based on an ANN using
geometric and planning parameters of historical patients. The
prediction error for all voxels was <8% for tested prostate cases.
The three-dimensional (3D) dose distribution prediction is an
improvement to one-dimensional (1D) DVHs prediction, which

makes voxel-by-voxel dose optimization and knowledge-based
isodose manipulation possible. Since then, significant efforts have
been made by researchers, and the use of deep learning in dose
prediction has been extensively explored. Different architectures
of CNNs have been utilized for 3D dose distribution prediction.
Campbell et al. (21) developed an ANN 3D dose distribution
prediction model for pancreatic stereotactic body radiation
therapy (SBRT) delivered using 2–4 coplanar arcs. The network
was trained using forty-three clinical plans with plan parameters
and voxel-based geometric parameters. Plan parameters included
the photon beam energy and PTV volume. Geometric parameters
included the voxel’s distance to the PTV, distance to an OAR, and
the number of arcs directly irradiating the voxel. The predicted
mean dose errors were <5%. Excellent model performance was
demonstrated for the volume receiving dose above 25Gy, but
much larger prediction errors were seen at the lower dose region.
The prediction accuracy was significantly improved when each
physician’s treatment protocols, and treatment approach, were
taken into account by training their dedicated models separately.
Kajikawa et al. (29) predicted the dosimetric eligibility of prostate
cancer patients treated with IMRT using a convolutional neural
network called Alex-Net. The Alex-Net was pre-trained with
a big and open dataset called Image-Net, and then modified
with a new CT dataset. Unlike other methods, the prediction
result is not a dose distribution but two categories that meet all
dose constraints category or do not meet all dose constraints
category. The prediction errors of the model with the planning
CT image dataset without and with the structure label were
56.7 ± 9.7% and 70.0 ± 11.3%, respectively. Compared with
previous methods, such as the ANN method, the 2D, and
modified 3D U-Net methods, this method was worse in terms of
prediction accuracy. However, it opened a new direction for ATP
using transfer learning.

