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Abstract: The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic
presents an urgent need for an effective vaccine. Molecular characterization of SARS-CoV-2 is critical
to the development of effective vaccine and therapeutic strategies. In the present study, we show that
the fusion of the SARS-CoV-2 spike protein receptor-binding domain to its transmembrane domain is
sufficient to mediate trimerization. Our findings may have implications for vaccine development
and therapeutic drug design strategies targeting spike trimerization. As global efforts for developing
SARS-CoV-2 vaccines are rapidly underway, we believe this observation is an important consideration
for identifying crucial epitopes of SARS-CoV-2.

Keywords: trimerization; spike protein; receptor-binding domain; transmembrane domain;
SARS-CoV-2; vaccine development

1. Introduction

As the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues,
there is a pressing need for the development of effective vaccine candidates. According to the World
Health Organization, as of the end of August 2020, there are more than 30 candidate vaccines in clinical
evaluation and 140 candidate vaccines in preclinical studies [1]. SARS-CoV-2 receptor-binding and
entry is initiated upon the interaction of the protruding virion-associated spike (S) glycoprotein with
the viral receptor, angiotensin-converting enzyme 2 (ACE2) on target cells, primarily in the lower
respiratory system [2].

Studies have shown that the receptor-binding domain (RBD) of the spike protein is highly specific
and is an immunodominant target for neutralizing antibodies [3,4]. Many candidate vaccines currently
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in clinical development have incorporated RBD as the target antigen. Further, it has been established
that the spike protein ectodomain results in trimerization, and this has paved the way for vaccine
development efforts targeting the trimeric spike protein [5–7]. However, studies to date have not
yet investigated the role of the SARS-CoV-2 spike protein transmembrane domain (TMD) in protein
trimerization. While previous work has demonstrated that the TMD of SARS-CoV, the etiologic agent
responsible for the 2002-2003 SARS epidemic, is highly conserved [8], and important for membrane
fusion and cell-cell fusion activity [8,9], it remains unclear whether the SARS-CoV-2 TMD plays any
role in trimerization.

Interestingly, Tai et al. showed that the recombinant receptor-binding domain of MERS-CoV
when expressed in a trimeric form induced a potent neutralizing antibody response in vivo and
protected transgenic mice from MERS-CoV infection [10]. Thus, determining analogous strategies to
induce SARS-COV-2 spike RBD trimerization may have a notable impact on vaccine development,
especially since more than 15 vaccine platforms, currently in development, are based on the RBD.
Herein, we demonstrate that SARS-CoV-2 TMD induces trimerization of the spike RBD, which may be
an important consideration for platforms that are making vaccines using the RBD as an immunogen.

2. Materials and Methods

2.1. Cell Culture

HEK293T (CRL-3216), Vero (CCL-81), and U-2 OS (HTB-96) cell lines were obtained from the
American Type Culture Collections (Manassus, VA, USA). Cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10%
fetal bovine serum (FBS) (Thermo Fisher Scientific, Cat.#SH30396.03) and 1% penicillin–streptomycin
(Invitrogen, Carlsbad, CA, USA).

2.2. Plasmid Construction

Inserts (See Supplemental Table S1 for detailed sequences) were ordered from GenScript
(Piscataway, NJ, USA). SARS-CoV-2 RBD or RBD-TMD constructs were cloned into the BamHI/NotI
sites of pcDNA3.1 or the XhoI/NheI sites of vesicular stomatitis virus (VSV) backbone plasmid.
The DAN and amino acid sequences are available in Figure S1.

2.3. Virus Rescue

To rescue the recombinant VSV viruses expressing SARS-CoV-2 RBD or RBD-TMD, HEK293T
cells were infected with vaccinia virus expressing T7 RNA polymerase (MOI = 3) for 2 h. Inoculum
was removed and cells were transfected with the viral backbone plasmid along with T7 RNA
polymerase-driven expression plasmids for VSV N, L, and P genes. Forty-eight hours post-transfection,
the recombinant virus was collected, filtered (0.2 um) and plaque purified in Vero cells.

