
Frontiers in Immunology | www.frontiersin.

Edited by:
Liping Liu,

Capital Medical University, China

Reviewed by:
Gaiqing Wang,

The Third People’s Hospital of Hainan
Province, China

Luigi Sironi,
University of Milan, Italy

*Correspondence:
Christopher M. Jackson

Cjacks53@jhmi.edu

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Multiple Sclerosis
and Neuroimmunology,
a section of the journal

Frontiers in Immunology

Received: 15 March 2022
Accepted: 19 May 2022
Published: 20 June 2022

Citation:
Wicks EE, Ran KR, Kim JE, Xu R,
Lee RP and Jackson CM (2022)

The Translational Potential of
Microglia and Monocyte-Derived
Macrophages in Ischemic Stroke.

Front. Immunol. 13:897022.
doi: 10.3389/fimmu.2022.897022

REVIEW
published: 20 June 2022

doi: 10.3389/fimmu.2022.897022
The Translational Potential of
Microglia and Monocyte-Derived
Macrophages in Ischemic Stroke
Elizabeth E. Wicks†, Kathleen R. Ran†, Jennifer E. Kim, Risheng Xu, Ryan P. Lee
and Christopher M. Jackson*

Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States

The immune response to ischemic stroke is an area of study that is at the forefront of
stroke research and presents promising new avenues for treatment development. Upon
cerebral vessel occlusion, the innate immune system is activated by danger-associated
molecular signals from stressed and dying neurons. Microglia, an immune cell population
within the central nervous system which phagocytose cell debris and modulate the
immune response via cytokine signaling, are the first cell population to become activated.
Soon after, monocytes arrive from the peripheral immune system, differentiate into
macrophages, and further aid in the immune response. Upon activation, both microglia
and monocyte-derived macrophages are capable of polarizing into phenotypes which can
either promote or attenuate the inflammatory response. Phenotypes which promote the
inflammatory response are hypothesized to increase neuronal damage and impair
recovery of neuronal function during the later phases of ischemic stroke. Therefore,
modulating neuroimmune cells to adopt an anti-inflammatory response post ischemic
stroke is an area of current research interest and potential treatment development. In this
review, we outline the biology of microglia and monocyte-derived macrophages, further
explain their roles in the acute, subacute, and chronic stages of ischemic stroke, and
highlight current treatment development efforts which target these cells in the context of
ischemic stroke.

Keywords: microglia, monocyte-derived macrophages, ischemic stroke, polarization, clinical therapy/immunology,
immune response, acute/subacute ischemic stroke, chronic ischemic stroke
INTRODUCTION

First described by Hippocrates nearly 2,400 years ago, stroke, or “apoplexy,” is the second leading
cause of death globally and accounts for approximately 1 out of every 19 deaths in the United States
(1). Stroke is also a leading cause of long-term disability and places a high economic burden on
global healthcare systems. Despite significant advances in primary and secondary stroke prevention,
the annual number of strokes and stroke-related deaths have persistently increased over the past two
decades (2). An estimated 87% of strokes are ischemic (3), in which a sudden interruption in
cerebral blood flow results in rapid cell death within the ischemic core. Specifically in the
neuropathological progression of stroke, neuronal necrosis and apoptosis result in profound
org June 2022 | Volume 13 | Article 8970221
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neuroinflammation and secondary tissue injury, which can be
counterproductive to both short and long-term recovery (4, 5).

Current treatment strategies for acute thrombotic or embolic
stroke are focused on early reperfusion with intravenous
thrombolytics or mechanical thrombectomy, supplemented by
supportive care and acute complication management. At present,
alteplase is the only Food and Drug Administration (FDA)-
approved medical therapy in the United States for the treatment
of acute ischemic stroke (6). Mechanical thrombectomy with or
without intravenous thrombolysis has revolutionized the
treatment of stroke. Similar progress in treating secondary
inflammatory injury is necessary to optimize patient outcomes.

The Immune Response to Stroke
Inflammation plays a critical role in the pathogenesis of
ischemic stroke. Hypoxic brain injury results in rapid
activation of resident immune cells and subsequent influx of
peripheral inflammatory cells (7). The innate immune response
occurs in three phases following an ischemic insult: the acute
stage (minutes to hours), the subacute stage (hours to days),
and the chronic stage (days to months) (8). In each of these
phases, specific immune cell populations participate in tissue
repair; however, aberrant, overly robust, or prolonged
inflammation at any stage can be counterproductive to
recovery. Elucidating the specific cell types active at each
Frontiers in Immunology | www.frontiersin.org 2
stage, their roles in tissue repair, and how they interact
within the neurovascular unit is critical to developing
immune-based therapies to mitigate secondary injury.

Two key immune cell populations—resident microglia and
infiltrating monocyte-derived macrophages (MoDMs)—are
critical mediators of the intracerebral immune response and
shape the post-stroke environment. Microglia are a specialized,
self-renewing macrophage population residing in the central
nervous system (CNS), and are the first immune cells to
respond to ischemic injury. In contrast, MoDMs are derived
from circulating monocytes that migrate to the site of
inflammation (9–13) (Figure 1). Once activated, microglia and
MoDMs phagocytose debris, secrete cytokines, and present
antigens to T cells, marking the induction of adaptive
immunity. In this review, we discuss the unique roles of
microglia and MoDMs in mediating the post-stroke response,
and explore therapies targeting this response.

Background: Microglia
Microglia and MoDMs are distinct cell populations that are
involved in the innate immunological responses to brain injury
and disease. Though microglia and MoDMs share similar
phenotypes and functions, their ontology is unique, with
microglia arising from erythromyeloid progenitors in the yolk
sac and other mononuclear phagocytes, including dendritic cells,
FIGURE 1 | Monocyte Recruitment and Differentiation into Monocyte-derived Macrophages (MoDMs) Following Onset of Ischemic Stroke. Monocytes
originate from myeloid progenitor cells derived from hematopoietic stem cells in the bone marrow. Upon ischemic insult, the classical monocytes (CCR2+) are
recruited to the area of inflammation through the release of CCR2, Vcam1, Madcam1, Cxcl1, Ccl2, NT5E, and IFNy. MMP-3, MMP-9, COX-1 and COX-2
facilitate the breakdown of the BBB allowing extravasation of the classical monocytes into the brain parenchyma. Monocyte migration is enhanced by GM-
CSF. On arriving to the ischemic tissue, monocytes differentiate into MoDMs in response to chemokines, interleukins, and granule proteins produced by
microglia, astrocytes, and neutrophils. In the ischemic site, classical monocytes can also lose expression of CCR2 to assume the non-classical phenotype.
Classical monocytes primarily differentiate into M1, pro-inflammatory MoDMs while non-classical monocytes primarily differentiate into M2 anti-inflammatory
MoDMs. MoDM, monocyte derived macrophage; GM-CSF, Granulocyte-macrophage colony-stimulating factor; BBB, Blood brain barrier; CCR2, C-C Motif
Chemokine Receptor 2; Vcam1, Vascular Cell Adhesion Molecule-1; Madcam1, Mucosal Vascular Addressin Cell Adhesion Molecule 1; Cxcl1, C-X-C Motif
Chemokine Ligand 1; Ccl2, C-C Motif Chemokine Ligand 2; NT5E, ecto-5′-nucleotidase; IFNy, Interferon gamma; MMP-3, Matrix metalloproteinase-3; MMP-
9, Matrix metalloproteinase-9; COX-1, Cyclooxygenase-1; COX-2, Cyclooxygenase-2.
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monocytes, and macrophages, arising from hematopoietic stem
cells (14). During embryological development, microglia
precursor cells migrate to the brain, where differentiation into
microglia is driven by various external signals within the brain
environment (15). Over the course of pre- to post-natal
development, microglia display a variety of functions, including
synaptic remodeling and maturation. In the adult brain,
estimates of microglial abundance range from 5-20% (16).
Though the full range of microglial programs is unknown,
several key functions have been identified, including
phagocytosis of myelin, modulation of neuronal activity,
maintenance of oligodendrocyte progenitor cells, and immune
defense (17, 18). Homeostatic microglia perform an extensive
array of cellular processes which continually monitor the CNS
for injury and pathogenic breach (19, 20). Upon detection of
pathogenic breach or neuronal damage, microglia adopt an
activated phenotype and phagocytose foreign invaders.

Microglia adopt distinct morphologies corresponding with
their activation state. Bushy microglia have a larger soma
surrounded by fewer and thicker cell processes when compared
to homeostatic, ramified microglia. Amoeboid microglia are
rounder with rare or even nonexistent cell processes. Upon
transitioning from ramified to amoeboid morphology and
migrating to the site of invasion/injury, microglia engage in the
act of phagocytosis, one of their primary functions (15).
Microglial migration is directed by molecular signals—
including various cytokines and chemokines—which are
released by injured neurons (21). Furthermore, microglia
express key phagocytic receptors, including toll-like receptors
(TLRs) and TREM-2, which recognize foreign pathogens and
apoptotic cell debris (22, 23). The ultimate phagocytosis of these
foreign materials and debris involves amoeboid microglia
utilizing actin cytoskeleton reorganization to extend their
processes around extracellular material, forming a phagosome
(24, 25). The resultant phagosome then enters the endolysosomal
Frontiers in Immunology | www.frontiersin.org 3
pathway where the engulfed material is degraded. Microglia
phagocytosis has been hypothesized to play a protective role in
various disorders of the nervous system, including Alzheimer’s
disease and Parkinson’s disease, by clearing pathological
accumulations of amyloid beta and alpha-synuclein protein,
respectively (26, 27). Additional important immune functions
of microglia include the initiation of inflammatory cascades via
cross talk with neurons, glial cells, and infiltrating monocytes.
Microglia express MHC II and are capable of antigen
presentation, although the extent to which they prime naïve
lymphocytes vs participate in ongoing antigenic stimulation in
the setting of stroke is unknown.