Nguyen et al. (22) proposed a modified 2D U-Net architecture
for dose distribution prediction using labeled targets and OARs
of 88 coplanar prostate intensity-modulated radiation therapy
(IMRT) plans as input. Each patient was planned with a similar
beam configuration and prescription protocol. The planning CT
images were input into the full convolutional networks directly,
no handcrafted feature extractions or selections were needed.
The predictions were based on more detailed geometric and
anatomical information than parametric or principal component
analysis approaches. The predicted average absolute dose
difference was around 2% of the prescription dose in PTV and
under 5% in OARs. The average dice coefficient of the predicted
isodose volumes and the actual isodose volumes was 0.91. The 2D
U-Net algorithm is different from the ANN approach, in which
handcrafted feature extractions or selections were used. Different
input features may lead to different model performance, which
is often considered a lack of consistency among different users,
time-consuming, and labor-intensive. The 2D-U-net provided
better predictive performance compared with previous ANN
method (18). However, the most significant barrier of this 2D
U-Net method is that it predicts the 3D dose distribution on a
slice-by-slice basis, rather than a true 3D volumetric prediction.
This kind of prediction may cause uncertainties, especially in the
edges of the PTVs, and the whole training process can be tedious.
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Nguyen et al. (23) further proposed a hierarchically densely
connected U-Net (HD U-Net) for 3D dose distribution
prediction for head and neck cancer patients treated with
volumetric-modulated arc therapy (VMAT) based on the
combination of U-Net (24) and Dense-Net (25). U-Net was
initially proposed as a deep learning approach for semantic
segmentation (24). The previous maps are concatenated to
the following layers in the CNN of DenseNet (25). A 3D
densely connected U-Net combining the advantages of U-
Net and Dense-Net was developed with a reduced random-
access memory (RAM) requirement. The convolution layers
are connected densely along each hierarchy, but not connected
between hierarchies of the U-Net in the upsampling operation.
The issue of vanishing gradient was solved by connecting the
convolutional maps densely to promote feature propagation and
reuse, and the number of trainable parameters needed was also
reduced. HD U-Net is capable of predicting the dose distribution
accurately from the PTV and OAR contours. The predicted
organ-at-risk maximum dose was within 6.3% and mean dose
within 5.1% of the prescription dose. Kearney et al. (28) proposed
a fully convolutional neural network (Dose-Net) for 3D dose
prediction of prostate cancer patients treated with non-coplanar
SBRT. CT images, structures, and dose prescriptions were used
as input in the 3D fully-convolutional multi-channel Dose-Net.
Compared with U-net, Dose-Net reduced network redundancy
due to the use of residual blocks. However, fully connected
layers tend to generalize poorly for high dimensional data.
Considering both using bladder patients’ data as training data,
a comparison between Dose-Net and modified U-Net has been
conducted. According to the results of the two articles, the
absolute differences of Dose-Net and modified U-Net in PTV,
bladder, rectum in [max, mean] dose are [−2.5, 0.2%] vs.
[1.80, 1.03%], [9.9, 2.5%] vs. [1.94, 4.22%], [8.3, 1.6%] vs. [1.26,
1.62%]. It could be concluded that Dose-Net shows more robust
performance than modified U-Net, because Dose-Net has lower
mean dose differences thanmodified U-Net. Chen et al. (30) used
CNN called Res-Net for predicting optimal dose distributions of
nasopharynx carcinoma (NPC) IMRT plans with the planning
images and segmented anatomy as input. They found that
the prediction accuracy of out-of-field dose distributions was
improved by adding radiation beam geometry as input. Liu et al.
(31) proposed a Res-Net for predicting dose distributions of NPC
patients treated with Tomotherapy, with the contoured PTVs and
OARs, dose volumes, and CT images as input. The predicted
mean absolute dose differences are within 2.0 and 4.2% for
PTVs and OARs, respectively. Fan et al. (32) also used Res-Net
for NPC dose prediction with the CT images containing OARs
and PTVs being set as input terms. The differences between
the predicted dose and the clinical dose were not significant
except for structures of brainstem and lens at both sides. They
further generated a deliverable plan based on predicted dose
distribution. No significant differences were found between the
dose distribution of the generated plan and the predicted dose
distribution except the difference of 0.5% for PTV70.4.

Also, based on a combination of U-Net and Dense-
Net, Barragán-Montero et al. (26) developed a more general
model considering variable beam setups in addition to patient

anatomy. The beam setups are represented by an approximate
cumulative dose distribution from the involved beams. The
model considering beam configuration and patient anatomy
outperformed the model considering only patient anatomy,
especially in the medium and low dose regions for lung
IMRT plans in predicting spatial dose distribution with
varying beam arrangement. This approach makes it unnecessary
to train different models for different beam setups. This
is especially important for IMRT, including non-coplanar
treatment techniques for lung, brain, or liver, among others. For
these sites, the spatial relationships of the tumor with organs
at risk vary among different patients and the beam setups
also vary much more than for prostate. Zhou et al. (27) also
improved a 3DU-Res-Netmodel performance to predict 3D dose
distribution for postoperative rectal cancer patients treated with
IMRT considering beam configurations input.

Apart from various CNN models, GAN models have also
been utilized for 3D dose distribution prediction. Mahmood
et al. (33) recast the dose prediction problem as an image
colorization problem solved with two neural networks: a
generator performing a task and a discriminator evaluating
the performance of the generator. For treatment planning, the
generator plays the role of a planner, while the discriminator
plays the role of a radiation oncologist who evaluates the
plan designed by the planner. Both networks were trained
simultaneously on historical data, with effective replication
and aggregation of the combined knowledge and experience
gained during the iterative manual process used to design
clinically acceptable plans. They used contoured CT images
and clinically acceptable dose distribution from the treatment
plans of past oropharyngeal cancer patients to train a GAN.
It was found that the GAN algorithm outperformed a query-
based approach, a principal component analysis-based method,
a random forest, and a CNNmethod, and even outperformed the
clinical plans on clinical criteria satisfaction. A major drawback
of most existing prediction methods is their reliance on low
dimensional manually made features in patient geometry to
predict dose distributions. GAN eschews the classical paradigm
of predicting low-dimensional representations, or engineering
features, by training a generic neural network to learn desirable
dose distributions (43). The capability of GAN in generating truly
independent data, and producing an optimal treatment plan need
further investigation (44).

