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Abstract

Motivation: The high resolution of single-cell DNA sequencing (scDNA-seq) offers great potential to resolve intratu-
mor heterogeneity (ITH) by distinguishing clonal populations based on their mutation profiles. However, the increas-
ing size of scDNA-seq datasets and technical limitations, such as high error rates and a large proportion of missing
values, complicate this task and limit the applicability of existing methods.

Results: Here, we introduce BnpC, a novel non-parametric method to cluster individual cells into clones and infer
their genotypes based on their noisy mutation profiles. We benchmarked our method comprehensively against
state-of-the-art methods on simulated data using various data sizes, and applied it to three cancer scDNA-seq data-
sets. On simulated data, BnpC compared favorably against current methods in terms of accuracy, runtime and scal-
ability. Its inferred genotypes were the most accurate, especially on highly heterogeneous data, and it was the only
method able to run and produce results on datasets with 5000 cells. On tumor scDNA-seq data, BnpC was able to
identify clonal populations missed by the original cluster analysis but supported by Supplementary Experimental
Data. With ever growing scDNA-seq datasets, scalable and accurate methods such as BnpC will become increasingly
relevant, not only to resolve ITH but also as a preprocessing step to reduce data size.

Availability and implementation: BnpC is freely available under MIT license at https://github.com/cbg-ethz/BnpC.

Contact: niko.beerenwinkel@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is an evolutionary process characterized by the accumulation
of mutations that drive tumor initiation, progression and treatment
resistance (Weinberg, 2014). The interplay between variation and
selection ultimately leads to multiple coexisting cell populations
(clones) that differ in their genotypes (Davis et al., 2017; Turajlic
et al., 2018). This genomic heterogeneity, also known as intratumor
heterogeneity (ITH), poses major challenges for cancer treatment as
parts of the tumor may already be therapy-resistant (Burrell et al.,
2013; Gillies et al., 2012). Therefore, it is beneficial to identify the
clonal composition of the tumor and to adapt the treatment accord-
ingly. Recent advances in the field of single-cell DNA sequencing
(scDNA-seq) have led to new insights into cancer evolution and
ITH. Examples include the detection of rare subclones in breast

cancer patients (Wang et al., 2014), the identification of novel treat-
ment resistance clones in glioblastomas (Francis et al., 2014) and
major advancements in the reconstruction of cancer evolution
(Schwartz and Schäffer, 2017). Compared to bulk sequencing,
scDNA-seq offers the possibility to directly access clonal genotypes
at the cellular level and to more easily detect branching in clonal
evolution. However, scDNA-seq data tends to be very noisy.
Experimental procedures, such as DNA amplification, but also ana-
lytic ones like alignment and mutation calling introduce a large frac-
tion of errors in the data as well as missing values (Estévez-Gómez
et al., 2018). Errors can be either missed true mutations, namely
false negatives (FN), or mutations not present in a cell but falsely
reported, namely false positives (FP). Characteristic of scDNA-seq
data are high FN rates, arising from the technical failure to measure
both alleles at a mutated locus, and a large fraction of missing
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values, resulting from non-uniform coverage and drop-outs. Generic
clustering algorithms, such as partitioning or density-based meth-
ods, do not account for scDNA-seq characteristics and are therefore
unsuitable for this type of data. Hence, various methods were re-
cently introduced tailored to single-cell mutation profiles, i.e. the ab-
sence or presence of called mutations in each cell. These approaches
differ in their main objective, model choice and inference scheme.
The majority of them focuses on resolving the phylogenetic relation-
ship among cells and in doing so can also provide clusters and geno-
types (Ciccolella et al., 2018; El-Kebir, 2018; Jahn et al., 2016;
Malikic et al., 2019; Zafar et al., 2017). Currently, the only method
focusing entirely on clustering and genotyping is SCG (Roth et al.,
2016), which uses a parametric model and applies mean field vari-
ational inference to learn genotypes and the clonal composition.
Alternatively, the centroid-basted clustering approach celluloid
(Ciccolella et al., 2019) adapts k-modes with a novel dissimilarity
for scDNA-seq data but does not provide any genotyping. The prob-
abilistic frameworks BitPhylogeny (Yuan et al., 2015) and
SiCloneFit (Zafar et al., 2019), and the nested effects model
OncoNEM (Ross and Markowetz, 2016) jointly cluster cells
into clones and infer their phylogenetic relations. Despite these suc-
cesses, the growing size of scDNA-seq datasets challenges the scal-
ability of these methods, compromising their accuracy and
efficiency. Especially the inference of phylogenetic relations is a
computational expensive task that scales poorly with data size due
to difficulties in the tree search. Here, we introduce BnpC, a fully
Bayesian method to analyze large-scale scDNA-seq datasets and to
accurately determine the clonal composition and genotypes, han-
dling noisy data and an unknown number of clones non-
parametrically. We benchmark our approach against state-of-the-art
methods on simulated data using various data sizes and demonstrate
that BnpC outperforms current methods in terms of accuracy, run-
time and scalability. We also reanalyze published scDNA-seq
data, and with our method not only manage to recapitulate the
original results, but we also resolve populations that in the original
publications were detected only with additional data or after manual
preprocessing steps.