Microglia have traditionally been classified as having a pro-
inflammatory (M1) or anti-inflammatory (M2) phenotype
(Figure 2). Microglia can also switch between the M1 and M2
phenotypes in response to changes in environmental conditions.
Following ischemic stroke, oxidative stress triggers the activation
of the antioxidative transcription factor nuclear erythroid related
factor 2 (Nrf2) pathway (28). The Nrf2 pathway promotes
microglia polarization to the anti-inflammatory M2 phenotype
by increasing expression of anti-inflammatory genes such as
NQO1 and HMOX1 (28). Enhancing Nrf2 pathway activity
using various pharmacological compounds has been found to
improve stroke outcomes in several preclinical studies (29, 30).
Additionally, molecular compounds which suppress the NLRP3
inflammasome pathway have been found to promote phenotypic
switching from the M1 to M2 activation state (31, 32).
Furthermore, single-cell RNA sequencing has indicated that
numerous activated microglia phenotypes exist based on
clustering of transcriptomic data (33). Even within the M2
anti-inflammatory phenotype, several different activation
subtypes such as M2a, M2b, M2c, and M2d, each with distinct
functions in tissue repair and wound healing, have been
identified (34). Clearly, activated microglia are a highly
heterogenous cell population, with no clear consensus on how
FIGURE 2 | Factors Driving Microglia Activation and Polarization. Summary of major known stimulants, pathways, as well as markers of microglia activation and polarization.
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to define or differentiate various microglial subtypes. But while it
is important to understand that M1 and M2 are not fixed
phenotypes, the pro- and anti-inflammatory functions of these
highly plastic phenotypes remain a useful framework for
discussing the various roles of microglia in responding to
ischemic stroke.

Background: Monocyte-Derived
Macrophages
Monocyte-derived macrophages (MoDMs) arise from
monocytes, which, in turn, differentiate from hematopoietic
stem cells in the adult bone marrow and are continuously
regenerated throughout adulthood (35, 36). Although the
specific role of MoDMs is dynamic, these cells generally
function to produce proinflammatory factors, clear pathogens,
and present antigens (37–40). On a cellular level, MoDMs can be
distinguished from microglia based on gene transcript
expression. Compared to MoDMs, microglia exhibit higher
expression of CX3CR1, TREM2, and SIGLEC (41).
Furthermore, several surface markers such as P2RY12,
TMEM119, FCRLS, and intracellular markers such as SALL1
have been identified as specific to microglia (42, 43).

Whereas microglia remain confined to the CNS, monocytes
are found in peripheral blood circulation, bone marrow, and the
spleen. MoDMs and their precursors display classically activated
(pro-inflammatory) or alternatively activated (anti-
inflammatory) phenotypes, but are capable of intermediate
activation states as well. Broadly, M1 MoDMs promote
inflammation by releasing cytotoxic substances and inducing
cell death whereas M2 MoDMs phagocytose cellular debris and
release trophic factors that enhance recovery. As with M1 and
M2 microglia subtypes, there is significant overlap in signature
markers for M1 and M2 phenotypes amongst the MoDMs,
suggesting there is a pro/anti-inflammatory continuum on
which cells lie and shift dynamically. To further understand
the MoDM phenotypes and their temporal expression post-
stroke, it is important to further characterize the cells that will
differentiate into these important players upon arrival to the
ischemic site, the monocytes.

Human monocytes fall into three main subtypes based
upon relative expression levels of the surface markers
clusters of differentiation (CD) 14 and 16: classical monocytes
(CD14++CD16-), intermediate monocytes (CD14++CD16+) and
non-classical monocytes (CD14+CD16++) (44). CD14++CD16-

monocytes express the receptors CD64 and CD32, produce TNF-
ɑ and IL-10, exhibit high peroxidase activity, and are primed for
phagocytosis. CD14++CD16+ intermediate monocytes express
the CCR5 receptor and have proinflammatory function,
with comparable peroxidase activity to classical monocytes, but
higher production of IL-1b, IL12, and TNFa. And finally,
CD14+CD16++ monocytes have weak phagocytic activity and
fail to produce TNF-ɑ or IL-1 (44–46). The classical monocytes
(CD14++CD16-) are generally considered to be a short-lived pro-
inflammatory subset involved in phagocytosis. Intermediate
monocytes (CD14++CD16+) play a role in antigen presentation,
apoptosis regulation, cytokine secretion and T-cell activation.
Frontiers in Immunology | www.frontiersin.org 4
Meanwhile, non-classical monocytes (CD14+CD16++) are
involved in complement mediated phagocytosis and patrolling
vascular endothelium for damage or infection (47, 48).

In mice, three major monocyte subtypes, which are
homologous to the human subtypes, have been identified based
on differential expression of the surface receptor Ly-6C: the
classical Ly-6ChiCCR2+CD43lowCX3CR1

lowmonocytes, which
represent approximately 2-5% of circulating white blood cells
in healthy mice and are the first to arrive to inflamed tissues, the
intermediate Ly-6ChiCD43hi monocytes, and the non-classical,
alternatively activated Ly-6ClowCCR2-CD43hiCX3CR1

hi

monocytes, which are longer-lived monocytes that surveil
vasculature (49, 50). Ly6Clow mouse monocytes most closely
correlate to CD14+CD16++ human monocytes and Ly6Chi mouse
monocytes are analogous to human CD14++ monocytes (44, 51,
52). While Ly6Clow cells have a half-life of nearly a week, Ly6Chi

cells have a half-life of less than one day (53).
Monocyte phenotypes are further distinguished by the

relative presence of two chemokine receptors, C-X3-C Motif
Chemokine Receptor 1(CX3CR1) and C-C Motif Chemokine
Receptor 2 (CCR2), which are found on both murine and human
cells (50, 54–57). Both human and mouse classical monocytes
express high levels of CCR2 and low levels of CX3CR1 while
non-classical monocytes of both species express high CX3CR1
and low levels of CCR2. The relative presence of these two key
receptors is the basis of the migration and homing mechanism of
monocytes into areas of inflammation.

Monocyte migration is directed by molecular signals,
including cytokines and chemokines, which are released by
injured neurons as well as astrocytes and microglia (21, 58)
(Figure 1). Within peripheral blood circulation, CC-chemokine
ligand 2 (CCL2) and ligand 7 (CCL7) are the key chemokines
that bind to CCR2 and facilitate Ly6Chi classical monocyte
recruitment (59). The recruitment of Ly6Clow monocytes is
dependent upon the CX3C-chemokine ligand 1 (CX3CL1),
which is expressed in tissues as well as the marginal zone of
the spleen. Other chemokine monocyte receptors, including
CCR1, CCR5, CCR6, CCR7, CCR8 and CXCR2 have also been
reported to be involved in monocyte recruitment, though their
roles are less prominent (60–66).

Once activated, classical monocytes travel through the
bloodstream to the site of inflammation, where they adhere to
the endothelial surface through the binding of integrins and
other adhesion molecules, and extravasate across the blood vessel
wall into the area of inflamed tissue. Key adhesion molecules that
have been described include, L-selectin, P-selectin glycoprotein
ligand 1 (PSGL1), platelet endothelial cell adhesion molecule
(PECAM1), macrophage receptor 1(MAC1), lymphocyte
function-associated antigen 1 (LFA1), and very late antigen 4
(VLA4) (67–70). It has been reported that signaling in classically
activated monocytes through the CCR2-CCL2 axis alters the
conformation of VLA-4, leading to higher affinity interaction
with its receptor vascular cell adhesion molecule-1 (VCAM-1)
and ultimately monocyte transmigration into the infarcted tissue
(71). On the other hand, alternatively activated monocytes bind
to the endothelium via CX3CR1-CCL3 and transmigrate in an
June 2022 | Volume 13 | Article 897022
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LFA1/Intercellular Adhesion molecule-1 (ICAM1) dependent
manner (57).

Upon arrival to the site of inflammation, the undifferentiated
classical monocytes begin to exhibit changes in immune
phenotype by downregulating Ly6C and upregulating F4/80,
characteristic of mature phagocytes (72). They also
progressively acquire expression of alternatively activated
macrophage markers, such as YM-1 and arginase-1 (12).
Further differentiation results in upregulation of pro- or anti-
inflammatory characteristics depending on key molecular
pathways that affect gene expression and cellular metabolism
(73). These include the P13K/AKT, PPARs, MYC, NOTCH, and
IRFs pathways (43).