AUTOMATED FLUENCE MAP
GENERATION AND DELIVERY
PARAMETERS GENERATION

After the predicted dose distribution is obtained, the next
step is to convert the dose distribution into an executable
plan. Conventionally, there are two main methods to do this:
dose mimicking and inverse optimization (32, 33, 45). The
dose mimicking algorithm penalizes dose discrepancies between
post-mimicking dose and input dose by minimizing the L2
norm loss, where the post-mimicking dose should satisfy all
the constraints and objectives (32, 45). Dose mimicking has
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been incorporated into commercialized RayStation TPS from
RaySearch Laboratories.

In the era of artificial intelligence, deep learning has been
utilized for fluence map generation, with different neural
networks architectures being tested (46, 47). In 2019, Lee et al.
(46) proposed a modified U-Net algorithm to train with 240
prostate IMRT plans and 45 plans for test (46). The result showed
that the final synthetic plans had worse homogeneity index of
the target, and had nearly the same performance in conformity
index of the target. In 2020, Li et al. (47) proposed a Dense-Res
Hybrid Network (DRHN) algorithm to train with 106 prostate
IMRT plans and 14 plans for test. The result showed that the final
synthetic plans were compatible with the KBP plans and clinical
plans, with less time consuming. These two methods prove the
effectiveness of deep learning in predicting fluence map.

DISCUSSION

From Machine Learning to ANN, to CNN
Various types of ATP approaches have been investigated in
the past few years. The machine learning-based approaches
are the most extensively investigated and have significantly
improved the DVHs prediction accuracy. These approaches
require handcrafting features for DVHs prediction. Many efforts
have been made in selecting the handcrafted features, such as
distance-to-target histograms, the geometry of PTV and OARs,
overlapping volume histograms, etc. (8, 48–52). It is hard to
know which features impact the prediction most and what
other features could improve the performance of the model
significantly. ANN was investigated to learn the more complex
relationships between the handcrafted features and the predicted
DVHs or dose distribution. However, the inherent information
present in those data is still limited. Compared with ANN, CNN
improved the voxel-based dose distribution prediction, due to its
ability to extract local and global features from the patients’ CT
images in higher dimensions.

From DVH Prediction to Dose Distribution
Prediction, From the 2D Model to 3D Model
Considering the limitations of DVHs prediction, more recent
studies focus on spatial dose distribution prediction, as shown in
Table 1. The prediction models also evolve from the 2Dmodel to
the 3D model. The most investigated DL-based ATP approaches
have realized that CT images, structures, and dose distribution
maps are taken as input terms. When putting new patients’
CT images and structure labels into the constructed model,
the predicted dose distribution could be obtained and exported
as the output, which is then further converted to yield the
ultimate deliverable plans. Kajikawa et al. (55) found that the dose
predicted with the 3D CNN model was superior or comparable
with the dose distribution generated by RapidPlan TM for
prostate cancer IMRT plans using only contours in planning CT.
Ma et al. (56) incorporated the dose distribution from a PTV-
only plan, in addition to the patient’s structures contour data
from planning CT in their deep CNN-based dose prediction
model. The prediction results were better than the contours-
based method. CT value also influences the dose distribution

in addition to the PTV and OARs contours for a given beam
configuration. The significance of adding the CT value as
additional input information into the prediction model needs to
be further evaluated in future studies. The architectures Alex-
Net, VGG-Net, U-Net, V-Net, and Res-Net belong to the category
of CNN and are all investigated in detail. CNN is the most
frequently used technique for 3D dose distribution predictions.