2.4. SDS-PAGE Gel Electrophoresis

Whole cell lysates were obtained by lysing the HEK293T cells in RIPA buffer (pH 7.4 Tris-HCl
25mM, NaCl 150mM, NP-40 1%, sodium deoxycholate 0.5%, SDS), and 1× protease inhibitor cocktail
(Roche, Basel, Switzerland) on ice. Protein concentration was determined by Pierce bicinchoninic acid
(BCA) assay (Thermo Scientific, Cat.# 23225) and 10µg of cell extract were mixed into DTT-Laemmli
buffer and boiled for 5 min. Samples were resolved using the NuPAGE SDS-PAGE system (Invitrogen,
Carlsbad, CA, USA, Cat. # NP0322) for 1.5 h at constant voltage (150 V), then transferred onto a
nitrocellulose membrane (BioRad, Cat. # 1620115).

2.5. Native-PAGE Gel Electrophoresis

Whole cell lysates were harvested from recombinant VSV infected HEK293T cells using
NativePAGE sample kit (Invitrogen, Cat.# BN2008). Samples were homogenized in buffer containing
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2% digitonin on ice and centrifuged to clarify the lysates. Collected lysates were boiled at 100 ◦C for
5 min, then 10 µg of total proteins were loaded onto a pre-cast NativePAGE Bis-Tris gel (Invitrogen,
Cat.# BN1002BOX).

The NativePAGE Novex Bis-Tris gel system was used with an XCell SureLock Mini-Cell gel tank
(Invitrogen). The upper cathode chamber was filled with 200mL of 1X NativePAGE dark blue cathode
buffer (BN2002), and the lower anode chamber was filled with 550mL of NativePAGE anode (running)
buffer (Invitrogen, BN2001). Once the dye front reached 1/3 the length of the gel, the dark blue cathode
buffer was replaced with light blue cathode buffer. The gel was run for 1.5 h at a constant voltage
of 150V.

2.6. Immunoblotting of PAGE Gels

Following gel electrophoresis, proteins were transferred to Immobilon-P polyvinylidene fluoride
(PVDF) membrane (MilliporeSigma, Burlington, MA, USA) overnight at 4 ◦C. The PVDF membrane
was blocked for 1 h in 5% milk in Tris-buffered saline with 0.1% Tween 20 (TBS-T), washed in TBS-T,
then probed for 1 h at room temperature with mouse anti-FLAG (1:1000, MilliporeSigma, Cat.#F3165).
Blots were then washed and incubated with anti-mouse (1:5000, MilliporeSigma, Cat.#A9044) for 1 h at
room temperature. Blots were imaged using the ChemiDoc MP imaging system (Bio-Rad Laboratories,
Mississauga, ON, USA). SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo Fisher
Scientific, Cat. #34577) was used to visualize the protein bands.

2.7. Dot Blot Assay

U-2 OS cells, infected with VSV viruses at an MOI of 0.1, were harvested 24 h post-infection in
RIPA buffer supplemented with 1× protease/phosphatase inhibitor cocktail (Cell Signaling Technology,
Danvers, MA, USA, Cat. #5872S) on ice. Protein concentration was determined by BCA assay,
and 10 µg of whole cell lysates was directly loaded onto nitrocellulose membrane (Bio-Rad Laboratories)
with 1 h incubation at room temperature. After blocking in 5% milk in TBS-T, membranes were
probed with either mouse anti-RBD clone 5B7D7 (GenScript, Cat.#A02056), clone 6D11F2 (GenScript,
Cat.#A02055), or clone 40592 (Sino Biological, Wayne, PA, USA); mouse anti-VSV-G clone 8G5F11
(Kerafast, Boston, MA, Cat.#EB0010), or rabbit anti-β-actin clone 13E5 (Cell Signaling Technology,
Cat.#4970S) as a loading control; ectodomain ACE2 and goat anti-ACE2 (R&D Systems, Minneapolis,
MN, USA, Cat.#AF933), or sera from BALB/cJ mice (The Jackson Laboratory, Bar Harbor, ME, USA)
immunized with SARS-CoV-2 spike. Blots were then washed and probed with appropriate secondary
antibodies: anti-mouse, anti-rabbit (MilliporeSigma, Cat. #A9169) or anti-goat (Abcam, Cambridge,
UK, Cat.#ab97110). Blots were imaged using the ChemiDoc MP imaging system (Bio-Rad Laboratories,
Mississauga, ON, USA). Clarity Western ECL Substrate (Bio-Rad) was used to visualize the blot.