The classically activated M1 MoDMs contribute to tissue
degradation and T cell activation (through expression of MHC-
II) and are distinguished by secretion of proinflammatory
cytokines TNF-alpha and IL6. The alternatively activated M2
MoDMs express YM-1 and arginase-1, secrete anti-
inflammatory cytokines such as IL-10, and are involved in
wound healing, angiogenesis, and tissue fibrosis (71). M1
MoDMs display a higher expression of markers CD38, CD274,
CD197, CD54, CD82, CD86, and Slamf7, while M2 MoDMs
express higher amounts of CD163, CD206, and Neurophilin
(74). Cellular metabolism of these two subtypes also differs, with
M1 macrophages relying upon aerobic glycolysis whereas M2
macrophages depend on the TCA cycle and oxidative
phosphorylation (43). Through manipulation of enzymes
involved in these pathways, such as Pyruvate Dehydrogenase
(PDH), the M1/M2 phenotype dynamic could be shifted.

Conventionally, there has been a linear understanding in
monocyte-to-macrophage differentiation, where the classical or
pro-inflammatory monocytes only differentiate into M1
macrophages and the alternatively activated or anti-inflammatory
monocytes only differentiate into M2 macrophages. This
understanding of monocytes possessing pre-determined
differentiation states once arriving at the site of inflammation is
now in question, as studies have shown that in the absence of anti-
inflammatory monocytes from the bone marrow, M2 macrophages
have been identified in the infarcted brain (75). These findings
highlight the need for further research into the signals and timing
involved in monocyte-to-macrophage differentiation.
RECRUITMENT AND ACTIVATION OF
MICROGLIA AND MODMS DURING
ISCHEMIC STROKE

At the onset of ischemic stroke, activated, amoeboid microglia
rapidly migrate to the site of ischemic injury. The reduction in
cerebral blood flow to the area of injury initiates a sequence of
events often referred to as the ischemic pathway, which is notable
for energy depletion and glutamate excitotoxicity leading to cell
death (76). The ischemic core, defined as the region in which
irreversible cell death has occurred, is characterized by elevated
ion concentrations and glutamate levels as well as tissue acidosis
(76). Elevated glutamate levels drive the release of microglial
Frontiers in Immunology | www.frontiersin.org 5
chemoattractants, such as ATP, CCL21, CXCL10, and IL-1b,
leading to microglial recruitment (77). Imaging studies of
ischemic stroke mouse models have found that within the first
24 hours of ischemia, and as early as thirty minutes after stroke
onset (78) activated microglia (as characterized by an amoeboid
morphology) populate the area of injury (19, 79). Adenosine
triphosphate (ATP) release by dying neurons serves as a
chemoattractant which activates purinergic receptors, such as
P2Y12, on microglia and guides their directional migration to the
site of injury (80). Downstream signaling pathways then enable
chemotaxis via adhesion disassembly (81). Once microglia reach
the site of injury, they are activated by damage-associated
molecular patterns (DAMPs). High mobility group box 1
(HMGB1) is one such DAMP secreted by dying neurons
following ischemic stroke. HMGB1 binds to TLR4 on
microglia and induces production of pro-inflammatory
cytokines, including interleukin (IL)-6 and tumor necrosis
factor-alpha (TNF-alpha). Heat shock proteins, such as Hsp70,
also activate microglia via nuclear factor-kappa B (NF-kB) activity
(21). Microglia in turn secrete matrix metalloproteinase (MMP)-9,
inducible nitric oxide synthase (iNOS), and reactive oxygen
species (ROS) (81). These activities are temporally coordinated
as some studies suggest that during the earlier stages of injury,
microglia primarily promote tissue repair and reconstruction of
the extracellular matrix (82, 83). In the later stages of injury,
microglia shift towards a pro-inflammatory phenotype in which
they release inflammatory cytokines and generate ROS (82, 83).
This transition is not absolute, however, as other authors have
shown that activated microglia can also secrete anti-inflammatory
cytokines, such as transforming growth factor-beta (TGF-b) and
IL-10 (84) at later timepoints (Figure 2).

In a transient ischemic rat model, microglia activation was
evident 3.5 hours after the onset of ischemia (79). In a permanent
ischemic mouse model, microglia featuring hypertrophic cell
bodies and shortened processes were observed as early as the 30-
minute time point (79, 85). Activated microglia are also recruited
to the penumbra, the potentially salvageable region of brain
tissue surrounding the ischemic core. In the penumbra, activated
microglia are notably associated with blood vessels. Some studies
have suggested that perivascular activated microglia play an
important role in blood vessel repair as well as promoting the
integrity of the BBB, which is compromised during ischemic
stroke (86, 87). However, the role of perivascular activated
microglia in mitigating tissue injury remains controversial,
with other studies suggesting that they promote blood vessel
disintegration (88).

Gender and aging also influence the microglial response to
stroke. Mouse model studies have demonstrated that resting state
male microglia exhibit higher expression of inflammatory genes
regulated by the NF-kb transcription factor compared to female
microglia, and male mice subjected to cerebral ischemia
developed larger infarcts than female mice (89, 90) The
difference in infarct size may be due to increased expression of
genes significant for cellular plasticity in female microglia
compared to male microglia (91). Additionally, aged mice have
been found to experience more severe neurologic deficits
June 2022 | Volume 13 | Article 897022
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following MCAO as well as increased serum levels of
inflammatory cytokines compared to young mice (92). One
hypothesis for this finding is the upregulation of IRF5
signaling which occurs with aging (92). Microglia in aged mice
have been found to resist phenotypic transformation to an M2
anti-inflammatory state in response to IL-4 (93). Therefore, male
sex and increased age may both impair anti-inflammatory
aspects of the microglia response to ischemic injury.

Mobilization of monocytes from the bone marrow to the
blood and ultimately into the infarcted tissue is dependent on the
CCL2/CCR2 axis (59, 94, 95). CCL2 is produced by astrocytes
and microglia in states of hypoxia, as it is under direct
transcriptional control of Hypoxia-inducible factor 1-alpha
(HIF-1alpha) (58). Because CCL2 exclusively binds to CCR2,
which is only expressed on the classically activated, pro-
inflammatory monocyte subset, this is the subset recruited to
the ischemic site, a finding supported in experimental models of
brain ischemia and hemorrhage (10, 72, 96). Garcia-Bonilla et al.
utilized ischemic stroke models with CX3CR1GFP/+CCR2RFP/+

bone marrow (BM) chimeric mice to study the effects of CCR2
and CX3CR1 on monocyte/macrophage recruitment following
stroke and showed that non-classical, alternatively activated
CX3CR1+ monocytes/macrophages were absent in the brain of
CCR2 null mice. Furthermore, they found that while circulating
hematogenously-derived alternatively-activated monocytes were
absent in NR4A1-deficient mice (a nuclear receptor responsible
for the differentiation and survival of non-classical, alternatively
activated monocytes), these mice still had increased
alternatively-activated monocytes in the brain 14 days after
stroke occurred (51, 75). This led the authors to conclude that
the alternatively-activated monocytes were, in fact, derived from
the classically-activated monocytes once they had arrived at the
site of ischemia, and were not produced de novo in the
bone marrow.

Breakdown of the BBB facilitates the transmigration of cells
including monocytes from the periphery into the site of injury.
Nadareishvili et al. quantitatively measured gadolinium leakage
through serial MRIs to assess the degree of BBB disruption after
thrombolytic therapy for acute stroke and found that increased
BBB permeability was associated with worse outcomes in
patients independent of the severity and size of stroke. In fact,
for every 1% increase in BBB permeability there was a 75%
decrease in the chance of a good long-term functional outcome
(97). BBB permeability has been shown to occur in two phases:
reversible disruption occurs early after ischemic onset and is
driven by the release of MMP2, later BBB disruption is mediated
by MMP-3, MMP-9, and cyclooxygenases days after the ischemic
insult (98). This second wave of BBB disruption allows for the
infiltration of systemic immune cells, including neutrophils,
dendritic cells, T-cells, NK cells and monocytes. Endothelial
activation also results in chemokine release and upregulation
of adhesion molecules, both of which facilitate recruitment and
transmigration of circulating monocytes. Endothelial and tissue
resident macrophages regulate the infiltration of monocytes and
neutrophils through the production of cytokines such as
granulocyte macrophage-colony stimulating factor (GM-CSF)
Frontiers in Immunology | www.frontiersin.org 6
(99). Ischemia also triggers expression of adhesion molecules
such as selectins, integrins, and intercellular and vascular
adhesion molecules along the microvasculature, which facilities
rolling and high affinity interactions for firm adhesion of
circulating leukocytes (100).

Anatomically, the choroid plexus may be a particularly
important route of monocyte recruitment and ingress into the
infarcted brain region. Through gene expression studies and the
use of chimeric mouse models, Ge et al. found that the choroid
plexus responded to stroke by upregulation of several key
mediators of MoDM trafficking (such as Vcam1, Madcam1,
Cxcl1, CCL2, NT5E, and IFNy) which resulted in increased
trafficking of MoDMs into the choroid plexus and CSF. If
primed for the M2-phenotype in vitro using treatment with
macrophage-colony stimulating factor (M-CSF), IL4, and IL13
prior to administration into the lateral ventricle ipsilateral to the
ischemic lesion, MoDMs homed to the area of ischemia and
promoted post-stroke recovery and improved cognition (101).