Size of Data Sets, Model Over-Fitting, and
Generalization Performance
One issue of the current DL-based ATP approach is the severe
lack of high-quality and publicly available big datasets. Most
of the datasets reported in this review article involved <300
patients, which is not an adequate sample size under the context
of big data. In addition, model over-fitting caused by data
imbalance is also an important issue in ATP generation. The plan
quality and prescription variation in the training and test dataset
influences the model prediction error. It has been found that
the dose prediction accuracy was improved by training the plans
from two different radiation oncologists separately (21).

Also, the systematic training, validation, and testing require
a sufficiently large, high-quality database. The training data
and validation data should be separated from the test data
for a rigorous model training and testing process. Without
enough data for model training and testing, over-fitting tends
to occur due to an overly complex model produced from
a limited data set. The more complex model was shown to
perform inferiorly to the simpler ones for dose prediction in
the previous study (57). Therefore, high-quality databases with
optimal plans should be established. Improvement of manual
planning experience of existing personnel, classic optimization
algorithm, multiple institution cooperation, and standardized
protocols are benefiting for the DL-based ATP.

The model over-fitting influences the model generalization
performance. One method to address limited data size is using
transfer learning. Image-Net was commonly used for pre-
training deep learning networks for medical image processing
(53). Another method for addressing the issue of limited data set
is data augmentation.

Clinical Scenarios Complexity
More clinical conditions, such as different tumor sites and
delivery techniques, also need to be further investigated for DL-
based ATP. For fluence map generation, the two articles give
two different deep neural network architectures for fluence map
generation with prostate plans, other plans in different tumor
sites need to be tested to find the optimal deep neural network
architecture. In the meanwhile, when a new patient’s fluence
map is predicted with deep learning, leaf motion calculation
and multi-leaf collimator (MLC) leaf sequence are still required
to be determined to obtain the final machine parameters.
Prostate cancer patients have more consistent PTV sizes and
spatially neighboring anatomy than lung cancer or head and neck
cancer patients. Coplanar IMRT is different from non-coplanar
VMAT in terms of the beam configurations. The diverse clinical
scenarios determine the poor data uniformity, and the data with
good data consistency is scarce. It requires various networks and
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TABLE 1 | Selected studies on deep learning-based automated radiotherapy planning.

Reference Year Network Training sets Test

sets/NO.

Input Output Results Research Highlight

Shiraishi

et al. (18)

2016 ANN 23 prostate and 43

SRS/SRT VMAT plans.

Twelve training and 11

validation for prostate, and

23 training and 20 validation

for SRS/SRT

No Manually determined

geometric and plan

parameters

3D dose Prediction errors <10% and 8%

for prostate and SRS/SRT

cases, respectively

Knowledge-based 3D dose

predictions, rather than previous

1D DVH prediction

Campbell

et al. (21)

2017 ANN 43 pancreatic Arc-based

SBRT patients. Nineteen

training and 10 validation for

Group A, 9 and 5 for Group

B, respectively

No Plan parameters and

voxel-based geometric

parameters

3D dose Mean dose error <5% Prediction accuracy substantially

improved when each physician’s

treatment approach was taken

into account by training their own

dedicated models

Nguyen

et al. (22)

2017 Modified

2D-Unet

80 prostate IMRT patients,

10-fold cross-validation

8 labeled targets and OARs 3D dose Prediction errors around 2% in

PTVs and under 5% of the

prescription dose in OARs,

isodose volumes average dice

coefficient of 0.91

Unet for 3D dose prediction

Nguyen

et al. (23)

2019 3D HD U-Net 100 H&N VMAT patients,

5-fold cross validation

20 Labeled targets and OARs,

prescription doses

3D Dose OARs dose difference :maximum

error within 6.3% and mean error

within 5.1%

Outperforming the Standard

U-net and Dense-Net in both

prediction accuracy and

efficiency

Barragán-

Montero

et al. (26)

2019 3D HD U-Net 100 lung IMRT patients,

training, and validation

29 Labeled targets and OARs,

beam setup information

3D Dose Prediction accuracy improved

substantially in low and medium

dose regions and slightly in high

dose regions

Prediction accuracy improved by

considering beam setup

information

Zhou et al.