2 Materials and methods

2.1 Model

BnpC takes as input a binary matrix with missing values X ¼ ðxijÞ 2
f0;1;�gN�M of N cells and M mutations, where 0 indicates the ab-
sence of a mutation, 1 its presence, and – a missing value (Fig. 1A).
We assume that the N cells were sampled from an unknown number

K of clones, each with a distinct mutation profile hk 2 ½0; 1�M, com-
ing from a prior distribution G0. The probabilities of observing a FP
or FN in the cell data are given by the parameters a and b, respect-
ively, with prior distributions, as stated in Figure 1B. The assign-
ment of cells to clones is represented by a vector c, where ci ¼ k is
the assignment of cell i to clone k. To model the cell assignments c,
we use a Chinese Restaurant Process (CRP) (Pitman, 1995). The
CRP is a probability distribution over partitions of the natural num-
bers, which in our model are cell assignments. Because each parti-
tion is a possible way of clustering cells, the CRP serves as a prior
distribution for grouping cells into clones. The concentration param-
eter a0 of the CRP determines the probability of assigning a cell to a
novel clone.

With the parameters described above, we can formulate the like-
lihood of BnpC as

PðX jh; c; a; bÞ ¼
YN
i¼1

YM
j¼1

hci;j½ð1� bÞxi;j � b1�xi;j � þ ð1� hci ;jÞ½ð1� aÞ1�xi;j � axi;j �

(1)

where the first term accounts for the presence of a mutation in a
clone and the observation of a true positive or FN, and the second
term accounts for the absence of a mutation in a clone and the ob-
servation of a true negative or a FP. Missing values are skipped.

The full posterior distribution over the latent variables fac-
torizes as

Pðh; c; a; b; a0jXÞ / PðX jh; c; a;bÞPðhjG0ÞPðcja0ÞPða0ÞPðaÞPðbÞ
(2)

2.2 Inference
As the posterior distribution in Equation (2) is not analytically tract-
able, we use a Markov chain Monte Carlo (MCMC) sampling

scheme, in particular, a generalized Gibbs sampler, to obtain sam-
ples from the posterior distribution. Cluster parameters and error

rates are updated via Metropolis–Hastings moves; the concentration
parameter a0 is learned as described in the study by Escobar and
West (1995); cell assignments are updated with Gibbs sampling and

a modified non-conjugate split-merge move (Jain and Neal, 2007;
Neal, 2000).

We modified the split-merge move introduced by Jain and Neal
(2004) to increase the probability of merging small clones. We first

choose which move to perform. For a split move, two cells are
drawn from a clone selected proportionally to its size; for a
merge move, two cells are drawn from different clones, themselves

selected in a manner inversely proportional to their size. This
increases the probability of merging spurious clones. To account for

these changes, the proposals’ ratio in Metropolis–Hastings update is

Fig. 1. BnpC model overview. (A) The model’s input is a binary mutation matrix, where

each row represents a mutation and each column represents a single cell. Possible values are

0, indicating the absence of a mutation, 1, indicating the presence of a mutation and missing

values. (B) BnpC’s probabilistic graphical model. The binary input data X, consisting of N

cells and M clones, contains a fraction of FP and FN entries, indicated by a and b respective-

ly. G0 is a base distribution over the genotypes h of an infinite number of clones. c is the as-

signment of cells to the clones, sampled from a CRP with concentration parameter a0, and

f ð�Þ is the model’s likelihood. Shaded nodes represent observed or fixed values, while the

values of unshaded nodes are learned using MCMC. (C) BnpC predicts clonal composition,

corresponding genotypes and the population structure
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modified as follows. For a split move, we introduce the ratio

