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Chronic liver diseases (CLD) such as hepatitis B and C virus infection, alcoholic liver disease,
and non-alcoholic steatohepatitis are associated with hepatocellular necrosis, continual
inflammation, and hepatic fibrosis. The induced microenvironment triggers the activation
of liver-resident progenitor cells (LPCs) while hepatocyte replication is inhibited. In the
early injury stages, LPCs regenerate the liver by proliferation, migration to sites of injury,
and differentiation into functional biliary epithelial cells or hepatocytes. However, when this
process becomes dysregulated, wound healing can progress to pathological fibrosis, cirrho-
sis, and eventually hepatocellular carcinoma. The other key mediators in the pathogenesis
of progressive CLD are fibrosis-driving, activated hepatic stellate cells (HSCs) that usually
proliferate in very close spatial association with LPCs. Recent studies from our group and
others have suggested the potential for cytokine and chemokine cross-talk between LPCs
and HSCs, which is mainly driven by the tumor necrosis factor (TNF) family members,
TNF-like weak inducer of apoptosis (TWEAK) and lymphotoxin-β, potentially dictating the
pathological outcomes of chronic liver injury.
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INTRODUCTION
The liver possesses an extraordinary ability to orchestrate
hepatocyte-mediated regeneration from acute injuries such as
tissue resection or hepatic necrosis. However, hepatocyte pro-
liferation is impaired or ablated by severe and chronic injury,
dictating the need for an alternative liver regeneration pathway.
Through a complex network of chemical and cellular media-
tors, the liver regenerates via the activation of a progenitor cell
compartment, which retains proliferative and restorative capac-
ity under severe injury conditions. Early chronic liver disease
is typified by hepatocellular necrosis, hepatic inflammation, and
release of immunomodulatory molecules by resident and recruited
inflammatory cells, and dying hepatocytes, which activate the
regenerative and fibrogenic wound healing responses.

The regenerative response consists of the “ductular reaction”
(DR), in which bile ductules and liver progenitor cells (LPCs) pro-
liferate from the Canals of Hering, the interface between the hepa-
tocyte canaliculi and the biliary tree (1), resulting in biliary hyper-
plasia and the appearance of intermediate hepatocytes (2). Recent
lineage-labeling studies have demonstrated that LPCs arise from
a population of Sox9-expressing ductal cells that are activated to
proliferate and differentiate into hepatocytes under certain chronic
liver injury conditions (3, 4). This expansion is initiated and main-
tained by inflammatory cell-derived stimuli such as tumor necrosis
factor (TNF) (5, 6) and interferon (IFN)-γ (7). Importantly, IFNγ

has been shown to promote LPC expansion and inhibit prolifera-
tion of hepatocytes in concert with TNF stimulation (7). Addition-
ally, transforming growth factor (TGF)-β suppresses liver epithe-
lial cell proliferation. However, LPCs are significantly less sensitive

to TGFβ-mediated growth inhibition during chronic liver injury
and in vitro (8). In addition to stimuli from inflammatory cells,
dying hepatocytes release hedgehog ligand (9), which has recently
been shown to signal via the canonical Smoothened-dependent
signaling cascade in primary cilium-positive LPCs, promoting
their proliferation (10). Thus, the consequence of chronic hepa-
tocyte injury and the subsequent inflammatory response is a
liver microenvironment, which supports LPC expansion, while
disabling hepatocyte-mediated regeneration.

LPC expansion occurs almost synchronously with fibrogenic
wound healing, which is primarily driven by the action of hepatic
stellate cells (HSCs). During chronic liver disease, quiescent HSCs
are “activated” by inflammatory cytokines and begin to express
α-smooth muscle actin (αSMA), signifying their transition to a
myofibroblastic phenotype (11). Following this transition, acti-
vated HSCs drive fibrosis by depositing extracellular matrix
(ECM) proteins, which assists to control LPC proliferation and
differentiation. Accumulation of ECM is supported by the expres-
sion of tissue inhibitor of metalloproteinase (TIMP) proteins
that inhibit matrix metalloproteases (MMPs), which function to
degrade ECM proteins (12). Activated HSCs further reinforce
regenerative and repair responses by expressing chemotactic fac-
tors such as intercellular adhesion molecule 1 (ICAM-1) and
regulated upon activation, normal T-cell expressed, and secreted
(RANTES), which attract additional inflammatory and progeni-
tor cells to the site of injury (13). If the hepatic insult is resolved,
LPCs mature to replace the lost epithelial cell types, hepatocytes,
and/or cholangiocytes, depending on the underlying pathology. At
the same time fibrosis recedes restoring structural and functional
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integrity of the liver. However, if injury persists, the regenerative
and wound healing processes spiral out of control and become
pathological. Chronic stimulation of HSCs results in fibrosis from
excessive matrix deposition. With further impaired regeneration,
this may progress to cirrhosis and liver failure. Furthermore,
the prolonged stimulation of LPCs by pro-proliferative/survival
cytokines from inflammatory cells generates a niche favoring the
accumulation of genetic and epigenetic alterations, which can
lead to the malignant transformation of LPCs and ultimately the
formation of hepatocellular carcinoma (HCC).