Once monocytes have infiltrated the area of ischemia, the
ischemic environment promotes their differentiation into
macrophages. While CCR2+ monocytes retain a round,
amoeboid phenotype and are limited to the ischemic core,
CX3CR1+ monocyte/macrophages can adopt three different
phenotypes in the ischemic brain based on where they are
localized relative to the infarct core: in the penumbra, they
generally take on a ramified phenotype similar to homeostatic
microglia, while in the infarct region, they take on an amoeboid,
phagocytic macrophage phenotype, and when associated with
blood vessels, resemble perivascular macrophages (75). Using
the C-X-C Chemokine Receptor Type 4 (CXCR4) signature to
trace cells of hematopoietic stem cell origin, it was found that
monocyte infiltration occurs in both the peri-infarct and infarct
areas after transient MCAO (102). In a photothrombosis infarct
model, infiltration primarily occurred in the peri-infarct region.
Interestingly, in CXCR4 knockout mice that underwent
photothrombosis, monocyte infiltration and microglial
proliferation were both reduced, suggesting that MoDMs are
responsible for microglial repopulation of the infarct core.
Furthermore, the authors also demonstrated that MoDMs were
the main source of microglia-activating mediators following
photothrombosis and maintained microglial activation in the
peri-infarct region until they were cleared (102).
ACTIVITY AND FUNCTION OF MICROGLIA
AND MODMS DURING THE THREE
STAGES OF ISCHEMIC STROKE

Stroke is clinically staged into the acute, subacute, and chronic
periods (Figure 3). The acute period is generally defined as the
period of minutes to days following the ischemic insult, while the
subacute period refers to the time from days to weeks following
stroke, and the chronic period refers to the time period from
weeks to months and beyond. The chronic stage can last for years
and continue for the remainder of a patient’s life (8). Depending
on the stage of stroke, microglia and MoDMs are preferentially
June 2022 | Volume 13 | Article 897022
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polarized towards different activation states in order to carry out
specialized functions. Mismatch between these activation states
and the timing of recovery, or inflammation that becomes
chronic can both be detrimental to long-term outcomes.

The Acute Phase
During the first 24 hours after ischemic injury, activated
microglia predominantly exist in an anti-inflammatory state, as
indicated by increased expression of CD206 and Ym1 (103).
Additionally, canonical M2 markers, including CD206, Arg1,
CCL22, Ym1/2, IL-10, and TGF-b are highly expressed starting
1-3 days after MCAO (104). M2 marker expression peaks around
3-5 days post-injury, and begins to decrease at seven days, finally
returning to pre-ischemic insult levels by the subacute phase of
stroke. M2 polarization is influenced by the activation of the
transcription factor, peroxisome proliferator-activated receptor g
(PPARg), as well as stimulation by IL-4 and IL-13 cytokines (105,
106). Activated M2 microglia secrete anti-inflammatory
cytokines, such as IL-10, TGF-b, IL-4, IL-13, and insulin-like
growth factor 1 (107–109). M2 microglia demonstrate increased
phagocytic activity and are speculated to clear cell debris and
injured tissue from the infarct area. These cells also promote
tissue repair and recovery by promoting neurogenesis via nerve
growth factor production, promoting angiogenesis via IL-8 and
vascular endothelial growth factor (VEGF) production, and
enhancing axonal regeneration via VEGF/TGF-b/IGF-1
production (110). The protective effect of M2 microglia during
the acute phase of stroke has been indirectly demonstrated by the
fact that microglia depletion following ischemic stroke
exacerbates neuronal injury (111).

In contrast, the pro-inflammatory M1 phenotype is rarely
observed in the ischemic core during the first 24 hours after
stroke. In murine models of ischemic stroke, low expression of
Frontiers in Immunology | www.frontiersin.org 7
M1 markers iNOS, CD16, CD32, CD86, and CD11b has been
observed in the three-day period following stroke onset (104). At
these early timepoints, M1 or amoeboid microglia are
concentrated in the penumbra. M1 microglia first appear in
the ischemic core 24 hours after infarction, and their numbers
peak at 14 days (108). The differentiation of microglia into the
M1 phenotype following ischemic injury is prompted through
activation of the NF‐kB transcription factor (112). NF-kB
prompts the secretion of proinflammatory cytokines, such as
IL-1b, IL-6 and TNF-a, as well as the production of inducible
nitric oxide synthase (iNOS) and reactive oxygen species (ROS)
(109). These combined processes result in secondary brain damage
by exacerbating neuronal death and neuroinflammation, causing
death of oligodendrocytes and oligodendrocyte progenitor cells,
suppressing remyelination, and inhibiting neural precursor cell
proliferation (113).

In the immediate peri-infarct region, microglia adopt a bushy
morphology and demonstrate lower phagocytic activity (110,
113). The exact functions of microglia bearing different
morphologies, including whether they exacerbate neuronal
injury or promote neuroinflammation, is an area of active
research. Additionally, it is important to note that microglia
activation is not limited to the infarct core. Activated microglia
are also present in the penumbra as well as remote brain regions
which are functionally or anatomically connected to the primary
injury site (22, 113, 114). This shifting spatial pattern of M1
phenotype from penumbra to core may play a role in limiting
initial damage as some studies suggest that M1 microglia
constrain expansion of the core (115). The M1 phenotype then
predominates in the subacute phase.

MoDMs are sparse in the CNS during the acute phase of
ischemic stroke. However in mice, the number of classically
activated (Ly6Chi) monocytes has been shown to be increased in
FIGURE 3 | Relative Abundance of Microglia, Infiltrating Monocyte, and MoDM Subtypes Following Onset of Ischemic Stroke. During the acute phase of stroke,
microglia are activated and predominantly found in the M2, anti-inflammatory phenotypic state. These M2 microglia then wane during the early subacute phase,
giving rise to the M1 microglia during the late subacute and chronic stages. Classical monocytes (CCR2+, Ly6Chigh cells in mice, CD14++ CD16- cells in humans)
infiltrate the brain parenchyma from days 3-5 and differentiate into M1 pro-inflammatory MoDMs. After day 7, the quantity of MoDMs slowly returns to baseline levels,
which are reached by day 14. During this time, non-classical monocytes (CCR2-, Ly6Clow cells in mice, CD14+ CD16++ cells in humans) and the differentiated M2
MoDMs predominate. MoDM, monocyte derived macrophage; CCR2, C-C Motif Chemokine Receptor 2.
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the peripheral blood circulation during the acute phase (within 3
hours) and decreased to pre-ischemic levels in the sub-acute and
chronic phases (from 1 to 7 days following ischemic onset) (96).
Similarly, clinical studies have shown that there is an increased
number of intermediate and classical monocytes in the blood
circulation at acute and sub-acute phases of stroke, with
decreased non-classical monocytes in blood circulation at these
stages (116). In those patients with progressive infarction and
severe injury, increased numbers of intermediate monocytes
coupled with decreased numbers of non-classical monocytes
were identified in the peripheral blood (117).

The Subacute Phase
At approximately one week following ischemic stroke, the
number of M1 microglia begins to dramatically increase with a
concomitant decrease in M2 microglia (108). This transition is
referred to as an M2-to-M1 phenotypic shift, and M1 microglia
remain the predominant activated form during the chronic phase
of stroke. The continued release of proinflammatory factors from
M1 microglia has been hypothesized to contribute to neuronal
death, and persistent activation during the chronic phase of
stroke may impair long term recovery (83, 118–120).

Like microglia, MoDMs also adopt time frame-dependent
activation states that can amplify or attenuate the inflammatory
response. Because these activated monocytes must exit the bone
marrow, travel through the bloodstream, and cross the blood-
brain barrier before differentiating into effector macrophage
subsets, the presence of MoDMs peaks days after the inciting
event (72, 121). In fact, studies using fluorescent cell tracking and
magnetic resonance imaging to track MoDMs have found that
they do not significantly contribute to the inflammatory response
in the infarcted tissue until 3-7 days after ictus (9, 122, 123). In a
murine study performed by Schilling et al. using GFP-stained
hematogenous macrophages, GFP+ cells were present no earlier
than the fourth day post-stroke (124, 125). This finding was
supported in other transient and permanent MCAO animal
models using MR imaging and iron-oxide particles (USPIO) to
track MoDMs, which showed increased signals in the ischemic
zone for 7 days following stroke, with the peak signals being
noted on day 4 (126).

The majority of monocytes initially recruited to the brain
after stroke are Ly-6Chi (CCR2+) cells, which differentiate
primarily into M1 tissue macrophages in the stroked
hemisphere and promote inflammation. Classically activated
monocytes appear to be the dominant phenotype found in the
infarct core during the subacute phase (3-5 days after stroke)
(75). As they persist in the site of inflammation, however, these
cells lose their Ly-6C and CCR2 expression and begin to release
VEGF and TGF-b, facilitating angiogenesis and neuroprotection
(127). Studies have termed this effect the “dead cell clearance”
hypothesis, which posits that upon exposure to apoptotic cells,
classically activated M1-like macrophages switch toward the
alternatively activated M2 phenotype (128). Thus, by day 7,
anti-inflammatory monocytes and MoDMs define the post-
stroke setting (117). The presence of infiltrating monocytes in
the subacute phase has been associated with decreased risk of
hemorrhagic transformation (72). Furthermore, MoDMs have
Frontiers in Immunology | www.frontiersin.org 8
been shown to have a beneficial role in post-stroke recovery
through modulating detrimental acute and long-term microglial-
mediated inflammation (129).