~Ki
~Kj

ð
P

l
~Kl Þ2

jKsplit
k j
N

jKsplit
k j

2�1

 !0
@

1
A
�1

(3)

where l is an index over all occupied clusters. The second term

describes the probability of sampling clone Ksplit
k according to its size

jKsplit
k j, and choosing two cells I and j from it (ci ¼ cj ¼ k). After the

split, let Ki and Kj denote the two different clones to which i and j

belong. Let ~Ki ¼ jKi j
N

� ��1

represents the inverse clone size of the

clone with cell i The first term in Equation (3) denotes the probabil-
ity of choosing the clone with cells i and j to reverse the split move.

Similarly, for a merge move, we extend the Metropolis–Hastings
ratio with the following factor:

1

NðjKmerge
k j � 1Þ

~Ki
~Kj

ð
P

l
~Kl Þ2

1

jKijjKjj

 !�1

(4)

Here, the second term accounts for choosing two distinct clones
in a manner inversely proportional to their size, and then two cells i
and j uniformly from each clone. The first term undoes the merge
move by selecting the merged clone Kmerge

k according to its size, and
selecting cells i and j from it.

To assess convergence, we implemented an updated version of
the Gelman–Rubin diagnostic (Vats and Knudson, 2018) and com-
pared posterior means of scalar quantities from multiple chains with
random starting positions (Supplementary Fig. S11). BnpC can be
run for a given number of MCMC iterations, with a given time limit,
or until the convergence diagnostics drop below a given threshold.

2.3 Estimators
Downstream analyses and interpretation generally require a single
set of clusters and genotypes for all cells, and thus the posterior sam-
ples obtained by our model need to be summarized. To provide an
estimate of the inferred clones, we used the MPEAR criterion
(Fritsch and Ickstadt, 2009). The genotypes were subsequently
inferred independently for each clone from a selected subset of pos-
terior samples. For each clone, we selected posterior samples based
on two criteria: (i) all cells assigned to the clone are clustered to-
gether; (ii) no other cell is clustered with these cells. If no sample ful-
fills both criteria, we selected samples that satisfy only the first
criterion. The final genotype is the rounded mean over the cluster
parameters from the selected posterior samples. While biased, this
estimator performed well in practice. We evaluated our estimator
against the maximum likelihood (ML) and maximum a posteriori
(MAP) point estimators, which were outperformed in all cases
(Supplementary Figs S14 and S15). All of these estimators are imple-
mented in BnpC and are available to the user.

3 Results

3.1 Benchmarking on simulated data
We generated 180 datasets varying the numbers of cells (1250,
2500, 5000, 10 000), mutations (200, 350, 500) and clones (25, 50,
75) to assess BnpCs scalability, run time and performance. Each
combination was simulated five times with fixed FN, FP and missing
value rates at 0.3, 0.001 and 0.2, respectively. The underlying phyl-
ogeny was also fixed (minimal trunk size of 0.1 and mutation rate of
0.25). A description of the simulation process is provided in
Supplementary Material (Supplementary Section S1). All algorithms
were run four times per dataset with different seeds. Clustering ac-
curacy was evaluated using the V-Measure (Rosenberg and
Hirschberg, 2007), where high values correlate with more accurate
clusterings. Genotyping accuracy was measured as one minus the
Hamming distance between the predicted cellular genotypes and the
true ones, normalized by the maximum value it can achieve, that is
the product of the number of cells and the number of mutations.

Higher values denote more accurate genotypes. We also evaluated
sensitivity, specificity and the F1 score, and note that, the normal-
ized Hamming distance is the only metric treating FP and FN equal-
ly (Supplementary Fig. S10).