A combination of association studies in patients and path-
way manipulation experiments in rodents implicate LPCs as
key regulatory cells in progressive chronic liver injury. LPCs are
observed in many diseases with a predisposition to HCC, includ-
ing chronic hepatitis B (HBV) and C virus (HCV) infection (14,
15), non-alcoholic fatty liver disease (16), alcoholic liver disease,
and genetic hemochromatosis (14). Importantly, the numbers of
LPCs increase as liver fibrosis progresses to cirrhosis, regardless
of the underlying liver pathology (14, 17). Since LPCs prolifer-
ate at various stages of human liver tumorigenesis, ranging from
preneoplastic lesions (18) to well-developed HCCs (19–21), they
have been suggested as causative players during tumor develop-
ment and maintenance. Supporting evidence comes from murine
intervention studies where selective inhibition of c-kit+ LPCs by
imatinib mesylate resulted in reduced tumor formation (6). These
studies suggest that LPCs either represent direct cellular precur-
sors of HCC or they crucially influence disease development by

regulating other contributing cells such as fibrosis-driving HSCs.
Either way they represent ideal chemotherapeutic targets for HCC
prevention strategies in chronic liver injury.

The processes of inflammation, fibrosis, and LPC induction are
tightly regulated and occur in close spatial association (Figure 1),
suggesting the potential for cellular communication (Figure 2).
Cross-talk between the hepatic wound healing and regenera-
tive responses occurs via several factors including ECM proteins,
growth factors, and cytokines, particularly of the TNF superfamily.
In this review, we will discuss the role of two TNF superfamily
members, lymphotoxin-β (LTβ), and TNF-like weak inducer of
apoptosis (TWEAK), in regulating liver regeneration and wound
healing.

TWEAK/FN14 SIGNALING
TWEAK/FN14 SIGNALING INDUCES LPC PROLIFERATION VIA NFκB
ACTIVATION
TWEAK ligand was first identified as a novel cell-associated and
secreted factor with TNF family homology, which induced cyto-
toxicity in the human adenocarcinoma cell line HT29 in combi-
nation with IFNΥ treatment (28). TWEAK interacts with tar-
get cells via its receptor, fibroblast growth factor-inducible 14
(Fn14) (29), which is highly homologous in mouse and human
tissues, and is upregulated in HCC lines and tissues (30). Bio-
logically, TWEAK has been shown to regulate numerous cellular
processes including proliferation, differentiation, migration, and
cell survival and has also been described as a pro-angiogenic and

FIGURE 1 |The intrahepatic wound healing and regenerative niche in
CDE-induced chronic liver injury in mice. Confocal microscopy of 2-week
CDE-injured mouse liver shows the close association of PanCK+ liver
progenitor cells with both αSMA+ activated hepatic stellate cells and CD45+

inflammatory cells. The spatial proximity of all three cell types suggests the
potential for cellular cross-talk and co-regulation of the inflammatory,
fibrogenic, and progenitor cell responses. Nuclei are stained with DAPI (blue).
Scale bars represent 50 µm.
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FIGURE 2 | Co-regulation of hepatic wound healing and regenerative
responses viaTWEAK- and LTβ-mediated cellular cross-talk. In chronic
liver injury liver progenitor cell (LPC) proliferation is induced via
macrophage/natural killer (NK) cell-produced TWEAK activation of the NFκB
pathway. Interaction between LPCs and activated hepatic stellate cells
(HSCs)/myofibroblasts via Notch pathway and other potential mediators may
drive LPC differentiation to cholangiocytes. LPCs and ductular reaction cells

produce chemokines, such as CCL2 (red) and CX3CL1 (orange), which
promote chemotaxis of inflammatory/myofibroblastic cells. Interactions
between lymphotoxin-β (LTβ) expressed on LPCs and the LTβ receptor (LTβR)
on activated HSCs triggers NFκB-driven expression of chemotaxis-associated
factors ICAM-1 (blue) and RANTES (green) by HSCs, which may play a role in
mediating recruitment of LPCs, HSCs, and leukocytes for wound healing,
fibrogenesis and regeneration during chronic liver injury (13, 22–27).