2.8. Conservation and Phylogenetic Analysis

A total of 10,318 surface glycoprotein sequences of SARS-CoV-2 were retrieved from the particular
NCBI dataset page for this virus. These sequences were aligned using ClustalOmega software [11].
Jalview software was used for visualization and conservation score calculations [12]. For inter-species
phylogenetic analysis, the target sequence was queried in NCBI protein blast [13,14] against the
Betacoronavirus genus (txid:694002). After removing redundant identical sequences, the set of
sequences were selected for tree construction and multiple sequence alignment generation. All steps
were run using default settings except the use of the neighbor-joining algorithm for phylogenetic tree
calculation in the NCBI website.

3. Results and Discussion

A close examination of the 10,318 available SARS-CoV-2 genome sequences from NCBI datasets
reveals more than 99.99% conservation of the TMD amino acid sequence (Figure 1). The high
conservation of the TMD sequence between Betacoronaviruses suggests an important role for this
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domain in coronavirus infection. To examine the contribution of the TMD to spike trimer formation,
a chimeric construct was made by fusing the TMD to the RBD (henceforth referred to as RBD-TMD).
This construct was expressed in HEK293T cells and cell lysates were resolved using SDS-PAGE.
Interestingly, in the absence of protein denaturation heat treatment, we observed an expected robust
band at 25 kDa that corresponds to the monomeric chimeric RBD construct, but also a 75 kDa band, as
well as the presence of a faint, high molecular weight band at 150 kDa (Figure 2A). We postulated that
these higher molecular weight bands are the result of trimerization (75 kDa) or oligomerization (150
kDa) of RBD-TMD.
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Figure 1. Intra-species conservation and inter-species phylogenetic analyses of the spike transmembrane
domain. (A) Conservation score of the spike transmembrane domain (TMD) protein sequence between
all submitted sequences for surface glycoprotein in severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) samples. (B) Phylogenetic tree of the spike TMD sequence between different members
of the Betacoronavirus genus. (C) the multiple sequence alignment visualization of the phylogenetic
tree sequences.

We next investigated the effect of thermal denaturation on the occurrence of the 75 kDa band. Heat
treatment of the sample eliminated the 75 kDa band in the SDS-PAGE gel (Figure 2A). The RBD-TMD
was also analyzed by native PAGE with and without thermal denaturation to explore the role of proper
protein folding on the occurrence of the 75 kDa band. Under native conditions the relative intensity of
the 75 kDa band was increased in comparison to the monomeric band at 25 kDa, and, similarly to the
SDS-PAGE analysis, the larger band disappeared with heat treatment (Figure 2B). To determine whether
it was the RBD or the TMD that was responsible for the occurrence of the 75 kDa band, the native PAGE
analysis was repeated using the RBD alone (Figure 2C). Without the TMD, the presence of the 75 kDa
band was largely diminished. This indicates that the larger band is not due to an interaction between
the RBD and another protein, and that the RBD, by itself, lacks the capacity to facilitate trimerization.