We benchmarked BnpC against SCG (Roth et al., 2016) and
SiCloneFit (Zafar et al., 2019). Celluloid clustering with the silhou-
ette method for clone number determination was excluded as it does
not provide genotypes and performed poorly on small datasets
(Supplementary Figs S8, S9). Methods aiming to resolve phylogenet-
ic relations were excluded as they only provide genotypes directly,
while the inference of clones from phylogenetic trees is a non-trivial
task. We also excluded BitPhylogeny and OncoNEM, which jointly
infer clones and their phylogenetic relations, as both were previously
shown to produce less accurate results than SCG and SiCloneFit
(Roth et al., 2016; Zafar et al., 2019). BnpC was run for 0.08, 0.25,
0.5, 1, 2, 4 and 8 h. SCG was run with a maximum number of itera-
tions set to 109, so as to ensure convergence for every run. The num-
ber of clusters was set to a fourth of the number of cells. We were
only able to run SiCloneFit for 10 steps on the dataset with the
smallest number of cells, as its runtime there already exceeded 48 h
(Fig. 2). Therefore, we excluded SiCloneFit from the benchmarks on
larger datasets. The algorithms and running parameters are
described in greater detail in Supplementary Section S2. Algorithms
were run on a high-performance computing cluster, each algorithm
ran on a single core with a maximum of 64 GiB memory and
2.4 GHz CPU.

On datasets with 1250 cells (Fig. 2A, C), when the number of
clones was 50 or 75, BnpC performed best. For 25 clones, its per-
formance was on par with SCG. As expected, SCG ran fastest, but
BnpC’s results showed the least variance and did not substantially
improve after 15 min, indicating quick convergence. SiCloneFit’s
performance was poorest, and its average runtime was usually
�48 h. Therefore, we excluded it from larger benchmarks. We
observed a similar trend on the datasets with 2500 cell (Fig. 2B, D).
Interestingly, BnpC was able to obtain accurate results more quickly
than SCG. On datasets with 5000 and 10 000 cells, we were unable
to run SCG with our parameters and on our hardware due to lack of
convergence or insufficient computer memory. BnpC’s prediction
accuracy did not improve after 1 h on 5000 cells and after 2 h on
10 000 cells and was �0.995 for genotyping and �0.89 for cluster-
ing (Supplementary Fig. S2).

Varying the number of clusters, which represents data heterogen-
eity and hence complexity, revealed that the clustering accuracy of
all algorithms decreased as complexity increased. The same was
observed for the genotyping performance of BnpC and SCG, but not
of SiCloneFit, a result probably explained by the phylogenetic con-
straints of its model. In general, BnpC’s performance was more ro-
bust to complex data, leading to the most precise predictions in
datasets with more than 25 clusters.

To further investigate the effect of data heterogeneity on the ac-
curacy of the results, we considered the inference of the number of
clusters (Supplementary Fig. S7). On the least complex dataset (25
clusters), BnpC tended to overestimate the number of clusters,
SiCloneFit underestimated it, while SCG reported the correct num-
ber in most cases, thus explaining its higher clustering accuracy. On
more heterogeneous datasets (50 and 75 clusters), SCG and
SiCloneFit consistently underestimated the number of clusters, while
BnpC’s predictions were closer to the correct value.

Interestingly, only BnpC’s accuracy increased with the number
of mutations (Supplementary Figs S3, S4, S5, S6). The decrease in
SiCloneFit’s performance could result from the increase in data size
and, therefore, an initialization farther away from regions of high
posterior probability. In our simulations, SCG appeared unable to
handle highly complex data. In all runs, it underestimated the num-
ber of clusters, regardless of the number of mutations supporting
them. This can explain SCG’s decrease in accuracy as the number of
mutations increases.

Additionally, we tested the effects of varying error and missing
value rates on two smaller datasets, one with 100 mutations, 100
cells and 5 clones and one with 50 mutations, 200 cells and 10
clones (Supplementary Figs S8, S9). On the smaller dataset, all
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algorithms were able to identify the correct clusters and infer geno-
types with �0.995 accuracy. On the dataset with 10 clones, the per-

formance of all algorithms degraded as the error rates increased.
Regardless of the error rate, BnpC was best at clustering, and

obtained at least as accurate genotypes as the other methods.
We observed the same trends regardless of the simulated evolu-

tionary history. Unsurprisingly, the simulation of different evolu-
tionary histories showed that frequent and early branching events,
resulting in clones with highly diverse mutation profiles, led to a

higher clustering accuracy for all methods when compared to a lin-
ear evolution with late branching events (Supplementary Fig. S1).

To evaluate the scalability of BnpC, we investigated the runtime
per MCMC step according to the data size (Supplementary Fig. S12).
On the benchmarking datasets, BnpCs runtime increased linearly

with data size, independently of the number of clones in the data.