The Chronic Phase
The chronic phase of stroke refers to the period of weeks to
months after onset of the initial ischemic event. During this
phase, microglia activation persists in the pro-inflammatory M1
activation state, and is associated with pathologic inflammation,
neurodegeneration, and decreased neuroplasticity. The biological
mechanisms underpinning the persistence of M1 microglia are
not fully understood, but some known implicated pathways
include increased activity of transcription factors such as Irf5
as well as downregulation of the CREB-C/EBPb cascade (104).
The pro-inflammatory cytokines released by M1 microglia
damage nearby neurons, prompting the release of DAMPs
which further perpetuates the inflammatory response. The
long-term consequences of prolonged inflammation include
dysfunctional or diminished tissue repair, synaptic plasticity,
neurogenesis, axonal and dendritic spine regeneration, neural
network reorganization, interhemispheric connections, and
neuroplasticity (118, 130) In a preclinical study of MCAO
mice, peripheral administration of IL-13 was found to induce
an anti-inflammatory microglial response, resulting in improved
gait and sensorimotor deficits at seven and 14 days post-stroke,
respectively (130). Therefore, while interventions in the acute
phase of stroke may be important for limiting initial ischemic
damage, interventions in the chronic phase could potentially
improve long-term neurofunctional outcomes.

On the contrary, during the late subacute to chronic phase
(14-28 days post-stroke), alternatively activated monocytes
predominate and primarily differentiate into the M2 anti-
inflammatory MoDM phenotype (75) (Figure 3). Consistent
with this finding, MoDMs have been shown to contribute to
long-term spontaneous functional recovery (131, 132). MoDMs
play a critical role in clearing debris and dead cells (99). Using an
anti-CCR2 antibody, MC-21, Watannanit et al. were able to
block monocyte recruitment and found that this resulted in
decreased tissue expression of the anti-inflammatory genes
TGFb, CD163, and Ym1 and functional inability of mice to
recover long-term (13). Yet, there are conflicting data in other
models (133–135). In an intracerebral hemorrhage model,
Hammond et al. reported that classical monocytes exacerbated
acute disability (135). Using clodronate liposomes to deplete
peripheral macrophages, Ma et al. found that under conditions of
macrophage depletion, there was decreased demyelination and
brain atrophy in the ipsilateral striatum and enhanced focal
microvessel density in the peri-infarct region, all of which have
been correlated with longer survival times in ischemic stroke
patients (134, 136). Further long-term studies of the effects of
MoDMs on recovery are needed to better understand these
discordant findings regarding the activity and function of
MoDMs in the chronic stage. These conflicting findings further
highlight the limitations of M1 and M2 classification and future
studies will be needed to move beyond phenotypic descriptions
and better understand specific activities and pathways that
promote recovery or injury at each stage.
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MICROGLIA AND MODMS DIRECTED
TREATMENTS FOR ISCHEMIC STROKE

Clinical therapies for stroke are currently focused on salvaging
the penumbra in the acute phase via a combination of
reperfusion techniques including intravenous thrombolytics
and mechanical thrombectomy. Treatment strategies for the
ensuing brain edema are mainly supportive, involving
interventions such as hyperosmolar therapy, corticosteroids,
hyperventilation and CSF diversion to reduce intracranial
pressure during the acute swelling period. By the subacute and
chronic stages, the treatment focus shifts to recovering function
through physical and neuropsychological rehabilitation (137). At
present there are no approved therapies that target the
inflammatory pathways to limit secondary injury. Several
pharmacological agents have been explored for their ability to
promote neuroplasticity and neurogenesis during the later stages
of stroke, including antidepressants, amphetamines, and
neurotrophins (138). However, randomized controlled trials
for these agents have failed to meet their efficacy endpoints (139).

The induction or promotion of the anti-inflammatory M2
microglia phenotype is one treatment strategy that has been
employed in both preclinical and clinical studies to decrease
inflammation in the acute and subacute phases and promote
brain plasticity through in the chronic phase (113). Promotion of
the M2 phenotype can be accomplished by administering
molecular compounds which activate specific cell signaling
pathways, such as the STAT3, AMPK, and PPARg pathways
(140–142). In preclinical studies, intravenous injection of
compounds, such as xuesaitong (a Chinese patent medicine)
and Ac2-26 (an annexin/lipocortin 1-mimetic peptide), as well as
intraperitoneal injection of compounds such as recombinant
human fibroblast growth factor 21 (rhFGF21 and melatonin,
have been reported to promote the M2 microglia phenotype by
modulating cell signaling (143–146) (Table 1). HP-1c, an
activator of the AMPK and Nrf2 pathways, as well as CDDO-
EA, an activator of the Nrf2 pathway, also promote the M2
microglia phenotype (29, 30). Inhibition of polarization to the
M1 phenotype via inhibition of the PDE5 pathway is another
treatment which has shown preclinical success. Administration
of sildenafil, a PDE5 inhibitor, after MCAO has been found to
decrease the number of M1 microglia during the later stages of
stroke as well as reduce the extent of the ischemic lesion (149).
Nitric oxide (NO) and hydrogen sulfide (H2S)-releasing hybrid)
(NOSH-NBP) has been similarly found to promote the M2
microglia phenotype in murine models of cerebral ischemia
(152). Furthermore, clinical trials evaluating the safety and
efficacy of NBP in mild to moderate ischemic stroke patients
are ongoing with results still pending (Table 2). Minocycline is
an antibiotic found to promote the M2 microglia activation state
in preclinical studies and has demonstrated some preliminary
success for improving neurofunctional recovery following acute
ischemic stroke in early clinical trials (161, 162). The MINOS
(minocycline to improve neurological outcome in stroke) study
was a phase 1 open-label, dose-finding study which found that
minocycline could be safely tolerated in acute stroke patients at
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intravenous doses of up to 10 mg/kg (163). In a multicenter
prospective randomized open-label pilot study of intravenous
minocycline in a small sample of acute stroke patients, Kohler
et al. reported that minocycline was safe but not efficacious.
However, this study was not powered to reliably identify modest
differences in clinical outcomes (164). In a small, open-label
evaluator-blinded trial, Amiri-Nikpour et al. reported a gender-
dependent effect on minocycline neuroprotection in ischemic
stroke, noting improved clinical outcomes (lower National
Institutes of Health Stroke Scale (NIHSS) scores) in
minocycline-treated male patients, but no significant difference
in minocycline-treated female patients (165). Of note, in these
clinical trials, minocycline was administered as an oral or
intravenous formulation to both ischemic and hemorrhagic
acute stroke patients exclusively during the acute phase (161,
164–166). Additional clinical trials which test the efficacy of such
pharmacological compounds are needed to determine whether
modulating microglia phenotype can lead to improvement in
neurologic outcome post ischemic stroke.

Several other drugs with known immunomodulatory
properties have been repurposed in an effort to downregulate
stroke-induced neuroinflammation. Montelukast, an anti-
asthmatic drug, is a compound which has been found to
promote microglia polarization to the M2 phenotype in mice
(155). Montelukast acts as an antagonist of the CysLT-1 receptor
and has been found to increase the number of M2 phenotype
microglia during the acute phase of stroke (155). Edaravone is a
free radical scavenger used in the treatment of amyotrophic
lateral sclerosis (ALS), which has been found to promote the M2
microglia activation in preclinical studies (160, 167). In a
retrospective study by Enomoto et al, clinical outcomes of
patients who underwent endovascular reperfusion therapy and
edavarone therapy within two days of admission were compared
with patients who underwent endovascular reperfusion alone. In
the group that received edavarone, the authors reported
significantly lower in-hospital mortality and greater functional
independence at discharge (168). Additional clinical trials
designed to evaluate the efficacy of Edaravone are in
preparation or currently in progress (Table 2). Several clinical
trials are investigating the efficacy of combining Edaravone with
dexborneol, a food additive which has demonstrated anti-
inflammatory effects in preclinical stroke models (169).
Interestingly, the combined treatment of Edaravone with
dexborneol has been found to have a greater benefit for female
patients compared to male patients, suggesting that sex may
significantly influence the efficacy of such treatments (169).
Fingolimod, a sphingosine l-phosphate receptor modulator that
is FDA-approved for relapsing multiple sclerosis, is another drug
that was shown in preclinical studies to skew microglia towards
the M2 phenotype following chronic cerebral hypoperfusion and
is now being studied in several clinical trials. In one trial of 25
patients with acute hemispheric ischemic stroke, combined
therapy of fingolimod and alteplase was associated with fewer
circulating leukocytes, smaller infarct volumes, attenuated
reperfusion injury and improved functional outcomes
compared to alteplase monotherapy (170).
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TABLE 1 | Pre-clinical Studies Investigating Microglia, Monocyte, and MoDM Phenotype Modulation.