(27)

2020 3D U-Res-Net 100 rectal cancer

postoperative IMRT patients

22 Labeled targets and OARs,

beam setup information

3D Dose Mean absolute prediction errors

3.92 ± 4.16%,clearly

outperforming 3D U-Res-Net_O

and slightly superior to 3D U-Net

Prediction accuracy improved by

considering beam setup

information

Kearney

et al. (28)

2018 FCNN

Dose-Net

126 prostate non-coplanar

SBRT Cyberknife patients,

106 training, 20 validation

25 Labeled targets and OARs,

dose prescription

3D Dose A superior alternative to U-Net

and fully connected network

Utilizes a 3 phase learning

protocol to achieve convergence

and improve generalization

Kajikawa

et al. (29)

2018 Alex-Net CNN 60 prostate IMRT patients,

five-fold cross-validation

No CT images, with/without

labeled structures

3D dose Prediction accuracies

56.7 ± 9.7% and 70.0 ± 11.3%,

respectively

Pre-trained on Image-Net

database, the model with

structure labels focused on areas

related to dose constraints

improved prediction accuracy

Chen et al.

(30)

2018 Transfer

learning

ResNet

70 early-stage NPC

IMRTpatients

10 Labeled targets and OARs,

with/without beam setup

information

2D dose

map

Out-of-field dose distributions

prediction error 4.7 ± 6.1%vs.

5.5 ±7.9%, input with/without

beam setup information

Input information from beam

geometry improved the

out-of-field dose distributions

prediction accuracy

Liu et al.

(31)

2019 U-ResNet-D 170 NPCTomotherapy

patients, 136 training, 34

validation

20 Labeled targets and

OARs,3D dose

3D Dose Mean absolute dose differences

for PTVs and OARs are within

2.0 and 4.2%, respectively

U-ResNet-D for Tomotherapy 3D

dose prediction

(Continued)
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TABLE 1 | Continued

Reference Year Network Training sets Test

sets/NO.

Input Output Results Research Highlight

Fan et al.

(32)

2019 ResNet 270 H&N IMRT patients,

195 training, 25 validation

50 Labeled targets and OARs 3D Dose Predicted differences not

statistically significant for clinical

indices of all targets and OARs

except the difference of 0.5% for

PTV70.4

Automatic plan generation based

on predicted 3D dose distribution

Mahmood

et al. (33)

2018 GAN 130 oropharyngeal IMRT

patients

87 Labeled targets and OARs,

dose maps

3D dose Outperformed a query-based, a

PCA-based method, a random

forest, and a CNN method, on

clinical criteria satisfaction

Recast the dose prediction

problem as an image colorization

problem, solve the problem

using a GAN by mimicking the

iterative process between the

planner and oncologist

Appenzoller

et al. (8)

2019 3D CNN 80 prostate IMRT patients 15 Labeled targets and OARs 3D dose Prediction error: 1.10 ± 0.64%,

2.50 ± 1.17%, 2.04 ± 1.40, and

2.08 ± 1.99% for D2,D98 in

PTV-1 and V65 in rectum and V65

in bladder

3D CNN was superior to or

comparable with RapidPlanTM

Krayenbuehl

et al. (50)

2019 CNN 60 prostate VMAT patients 10 Labeled targets and OARs,

the dose distribution from a

PTV-only plan

3D dose Mean SARs for the PTV, bladder,

and rectum 0.007 ± 0.003,

0.035 ± 0.032, and

0.067 ± 0.037, respectively

Prediction results better than the

contours-based method

Shin et al.