3.2 BnpC performance on tumor scDNA-seq
We analyzed the sequencing data of five patients with childhood leu-

kemia (Gawad et al., 2014), one high-grade serous ovarian cancer

(HGSOC) patient (McPherson et al., 2016) and two colorectal can-
cer (CRC) patients (Wu et al., 2017).

3.2.1 Acute lymphoblastic leukemia

We reanalyzed scDNA-seq data of five Acute Lymphoblastic
Leukemia (ALL) patients (Gawad et al., 2014). The data contain

between 16 and 105 mutations and between 96 and 143 cells per
patient. Gawad et al. used a combination of a multivariate
Bernoulli model and the Jaccard distance to predict the clonal

composition and to infer genotypes. Inferred genotypes and
clones by Gawad et al. as well as the ones inferred by BnpC are

displayed in Supplementary Figure S13. Genotypes and clones
predicted by BnpC are largely in accordance with those previ-
ously determined. BnpC predicted some additional clones of

small size.
BnpC predictions were of partly higher resolution. Specifically

for patient 4, BnpC was able to detect an additional clone (orange)
differing from the closest clone by five mutations (Fig. 3A).
The identification of this particular clone results in a different and
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Fig. 2. Performance of BnpC, SCG and SiCloneFit on synthetic data. (A, B) Genotyping accuracy measured by 1 - Hamming distance/(#cells. #mutations). (C, D) Clustering ac-

curacy measured by the V-Measure. Simulated datasets contained 350 mutations and (A, C) 1250 cells or (B, D) 2500 cells, clustered into 25, 50 or 75 distinct clones. For all

datasets, the FN rate was fixed at 30%, the FP rate at 0.1% and the missing value fraction at 20%. Each cell and clone number combination was simulated five times; algo-

rithms were run four times on every simulated dataset
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more accurate evolutionary pattern, as a common ancestor for the

two tumor branches is obtained (Fig. 3D). Gawad et al. confirmed
the existence of this additional clone in their subsequent analysis by
incorporating copy number data. These findings show that our ap-

proach is sensitive to small clones and able to recover biological
meaningful results.

3.2.2 High-grade serous ovarian cancer

The HGSOC data of patient 9 from the McPherson dataset
(McPherson et al., 2016) were obtained by whole-genome sequenc-

ing of five samples taken from three tumor sites: left ovary, right
ovary and omentum. The data consist of 420 cells, 43 SNVs and

five breakpoints. We compared our predictions to the results
obtained by Roth et al. using SCG. Their initial clustering analysis
identified a normal population and eight tumor clones, of which

they filtered out three clones due to a high fraction of missing val-
ues in the corresponding cells (mean �20% SNV events missing
per cell).

BnpC was able to produce the same findings as SCG (Roth et al.,
2016) without applying any additional filtering step (Fig. 3B, E). By

excluding the three clusters, 28 cells which represent 7% of the pa-
tient data were discarded.

The clonal prevalence shows differences between the two sam-
ples coming from the left ovary (LOv) (Fig. 3E). Populations within

one of the two samples (LOv2) contain the amplification in ERBB2,
while the other (LOv1) does not. These populations harboring the
amplification correspond to clones 0 (purple) and 1 (orange).

Knowing that the primary site of the tumor was in the left ovary and
that all other clones carry this amplification, our findings are in ac-
cordance with Roth et al.

3.2.3 Colorectal cancer

Patients CRC0827 and CRC0907 from Wu et al. (2017) were col-
lected by single-cell Whole Exome Sequencing on CRC tissue sam-
ples (C1 and C2) and matched normal tissue (N). Additional
samples from normal polyp (NP, CRC0907) and adenomatous
polyp tissue (AP, CRC0827) were sequenced for the analysis. While
BnpC recapitulated the results for patient CRC0827 (Fig. 3F), we
identified additional clones in patient CRC0907 (Fig. 3C). These
new clones suggest additional steps in the clonal evolution of the
tumor. For patient CRC0907, Wu et al. identified two tumor clones
harboring somatic mutations. They subsequently analyzed a subset
of functionally related mutations to CRC development and sepa-
rated them into unique clonal (detected by bulk sequencing) and
unique subclonal (not detected).