Author Year Study Title Model Treatment Results

Jin 2014 (147) Improvement of functional recovery by
chronic metformin treatment is associated
with enhanced alternative activation of
microglia/macrophages and increased
angiogenesis and neurogenesis following
experimental stroke

male CD-1 mice
given tMCAO

IP metformin given daily at
50 mg/kg

Metformin treatment improved neurofunctional
recovery, promoted microglia polarization to the
M2 phenotype, enhanced angiogenesis, and
enhanced neurogenesis

Tang 2014 (148) CX3CR1 deficiency suppresses activation
and neurotoxicity of microglia/macrophage
in experimental ischemic stroke

CX3CR1⁻/⁻ C57BL/
6 mice with tMCAO

CX3CR1 KO mice exposed
to 90 min transient focal
ischemica

CX3CR1 KO reduced infarct volume, attenuated
neurological deficits, reduced proliferation of
macrophages/microglia in ipsilateral hemisphere,
reduced ROS generation, and reduced microglia/
macrophage inflammatory response

Moretti
2016 (149)

Sildenafil,
a cyclic GMP phosphodiesterase inhibitor,
induces microglial modulation after
focal ischemia in the neonatal mouse brain

C57BL/6
mice with
permanent MCAO

IP
sildenafil citrate given 5 min
after MCAO

Sildenafil treatment reduced lesion size and
promoted microglia
polarization to the M2 phenotype

Shu 2016 (150) Ginkgolide B Protects Against Ischemic
Stroke Via Modulating Microglia
Polarization in Mice

male C57BL/6J
mice with tMCAO

IP ginkgolide B given twice
daily after reperfusion (1.75
mg/kg, 3.5 mg/kg, and 7.0
mg/kg)

Gingkgolide B treatment promoted microglia
polarization to the M2 phenotype, reduced infarct
volume, and attenuated neurological deficits

He 2017 (151) Thiamet G mediates neuroprotection in
experimental stroke by modulating
microglia/macrophage polarization and
inhibiting NF-kB p65 signaling

male C57BL/6 mice
with tMCAO

IP thiamet G given at 20 mg/
kg each day for 3 days
before tMCAO

Thiamet G treatment reduced infarct volume,
attenuated neurological deficits, suppressed
microglia/macrophage activation, and promoted
microglia polarization to M2 phenotype

Ji 2017 (152) NOSH-NBP, a Novel Nitric Oxide and
Hydrogen Sulfide- Releasing Hybrid,
Attenuates Ischemic Stroke-Induced
Neuroinflammatory Injury by Modulating
Microglia Polarization

C57BL/6 mice with
tMCAO

PO drugs (NO-NBP, H2S-
NBP, PTIO + NOSH-NBP,
BSS + NOS-NBP, NOSH-
NBP) given directly after
reperfusion and once daily

NO-NBP, H2S-NBP, and NOSH-NBP treatments
attenuated neurological dysfunction, decreased
infarct volume, and decreased neuronal apoptosis;
NOSH-NBP treatment was more effective than
NO-NBP and H2S-NBP treatments; carboxy-PTIO
(NO scavenger) and bismuth (III) subsalicylate
(H2S scavenger) decreased the beneficial effects
of NOSH-NBP

Qin
2017 (140)

Fingolimod
Protects Against Ischemic White Matter
Damage by Modulating Microglia Toward
M2 Polarization via STAT3 Pathway

C57BL/6J
mice with bilateral
carotid artery
stenosis

IP
FTY720 given for 3, 10, or
30 consecutive days

FTY720 treatment ameliorated disruption of white
matter integrity,
attenuated microglia-mediated neuroinflammation,
increased
oligodendrocytogenesis, promoted microglia
polarization to the M2 phenotype,
and reduced cognitive decline

Schmidt 2017
(153)

Targeting Different Monocyte/Macrophage
Subsets
Has No Impact on Outcome in
Experimental Stroke

C57BL/6 mice with
tMCAO

IP clodronate liposomes
daily, IV M1- or
M2-macrophages
transplanted after reperfusion

No effect on neurological outcomes
observed

Jiang 2018
(154)

Exosomes from MiR-30d-5p-ADSCs
Reverse Acute Ischemic Stroke-Induced,
Autophagy-Mediated Brain Injury by
Promoting M2 Microglial/Macrophage
Polarization

male Sprague-
Dawley rats with
permanent MCAO

IV exosomes from miR-30d-
5p-overexpressing ADSCs
given at 80 ug per 2 mL after
MCAO

Exosome treatment inhibited microglia polarization
to the M1 phenotype and reduced infarct volume

Wang 2018 (29) A Dual AMPK/Nrf2 Activator Reduces
Brain Inflammation After Stroke by
Enhancing Microglia M2 Polarization

Sprague-Dawley
rats given tMCAO
or pMCAO

IV HP-1c given at 1 mg/kg
after MCAO

HP-1c promoted microglia polarization to the M2
phenotype, reduced infarct volume, improved
neurological deficits, and reduced macrophage/
microglia accumulation in ipsilateral hemisphere

Gelosa
2019 (155)

Improvement
of fiber connectivity and functional recovery
after stroke by montelukast, an
available and safe anti-asthmatic drug

male
CD1 mice with
permanent MCAO

IP
montelukast sodium powder
administered 3 days before
MCAO

Montelukast treatment reduced ischemic lesion
volume, enhanced
oligodendrocyte progenitor cell proliferation, and
promoted microglia
polarization to the M2 phenotype

Kolosowska
2019 (130)

Peripheral Administration of IL-13 Induces
Anti-inflammatory Microglial/Macrophage
Responses and Provides
Neuroprotection in Ischemic Stroke

male BALB/
cOlaHsd mice with
permanent MCAO

IV IL-13 (1, 2, or 5 mg/animal)
given following
recovery from anesthesia

IL-13 treatment decreased ischemic
lesion volume, reduced leukocyte infiltration, and
promoted microglia
polarization to the M2 phenotype

Li
2019 (143)

Xuesaitong
May Protect Against Ischemic Stroke by
Modulating Microglial Phenotypes and

C57BL/6
mice with tMCAO

IV
xuesaitong given directly after

Xuesaitong treatment reduced infarct volume,
improved neurological
outcome, promoted microglia polarization to the

(Continued)
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Exosome therapy has also been used to increase the overall
number of M2 microglia in the post-stroke environment. This
strategy uses extracellular vesicles (EVs) derived from
multipotent mesenchymal stromal cells to deliver proteins,
lipids, and/or nucleic acids. In the context of stroke, EVs have
been shown to facilitate transfer of miRNAs between cells, which
can influence post-transcriptional gene regulation in microglia to
increase the expression of M2 markers (171). In traumatic brain
Frontiers in Immunology | www.frontiersin.org 11
injury mouse models, delivering miR-124-3p via EVs derived
from microglia cells has been shown to promote the anti-
inflammatory phenotype (172). Furthermore, infusion of EVs
derived from microglia treated with IL-4 into mice following
MCAO has been found to effectively promote microglia
polarization to the M2 phenotype during the chronic stage of
stroke. IL-4 treatment promotes functional recovery by
enhancing the neuronal myelination capacity of GPR17-
TABLE 1 | Continued

Author Year Study Title Model Treatment Results

Inhibiting Neuronal Cell Apoptosis via the
STAT3 Signaling Pathway

reperfusion for 14
consecutive days

M2 phenotype, reduced the
secretion of pro-inflammatory cytokine IL-1b, and
increased secretion of
trophic factors IL-10 and TGF-b1

Song 2019
(156)

M2 microglia-derived exosomes protect
the mouse brain from ischemia-reperfusion
injury via exosomal miR-124

male ICR mice with
tMCAO

IV M2-derived exosome after
reperfusion, 100 ug/day for 3
days

M2-derived exosome treatment attenuated
neuronal apoptosis, reduced infarct volume, and
attenuated neurological deficits

Yang 2019 (157) Remote Postischemic Conditioning
Promotes Stroke Recovery by Shifting
Circulating Monocytes to CCR2+
Proinflammatory Subset

C57BL/6 mice with
tMCAO

splenocytes collected from
CCR2 KO mice transferred
via retro-orbital injection to
asplenic C57BL/6 mice; mice
then subjected to tMCAO
followed by remote limb
conditioning (RLC) 2 hours
post- reperfusion

RLC promoted pro-inflammatory subsets of
monocytes, reduced infarct size, and improved
functional recovery

Ye 2019 (158) Meisoindigo Protects Against Focal
Cerebral Ischemia-Reperfusion Injury by
Inhibiting NLRP3 Inflammasome Activation
and Regulating Microglia/Macrophage
Polarization via TLR4/NF-kB Signaling
Pathway

C57BL/6J mice
given tMCAO

IP meisoindigo given before
and 2 hr after reperfusion

Meisoindigo treatment reduced infarct volume,
attenuated neurologic deficits, reduced cerebral
edema, suppressed inflammatory response, and
promoted microglia polarization to the M2
phenotype

Zheng 2019
(159)

Exosomes from LPS-stimulated
macrophages induce neuroprotection and
functional improvement after ischemic
stroke by modulating microglial polarization

male Sprague-
Dawley rats with
tMCAO

IV exosomes of LPS-
stimulated macrophages
(LPS-Ex) given 6 hr and 24
hr after reperfusion

LPS-Ex treatment reduced infarct volume,
promoted microglia polarization to the M2
phenotype, and ameliorated the post-ischemic
inflammatory response

Li 2020 (160) Edaravone-Loaded Macrophage-Derived
Exosomes
Enhance Neuroprotection in the Rat
Permanent Middle Cerebral Artery
Occlusion
Model of Stroke

male Sprague-
Dawley rats with
permanent MCAO

IV free Edaravone (Edv) or
exosomes containing
Edaravone (Exo + Edv) given
continuously