(53)

2019 DNN 240 prostate IMRT plans 45 Labeled targets and OARs,

dose distributions

Fluence-

maps

Generated plan qualities

comparable with the

corresponding clinical plans

Generate beam fluence—maps

directly from the organ contours

and dose distributions without

inverse planning

Wieser

et al. (54)

2020 DNN,DRL-

based

VTPN

10 prostate IMRT patients 64 IMRT plans IMRT

plans

Spontaneously learn how to

adjust treatment planning

parameters, high-quality

treatment plans generated

The first artificial intelligence

system to model the behaviors of

human planners in treatment

planning

ANN, artificial neural network; SRS, stereotactic radiosurgery; SRT, stereotactic radiotherapy; VMAT, volumetric-modulated arc therapy; 3D, three dimensional; 1D, one dimensional; DVH, dose-volume histogram; SBRT, stereotactic

body radiation therapy; 2D, two dimensional; IMRT, intensity-modulated radiation therapy; OARs, organs at risk; PTV, planning target volume; HD U-Net, Hierarchically densely connected U-Net; H&N, head and neck; U-ResNet-D, model

looks like U-net, but uses ResNet to do down-sampling and deconvolution to perform up-sampling; FCNN, fully convolutional neural network; NPC, nasopharynx cancer; GAN, generative adversarial network; PCA, principal component

analysis; MAE, mean absolute errors; SARs, sum of absolute residuals; DNN, deep-neural-network; DRL, deep reinforcement learning; VTPN, virtual treatment planner network.
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training techniques of transfer learning and data augmentation
to mitigate over-fitting. Also, the effect of the weight decay,
learning rate, momentum strength, and other hyper-parameters,
and new architectures for more intelligent networks should be
tested (58). More types of data, including multimodality images,
and genomic data, can be integrated into the deep learning-based
automated planning.

Direct Prediction of Machine Parameters
For beam orientation selection with deep learning, the current
research focuses on IMRT plans solution, however, partial
arc volume modulated treatment (VMAT) plans have not
been solved. It is also very important to determine the start
and end angles of partial arc VMAT plans. In addition,
the beam orientation selection and other machine parameters
determination with deep learning for non-coplanar IMRT
and VMAT plans may be another trend in the future.
Most recent studies of ATP using DL focused on dose
distribution predictions. After dose distribution prediction, the
predicted dose distribution was converted into executable plans
using inverse optimization or dose mimicking (32, 33, 45).
Direct machine parameter prediction could become another
potential research area, which is promising in that the plan
optimality, deliverability can be considered and balanced in
addition to the prediction accuracy. It has been observed that
ATP has systematically increased the modulation factor (37).
As deep learning shows increasing promise for automated
image segmentation, direct deliverable plan generation by
using CT images without contoured structures, without dose
distribution is possible for automatic dose prediction. Lee
et al. (46) investigated a deep-neural-network to generate
beam fluence maps directly from the structure contours
and 3D dose distributions without inverse planning. The
generated plan qualities were comparable to the corresponding
clinical plans.

Reinforcement Learning
Reinforcement learning has been used successfully in the board
game Go (59). Shen et al. (60) investigated a deep reinforcement
learning-based network to model the behaviors of human
planners. In the treatment planning process, a series of actions
depend on the balance of targets and OARs dose distribution.
This feature makes that reinforcement learning is suited for
treatment planning.

Extensive research efforts have continuously been made
to develop a wide range of innovative structures of deep
neural networks in recent years, such as graph neural
networks (GNN), graph convolutional networks (GCN), graph
reinforcement learning (GRL), graph auto-encoders (GAE),
and graph regression neural networks (GRNN) (59, 61).
This diversity of neural network architectures has unarguably
facilitated the development of DL-based 3D dose prediction
strategies. Nevertheless, several inherent shortcomings of the
neural network algorithm remain to be addressed, such as black
box problem, time-consuming, labor-intensive, large amount of
data required, and so on.