Both, the original study and BnpC, identified a large clone with
unique clonal mutations accumulated (green clone). BnpC, however,
predicted greater heterogeneity in tissue C2, consisting of three
clones (red, orange and purple clones). Based on the mutation pat-
terns, it is difficult to identify an evolutionary order. In the original
study, clusters were identified by hierarchical clustering and not ex-
perimentally validated, hence, we cannot validate the additional
clusters indicated by BnpC. However, the two results are consistent
and vary only in resolution.

4 Discussion

The identification of the heterogeneous tumor composition and the
clonal genotypes is potentially advantageous for cancer treatment.
ScDNA-seq provides the opportunity to resolve ITH in greater detail
and to detect rare clones, despite experimental protocols still pro-
ducing a high fraction of FN and missing events. We have intro-
duced a novel non-parametric probabilistic method BnpC, especially

Fig. 3. Analysis of real datasets by BnpC. (A, D) Patient 4 of the Gawad dataset. (A) Clones and genotypes inferred by BnpC. (D) Resulting minimum spanning tree from the

clonal genotypes as obtained in Gawad et al. Gene labels in the tree determine either mutations leading to a new clone (black) or known ALL driver genes (red). Node size cor-

responds with the clonal size. (B, E) Patient 9 of the McPherson dataset. (B) Clones and genotypes inferred by BnpC. (E) Estimated prevalence of clones across samples from

the posterior distribution estimated by the model. (C, F) Analysis for patients. CRC0827 (C) and CRC0907 (F) of the Wu dataset. Heatmaps depict absence (white) or presence

(red) of mutations for every mutation (row) in every cell (column)
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designed for accurate and scalable clustering and genotyping of het-
erogeneous large-scale scDNA-seq data. Our method implements a
modification of a non-conjugate split–merge move and uses a novel
genotype estimator.

We compared our method with the state-of-the-art methods
SCG and SiCloneFit on simulated and biological data. On small
datasets, all methods performed equally well. On larger datasets,
BnpC was best at recovering genotypes and clusters, except for data-
sets with low heterogeneity, where SCG inferred clusters more ac-
curately. As sequencing experiments increase, the number of single
cells that can be measured in parallel, one’s ability to detect small
subpopulations will increase too. In our tests, BnpC was the only
method capable of resolving highly heterogeneous data.
Additionally, in our hands, BnpC was the only method that could be
applied to datasets with more than 2500 cells in a reasonable time.

On biological data, our method not only recapitulated previous
findings for three different datasets but also identified additional
clones not detected in the original analysis but confirmed by add-
itional data in patient 4 from Gawad et al. These findings highlight
that more accurate analytic methods can identify signal and lead to
biological conclusions, which can otherwise only be drawn from
additional experimental data. Additionally, we demonstrated that
BnpC is able to recapitulate previous results for patient 9 from
McPherson et al. without the manual preprocessing step conducted
in the original analysis. This is of special interest, for example, for
an automated analysis pipeline, where one tries to minimize manual
intervention without losing accuracy.

A limitation of the BnpC model is the absence of a phylogenetic
structure on cells. The information given by the mutation order
could be used to correct errors in the data or to infer missing values.
It is possible that this is why SiCloneFit is more robust to noise in
the data on small datasets. However, approaches that use a tree
structure are computationally expensive and scale poorly with data
size, as seen in the benchmarking. The trade-off between accuracy,
runtime and possible optimizations needs to be investigated further.
A feature currently missing from BnpC is the handling of doublets,
two single cells pooled and measured together during sequencing.
Currently, doublets may be reported as separate clones. Identifying
and handling them explicitly as doublets could improve clustering
and genotyping through the removal of spurious clones.

In summary, our model produces robust inferences of clonal
composition and genotype for large single-cell datasets in a reason-
able computational time. Besides their relevance for personalized
treatment, the inferred clusters and genotypes can be used to reduce
data size significantly, thereby facilitating downstream analyses. A
potential application of BnpC on large-scale datasets could be,
therefore, as a preprocessing step for the inference of phylogenetic
trees. Additionally, not assuming a tree-structure makes our method
applicable to other fields. For example, our method could be used
for the analysis of methylation profiles or the analysis of micro-
biome data, where the input matrix may indicate the presence or ab-
sence of species in samples. As scDNA-seq data size continues to
grow due to technological improvements and falling costs, so will
the chance of sampling novel subpopulations, leading to more com-
plex and heterogeneous datasets. Scalable and accurate inference, as
provided by BnpC, will thus be increasingly relevant.
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