Edv and Exo + Edv treatments reduced
mortality, Exo + Edv promoted microglia
polarization to M2 phenotype

Wang
2020 (145)

FGF21
alleviates neuroinflammation following
ischemic stroke by modulating the
temporal and spatial dynamics of microglia/
macrophages

C57BL/6
mice with tMCAO

IP
rhFGF21 daily beginning 6 h
post-reperfusion

rhFGF21 treatment inhibited M1 polarization of
microglia, decreased
pro-inflammatory cytokine expression through
suppression of nuclear
factor-kappa B (NF-kB) and upregulation of
peroxisome proliferator-activated
receptor-g (PPAR-g), and ameliorated behavioral
neurologic deficits

Rafaelle 2021
(111)

Microglial vesicles improve post-stroke
recovery
by preventing immune cell senescence and
favoring oligodendrogenesis

GPR17-iCreERT2:
CAG-EGFP
reporter mice with
permanent MCAO

intracerebral infusion of IL-4
microglia-derived
extracellular vesicles (EVs)
given at day 14 after MCAO

IL-4 EV treatment promoted microglia
polarization to the M2 phenotype, promoted OPC
maturation, and enhanced
neurofunctional recovery

Xu
2021 (144)

Annexin
A1 protects against cerebral ischemia-
reperfusion injury by modulating
microglia/macrophage polarization via
FPR2/ALX-dependent AMPK-mTOR
pathway

C57BL/6J
mice with tMCAO/R

IV
Ac2-26 (pharmacore mimic
of annexin A1) or Ac2-26 +
WRW (antagonist agent)
given directly after
reperfusion

Ac2-26 treatment improved neurological function,
reduced the volume
of cerebral infarct, increased cortical cerebral
blood flow, promoted the
polarization of microglia/macrophages to M2
phenotype, and ameliorated BBB
disruption and neuronal apoptosis
Summary of pre-clinical studies which involve microglia, monocyte, and MoDM phenotype modulation following ischemic stroke.
IP, intraperitoneal; IV, intravenous; PO, by mouth; rhFGF21, recombinant human fibroblast growth factor 21; MCAO, middle cerebral artery occlusion; tMCAO, tMCAO/R, transient middle
cerebral artery occlusion/reperfusion; GMP, guanosine monophosphate; FTY720, Fingolimod; FPR2/ALX, formyl peptide receptor 2; AMPK, AMP-activated protein kinase; mTOR,
mammalian target of rapamycin; KO, knockout; IL-13, interleukin 13; IL-4, interleukin 4; CCR2, C-C Motif Chemokine Receptor 2; OPC, oligodendrocyte progenitor cell.
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TABLE 2 | Clinical Studies Investigating Microglia Phenotype Modulation.

Study Therapy n Condition Primary Outcome Status/Initial Results

NCT00630396 Minocycline
(IV) daily

60 IS (onset < 6 hours) Maximally Tolerated Dose Completed
Safe and well tolerated up to 10 mg/kg
alone and in combination with tPA

NCT00836355 1. Minocycline (oral)
2. Enoxaparin (IV)
3. Minocycline (oral) +
Enoxaparin (IV)

6 IS (onset < 6 hours) Neuroprotection (measured
by MR imaging pre and post-
treatment)

Terminated

NCT00930020 Minocycline (oral) vs.
placebo

139 IS (onset 3-48 hours) Reduction of neurologic
deficits and improvement of
functional outcome on day 90
post-stroke

Terminated

NCT03320018 Molecular hydrogen H2 (IV or
PO) + minocycline (IV or PO)
vs. placebo

100 IS (onset <24 hours) sMRSq Unknown

NCT05121883 Edaravone Dexborneol (oral) 200 IS (onset < 48 hours) mRS Not yet recruiting
NCT05035953 Edaravone Dexborneol (IV)

vs. placebo
200 IS (alteplase within 4.5 hours after

onset)
Symptomatic ICH Not yet recruiting

NCT04667637 Edaravone Dexborneol (IV)
vs. placebo

200 Anterior IS and recanalization within 9
hours of stroke onset

mRS 0-2 Recruiting

NCT04817527 Edaravone Dexborneol (IV)
vs. endovascular therapy

200 Anterior IS treated with endovascular
therapy within 6-24 hours of onset

1. mRS 0-3 on day 90
2. symptomatic ICH within 48
hours
3. mTICI grade at 90 days

Not yet recruiting

NCT02430350 Compound Edaravone +
Borneol vs. Edaravone(IV)

1200 IS (onset < 48 hours) mRS ≤1 on day 90 Completed
Outcomes favored Edaravone
Dexborneol group, especially in female
patients

NCT04984577 1. Compound Edaravone +
borneol injection
- Low dose
- High dose
2. Edaravone injection
3. Placebo

240 IS (onset < 48 hours) mRS ≤1 on day 90 Not yet recruiting

NCT00821821 MCI-186 (IV) vs. Placebo 36 IS (onset <24 hours) Adverse events within 87days Completed
Safety and tolerability of MCI-186
formulation and dosing regimen was
achieved

NCT01929096 1. Compound Edaravone
+borneol injection
- Low dose
- Medium dose
- High dose
2. Edaravone injection

400 IS (onset < 48 hours) mRS score on day 90
Change from baseline NIHSS
score on day 14

Completed
- Edaravone Dexborneol safe and well
tolerated at all doses
- No improvement in functional
outcomes at 90 days

NCT05024526 Edaravone dexborneol or
Edaravone (IV)

80 IS Imaging changes at 7 days Recruiting

NCT00200356 Edaravone vs. sodium
ozagrel (IV)

401 IS (onset <24 hours) mRS of 0-1 at 3 months Completed
Edaravone at least as effective as
ozagrel for treatment of acute
noncardioembolic IS

NCT04950920 Y-2 tablets (Edaravone + d-
borneol) vs. d-borneol (oral)

900 IS (onset ≤ 48 hours) mRS < 1 after 90 days Recruiting

NCT04629872 Fingolimod (oral) vs.
endovascular treatment

30 Anterior IS eligible for mechanical
thrombectomy within 6-24 hours of
stroke onset

Collateral circulation grade
compared to pre-
endovascular treatment

Recruiting

NCT04718064 Fingolimod (oral) vs. placebo 20 Occlusion of M1 segment of ICA or
MCA with onset <24 hours

mRS score at 90 days Not yet recruiting

NCT04675762 Standard alteplase bridging
and mechanical
thrombectomy with
fingolimod (oral) or placebo

118 Anterior IS eligible for alteplase and
mechanical thrombectomy within 24
hours of stroke onset or awakening
with stroke

Ratio of mRS score of 0-2 (%)
at 90 days

Recruiting

NCT02002390 Fingolimod (oral) vs.
standard of care

22 IS Clinical improvement up to 90
days

Completed
Combination therapy of fingolimod and
alteplase well tolerated, attenuated

(Continued)
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expressing oligodendrocyte precursor cells (111). Therefore,
exosome therapy is another promising, microglia-focused
therapy for ischemic stroke.

Compared to microglia-focused therapies, treatments
targeting MoDMs are more limited. Preclinical studies have
focused on manipulating the pro- and anti-inflammatory
monocyte subtypes, as well as administering anti-inflammatory
MoDMs as a form of therapy. A study by Schmidt et al. using
Frontiers in Immunology | www.frontiersin.org 13
clodronate liposomes to deplete peripheral macrophages showed
no beneficial therapeutic effect after ischemic stroke in mice
(153). However, when monocyte-derived macrophages were
skewed to an M2 phenotype in vitro prior to administration
into the CSF of mice after MCAO, improved cognitive and motor
function was observed although there was no difference in infarct
volume (101). In another preclinical study, Yang et al.
demonstrated that shifting blood monocytes toward a CCR2+
TABLE 2 | Continued

Study Therapy n Condition Primary Outcome Status/Initial Results

reperfusion injury and improved clinical
outcomes

NCT02730455 1. Natalizumab (IV)
- low dose
- high dose
2. placebo

277 Supratentorial IS defined by LKN ≤24
hours at treatment

Composite Global Measure of
Functional Disability
- Excellent Outcome at day
90

Completed
Excellent outcome less likely in patients
treated with natalizumab than with
placebo

NCT01955707 Natalizumab (IV) vs. placebo 161 IS Change in infarct volume from
baseline

Completed
No reduction in infarct growth with
natalizumab but some treatment-
associated benefits on functional
outcomes

NCT01073007 Simvastatin (oral) vs. placebo 104 IS (onset <12 hours) Neurological and functional
outcomes at day 7/discharge
or at month 3

Completed
- Simvastatin + tPA combination safe in

acute stroke, with low rates of
bleeding complications

- No statistically significant differences
to show simvastatin efficacy

NCT03402204 Simvastatin 10 mg vs.
Simvastatin 40 mg (oral)

64 IS (onset <24 hours) NIHSS at 180 days Completed
No difference in clinical outcomes
between high- and low-dose
simvastatin

NCT00091949 Pioglitazone (oral) vs.
placebo

3876 IS or TIA no less than 14 days and no
more than 6 months before
randomization

Recurrent Fatal or Non-fatal
IS, or Fatal or Non-fatal MI up
to 5 years

Completed
- Pioglitazone effective for secondary
prevention of IS in nondiabetic patients
with insulin resistance

NCT03354429 Ticagrelor (oral) 11016 Mild-to-moderate acute
noncardioembolic IS (NIHSS score
≤5) (<24 hours) or TIA

Subsequent Stroke or Death
randomized from day 1 to
visit 3 (day 30-34)

Completed
Lower risk of death or stroke with
ticagrelor-aspirin than with aspirin alone
- disability did not differ significantly

between the two groups

- Severe bleeding more frequent with
ticagrelor.