Model Prediction Accuracy and Clinical
Non-inferiority
Another issue of deep learning-based ATP studies is the lack
of consensus on determining an “optimal” while clinically
acceptable treatment plan in an objective manner. To evaluate
the ATP model prediction accuracy, various quality metrics
were usually used to compare with the existing manual clinical
plans. Dose difference and statistical significance of points
in the volume of interest in ATP plans and clinical plans
were commonly used. Visualization of DVH differences with
clinical significance was also used for structures of interest,
which highlights outlier instances better than summary
statistics. Besides, voxel-based mean absolute error, global
or structure-based three-dimensional gamma analysis,
was also used for evaluation and loss function. One ideal
solution of evaluating the model prediction accuracy and
plan optimality is to quantitatively score treatment plans
integrating clinically significant quality metrics, such as
homogeneity, conformity, or the entire dose distribution
itself, in addition to the above mentioned. The indices for
evaluating the prediction accuracy and plan optimality of
the ATP model should be established in addition to an open,
high-quality database to compare the performance of the
different models.

Besides the evaluation of each quality metric, an alternative
approach is a blinded side-by-side comparison of automated
and manual plans. If the automated plans are indistinguishable
from the manual plans, then the ATP system can be used under
the supervision of the planners and radiation oncologists. It
should be noticed that a “problem” with DL is that it does
not provide any insight on plan optimality, and also Pareto-
optimality is not ensured. To mitigate this, a QA should
be present.

Legal and Ethical Consideration
The issues of patient safety, legal and ethical responsibilities need
to be considered before deep learning-based ATP is put into
clinical practice. Currently, deep learning algorithms are often
regarded as a “black box,” and the internal working mechanism
is still largely unknown, thus highlighting the seriousness of
this problem. Consequently, there is a pressing demand for
a thorough, comprehensive, and rigorous quality assurance
program for DL-based ATP strategies and software to maintain
a sufficiently high consistency of the generated plans with full
compliance to a set of safety standards. Scoring software and
independent third-party evaluation software could potentially
serve as solutions to address the issues stemming from automatic
planning algorithms.

Preclinical Validation
The automatic planning algorithms must be validated before
being used in the clinic for safety and quality. A large size
data set is needed for the preclinical validation of deep
learning-based ATP. Multi-center collaborations should
be encouraged to cumulate adequate data for the ATP
system development and validation, and generalization.
Multi-institutional prospective studies with detailed planning
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guidelines and protocol compliance are helpful in obtaining
high-quality data for deep learning-based ATP development
and validation. Open platforms and software packages can
be used for the development and validation of deep learning-
based ATP (54, 62). New regulation and supervision of
data should be available to encourage the DL-based ATP
development and guarantee the data security and proprietary
intellectual property.

Quality Assurance
As ATP systems improved the planning efficiency with
comparable or even better plan quality, systematic, and
comprehensive quality assurance program should be established
and implemented after preclinical validation. The automatically
generated plans may not be “optimal.” The quality assurance and
monitoring of ATP should be investigated with top priority and
extensively. Even if the ATP system has proved its performance
for tested cases, no one can assure their performance for the
new cases. Whenever new cases with different geometric and
dosimetric characteristics are put into the ATP system, the new
generated ATP plans should be reviewed carefully. The clinical
ATP process must be overseen closely and continuously by
physicist and radiation oncologist.

Model Adaptability
The ATP system should be adaptable to new emerging trade-
offs or knowledge. The criteria and evaluation of plan optimality
evolve with the advancement of new diagnostic and therapeutic
technology. Examples include but are not limited to the change
of prescription dose and constraint due to the integration and
development of chemotherapy, target therapy, and immunology;
the evolution of targets and OARs contouring due to the
application of new functional molecular imaging modality. The

ATP system needs to adapt to these changes in the context and
judgment criteria of plan optimality.

Summary
In recent years, various types of ATP solutions have been
proposed and investigated, and the results demonstrated
measurable improvement in plan quality and planning efficiency.
Deep learning-based ATP is a rapidly evolving field. It holds great
promises to be a highly useful tool for automatic plan generation,
plan quality evaluation and quality assurance, individualization
of dose prescription, and adaptive radiotherapy, etc. Further
studies are needed to address the remaining issues. Cautions
should be taken with regard to its limitations before it is
implemented for routine clinical use.
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