Next, we sought to investigate whether the RBD-TMD trimerized protein complex retains
RBD’s antigenic and functional conformation. Therefore, we constructed an attenuated vesicular
stomatitis virus (VSV) expressing RBD-TMD to evaluate the conformation of the construct as a potential
antigen encoded in a vaccine vector. Dot blot analysis revealed that both neutralizing antibodies
targeting conformational epitopes in the RBD (Figure 3A) and mouse sera targeting spike (Figure 3B)
recognized the RBD-TMD construct. These data suggest that the RBD-TMD trimer retains the antigenic
conformation of the RBD. In addition, we also examined the capacity of RBD-TMD to interact with ACE2
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using dot blot analysis (Figure 3C). Our results demonstrate that RBD-TMD binds ACE2—pointing to
the fusion protein’s maintained capacity to interact with the SARS-CoV-2 host cell receptor. Collectively,
our data demonstrate that the TMD fusion construct mediates trimerization of RBD while maintaining
a relevant antigenic conformation for vaccine design.Membranes 2020, 10, x FOR PEER REVIEW 5 of 8 
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Figure 2. Characterizing the role of the transmembrane domain in the trimerization of the
receptor-binding domain. (A) SDS-PAGE immunoblot analysis of chimeric RBD with or without boiling
the lysate prior to loading. Expected size of RBD is 25kDa. (B) Native-PAGE immunoblot of RBD
alone with or without boiling the lysate prior to loading. (C) Native-PAGE gel analysis of chimeric
RBD in the absence or presence of boiling sample prior to loading. (D) Schematic of SARS-CoV-2 spike
glycoprotein and the chimeric RBD linked to S-TMD. N-terminal domain (NTD); receptor-binding
domain (RBD); transmembrane domain (TMD).

The physiological and biological aspects of a TMD are important to explore, as both can affect
receptor compartmentalization, membrane anchoring, and protein interactions. However, in the
context of SARS-CoV-2, the role of the spike TMD in trimerization appears to have been overlooked.
Although the ectodomain of spike occupies the majority of functions involved in viral entry and spread,
we identify the TMD’s capacity to mediate RBD trimerization independently. Indeed, this highlights
the important implications for RBD immunogenicity, specifically in the context of the therapeutic
strategies aimed at the generation of neutralizing antibodies, as well as anti-trimerization approaches.
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Figure 3. RBD-TMD fusion protein retains antigenic and functional conformation. U-2 OS cells
were infected with vesicular stomatitis virus (VSV) expressing either GFP or RBD-TMD (MOI = 0.1).
Twenty-four hours post-infection, dot blot analysis were performed, and membranes were probed
using (A) RBD antibodies, (B) sera from mice immunized with control or SARS-CoV-2 spike, or (C)
a combination of recombinant angiotensin-converting enzyme 2 (ACE2) protein and ACE2 antibody.
VSV-G and β-actin indicate equal virus and loading levels, respectively.

Many of the known vaccine platforms currently in development target the RBD of spike. Given
our findings, we speculate that developing a vaccine which targets a chimeric RBD-TMD may be more
effective in inducing protective immunity rather than targeting RBD alone. This finding is corroborated
by past coronavirus vaccine initiatives, such as in the case of a MERS-CoV vaccine study. In that study,
a chimeric RBD fused to a foldon trimerization motif elicited stronger neutralizing antibody responses
and better lethal challenge protection than the comparable RBD-only vaccines [10].

4. Conclusions

Our data indicate that the SARS-CoV-2 virus TMD induces trimerization of RBD and emphasize
the importance of investigating a chimeric RBD that includes the TMD of SARS-CoV-2 as a potential
immunogen for vaccine development, or in anti-viral strategies targeting the RBD in SARS-CoV-2
infection. However, considering the hidden nature of the spike TMD and therefore the unlikelihood of
it operating as a robust immunogen, we speculate that the employment of specific allosteric modulators
of the TMD may be ideal. These allosteric modulators could include antibodies, recombinant antibody



Membranes 2020, 10, 215 7 of 8

derivatives, or small molecule compounds that would bind to the ectodomain of spike and induce a
conformational change that would render the TMD incapable of trimerization [15–17].

Given that many vaccines currently in development target RBD, we believe that it is necessary to
have a holistic understanding of the mechanisms underlying the virulence capacity of the SARS-CoV-2
spike glycoprotein. Knowing that the TMD plays a critical role in the trimerization of spike preceding
viral entry may now prompt new research streams aiming to tease apart the intricacies of these
mechanisms in an effort to therapeutically target them. Coupling the targeting of trimerization with
current anti-RBD strategies may yield a synergistic anti-viral strategy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0375/10/9/215/s1.
Figure S1. Uncropped blots. Table S1. Insert DNA and Amino acid sequence.
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