NCT04962451 Ticagrelor + ASA vs.
Placebo + ASA (oral)

13000 IS (onset < 24 hours) Subsequent Stroke or Death Completed
No results posted

NCT01994720 Ticagrelor vs. ASA (oral) 13307 IS (onset < 24 hours) Stroke/MI/Death up to 97
days

Completed
Ticagrelor not superior to aspirin in
reducing the rate of stroke, MI, or
death at 90 days

NCT04738097 Ticagrelor + ASA vs.
Placebo + ASA (oral)

90 IS (onset < 24 hours) IS recurrence within 3 months Recruiting

NCT03884530 Ticagrelor vs. ASA (oral) 169 IS (onset < 9 hours) or TIA - hemorrhagic transformation
or
peripheral bleeding within 48
hours of loading dose
-NIHSS and mRS

Completed
-better clinical outcome for ticagrelor

based on NIHSS and mRS

-safety profile shows ticagrelor is
noninferior to aspirin
Ju
Summary of ongoing and completed clinical trials for therapies targeting specific microglia/monocyte-derived macrophage phenotypes after ischemic stroke. Minocycline has been shown
to inhibit activation and proliferation of microglia and macrophages in vitro. Edaravone Dexborneol is a free radical scavenger that suppresses the inflammatory responses in activated
microglia and decreases microglia-mediated inflammatory mediators. Fingolimod skews microglia toward M2 polarization after chronic cerebral hypoperfusion. Natalizumab is a
monoclonal antibody against the glycoprotein a4 integrin expressed on the surface of monocytes. Simvastatin has the potential to attenuate proinflammatory mediators by controlling
microglial activation and causing consequent reduction in neuroinflammatory mediators. Pioglitazone is a microglia-modulating drug which regulates anti-inflammatory activity and
attenuates microglial activation through acting as an agonist of PPAR-y. Ticagrelor inhibits P2Y12-mediated microglia activation and chemotaxis.
simplified modified Rankin Scale (sMRSq), modified Rankin Scale (mRS), intracranial hemorrhage (ICH), ischemic Stroke (IS), myocardial infarction (MI), modified treatment in cerebral
ischemia (mTICI), National Institutes of Health Stroke Scale (NIHSS).
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proinflammatory state using remote ischemic limb conditioning
(RLC) prior to stroke onset reduced brain injury and improved
recovery, and that adoptive transfer of CCR2 deficient
monocytes abrogated the proinflammatory shift and resulted in
worse functional outcomes (157). Another study utilized hypoxic
preconditioning prior to MCAO to upregulate CCL2, the receptor
for CCR2, and found that it resulted in a neuroprotective
phenotype with reduced infarct volume, blood-brain barrier
disruption, and leukocyte migration during MCAO (58). These
findings emphasize not only the importance of pro-inflammatory
monocytes in stroke recovery, but also the benefit of manipulating
peripheral immune cells or their chemokine signals before
infiltration into the brain. There may be potential for future
preventative strategies to shift monocytes to a CCR2+ subset in
the acute phase of stroke or prime the microenvironment for
CCR2+ cell migration earlier in the post-stroke process, such as
through remote ischemic limb conditioning or hypoxic
preconditioning. Furthermore, adaptive cell therapy or
autologous transplantation of M2-like MoDMs into the CSF
could be a promising avenue for treatment, but this will require
additional studies to optimize timing of administration, dosage,
and efficacy in humans.

Approaches to skewing peripheral monocytes into the M2-like
phenotype have targeted factors such as PPARg, NR4A1, and
micro-RNAs (21 and 146-a) (173). Using a model of stroke-prone
spontaneously hypertensive rats, Nakamura et al. demonstrated
that pioglitazone, a PPARg agonist, was protective against
hypertension-induced stroke by inhibiting macrophage
infiltration and suppressing the expression of inflammatory
cytokines CCL2 and TNF-a (174). NR4A1, a pro-oncogenic
nuclear receptor, is integral to the differentiation of classical
monocytes into the M2 anti-inflammatory phenotype and may
be a potential therapeutic target (175). MicroRNAs (miRNAs)
have been shown to play an integral role in regulating monocyte
development and function. MiRNA 146-a has been the most
extensively studied and shows the largest difference in
expression between classical and non-classical monocytes, with
non-classical monocytes featuring higher expression. Depletion of
miRNA 146-a augments the pro-inflammatory response of
classical monocytes (176).

Timing of microglia and monocyte-derived macrophage
migration and activity is a key consideration in developing
effective therapeutic strategies. The current model is that the anti-
inflammatory functions of activated microglia in the acute phase
wane in the subacute phase. During this period, MoDMs fulfill an
anti-inflammatory role, and the activated microglia shift toward a
pro-inflammatory state. This delayed infiltration of MoDMs makes
them potential candidates for immunomodulation in the subacute
phase. However, our knowledge of immune cells present at each
stage of ischemic stroke is currently limited to specific “snapshots”
of cell populations, measured primarily through techniques such as
flow cytometry and immunohistochemistry. A more fluid
understanding will be necessary to target the correct cell type at
the correct time (4). Future studies must also consider potential
downstream effects of eliminating conventionally proinflammatory
cells during each phase of stroke. As discussed, pro-inflammatory
Frontiers in Immunology | www.frontiersin.org 14
cells may have the capability to differentiate into anti-inflammatory
subtypes, and therefore may be sensitive to the dynamic changes in
the tissue microenvironment. Thus, nonspecific deactivation of
MoDMs may decrease local tissue damage, but may also disable
subsequent debris clearance and other repair mechanisms. Further
elucidation of the specific contexts in which these activities occur
will be critical in developing targeted immunotherapeutics.

Immunotherapies that target monocytes and MoDMs have
already shown promise in neurological disorders such as
encephalitis, multiple sclerosis (MS), and aneurysmal
subarachnoid hemorrhage (SAH) (177–181). In a broader sense,
inflammation has been shown to contribute significantly to the
pathogenesis of many peripheral and central nervous system
diseases, including but not limited to fibromyalgia, neuropathic
pain, Alzheimer’s disease, Parkinson’s disease, and traumatic brain
injury (182). A core pattern of activation by resident microglia
followed by systemic myeloid cells has been shown in the
aforementioned neurological diseases, with cells displaying an
initial state of proinflammatory activation and a later anti-
inflammatory phenotype (183). Though the inflammatory
response is similar between ischemic stroke and these other
neuropathologies in the sequential activation and deactivation of
the innate and adaptive immune response, ischemic stroke is
unique among neuropathologies in that it is caused by an acute
insult that, left untreated, rapidly results in oxidative stress,
apoptosis, and inflammation, leading to a massive immune
response. Unlike neurodegenerative diseases, which have a more
chronic, persistent immune response characterized by
continuously active microglia and infiltrating leukocytes,
ischemic stroke has different phases of inflammation, ranging
from the acute to chronic stage. The complex orchestration of the
immune response in ischemic stroke is highly dependent on the
switch in activation states of microglia and MoDMs at specific
times following the onset of the insult. In sum, the main
differences between the way inflammation contributes to the
progression of individual neurological diseases arise in a disease-
specific and lesion stage-specific manner with regard to the
contribution of resident versus recruited myeloid cells and their
activation profiles during each stage. Ultimately, targeting the
progression of neuroinflammation may be of translational benefit
for a wide variety of neurological diseases.
CONCLUSION

In the setting of ischemic stroke, microglia and MoDMs
phagocytose cellular debris and mediate the inflammatory
response by adopting pro- and anti-inflammatory activation
states. These activation states are dependent upon environmental
and temporal factors, and available studies suggest that inducing a
phenotypic switch in microglia and MoDMs may promote stroke
recovery. There are important limitations to translating this work.
Markers of differentiation between microglia and monocyte-derived
macrophages have historically been lacking; however, RNA
sequencing data have elucidated more specific markers such as
Tmem119, paving the way for targeted studies of the spatiotemporal
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dynamics of microglia and MoDMs in the setting of ischemic
stroke. Persistent inflammation during the chronic stage of stroke is
associated with impaired neurofunctional recovery, and there are no
current treatments for stroke in the chronic stage beyond
rehabilitation. So far, clinical trials have identified compounds
which can induce anti-inflammatory microglia and MoDM
activation states; however, the clinical efficacy of these compounds
has yet to be confirmed. Furthermore, clinical trials have largely
focused on the acute phase of stroke. To optimize neurofunctional
outcomes of ischemic stroke patients, it may be necessary to apply
specific immunotherapies across the spectrum of acute, subacute,
and chronic inflammatory events following stroke. Future research
will determine precisely which pathways should be targeted
and when.
Frontiers in Immunology | www.frontiersin.org 15
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