pro-inflammatory factor (31). In chronic liver injury and repair,
the principal function of TWEAK appears to initiate ductal pro-
liferation and LPC expansion via activation of NFκB signaling.
Ductal hyperplasia is observed in livers of mice overexpressing
TWEAK under the control of the liver-specific α1-antitrypsin
promoter, demonstrating the ability of TWEAK signaling, in iso-
lation, to initiate ductal expansion (32). Conversely, ductal cell
expansion is mitigated after pharmacological blocking of TWEAK
signaling as well as in Fn14-knockout mice subjected to either
3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or choline-
deficient, ethionine-supplemented (CDE)-induced chronic liver
injury (22, 32). Furthermore, macrophages and natural killer cells
have been shown to be the primary producers of TWEAK ligand
in chronic liver injury, providing an important link between the
inflammatory response and TWEAK-mediated ductal expansion
(33). In the CDE model, TWEAK-producing macrophages have
been observed in close association with expanding ductal cells
(33), suggesting a mechanism whereby focal points of inflamma-
tory cells signal via the TWEAK/Fn14 pathway to promote LPC
expansion. Accordingly, transplantation of bone marrow-derived

macrophages into normal liver stimulates a TWEAK-dependent
response in LPCs and biliary cells, demonstrating a primary
role of macrophage-generated TWEAK in initiating the DR
(23). Previous studies indicate that this effect is mediated via
TWEAK-induced activation of NFκB signaling (22).

The NFκB family comprises five monomers, which interact via
N-terminal Rel homology domain (RHD) polypeptides. These
monomers, RelA, RelB, cRel, p50, and p52, interact to form an
active NFκB homo- or heterodimer and translocate to the nucleus
to activate transcription of genes involved in numerous biological
processes including, but not limited to, inflammation, prolifer-
ation, and cell survival (34). Regulation of nuclear localization
occurs by sequestering of NFκB dimers through binding with
inhibitory proteins (IκBs). Inhibition is released through phos-
phorylation and subsequent proteolytic degradation of IκB. Phos-
phorylation of IκB is initiated by binding of extracellular media-
tors to their receptors, which lead to activation of IκB-kinase (IKK)
via NFκB essential modulator (NEMO)-dependent (canonical)
or independent (non-canonical) mechanisms (35). NFκB plays a
vital role in all aspects of chronic liver diseases (CLD), acting as
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a transducer of cytokine-mediated signals promoting inflamma-
tion and fibrosis (36), particularly in the survival and activation of
HSCs (37, 38). NFκB signaling is activated upon TNF treatment
of LPCs, promoting its mitogenic effects (39), and also regulates
IL-6/TNF-mediated upregulation of LTβ in LPCs (40, 41).

TWEAK has been shown to activate NFκB via canonical
(42) and non-canonical mechanisms (43). Accordingly, strong
cytoplasmic and nuclear NFκB is observed in proliferating pan
cytokeratin-expressing cholangiocytes and LPCs following recom-
binant TWEAK administration in CDE-injured mice (22). In vitro
studies in the LPC lines BMOL and BMOL-TAT demonstrated
dose-dependent proliferation following TWEAK stimulation.
Mitogenesis was inhibited by transfection with siRNA targeting
the NFκB p50 subunit, confirming the pro-proliferative effect of
TWEAK in LPCs is NFκB-dependent (22). The ability of TWEAK
to promote proliferation and self-renewal of LPCs appears to
be vital in allowing LPCs to survive and thrive in the chronic
liver injury setting. Interestingly, this modulation also affects the
dynamics of hepatic fibrosis and inflammation.

TWEAK AS A REGULATOR OF FIBROGENESIS
Assessing the cellular players involved in TWEAK signaling pro-
vides unique insights into its versatile role in establishing a niche
conducive to wound healing, regeneration as well as carcinogen-
esis. In addition to stimulating ductal/LPC expansion, one of
the therapeutically interesting consequences of altering TWEAK
signaling in chronic liver injury is the co-modulation of liver fibro-
sis. Experiments utilizing TWEAK pathway knockout mice and
exogenous TWEAK stimulation/inhibition have shown a positive
correlation between LPC proliferation and the fibrogenic response
to chronic liver injury. Collagen deposition and the expression
of TIMPs are reduced in Fn14-knockout mice on the CDE diet
(22). Similarly, a recent study of TWEAK modulation in CCl4-
stimulated fibrosis with partial hepatectomy (PHx)-induced hepa-
tocyte deficit has shown that pharmacological TWEAK inhibition
decreases collagen deposition during LPC expansion following
PHx (44).

Given that the main function of TWEAK signaling appears
to be in activating LPC proliferation, how might the TWEAK
pathway regulate the fibrotic response of the liver? One possi-
bility that is yet to be investigated is that TWEAK could act
directly on fibrosis-driving HSCs. Supportive evidence for this
possible scenario is provided by results showing that at least a sub-
set of freshly isolated, activated HSCs express the receptor Fn14
and are therefore potentially TWEAK-responsive in CDE-induced
liver injury (22). Another intriguing possibility is that modulat-
ing TWEAK/Fn14 signaling could influence the potency of the
fibrogenic and inflammatory responses by modulating ductal/LPC
cross-talk with leukocytes and/or HSCs. In the next section of this
review, we will explore the mechanisms by which TWEAK sig-
naling might regulate the inflammatory and fibrogenic responses
through its effects on the LPC compartment.

TWEAK REGULATION OF HEPATIC INFLAMMATION
Through its effects on LPC numbers, TWEAK/Fn14 signal-
ing could affect the dynamics of inflammation in chronic liver

injury via LPC-mediated recruitment of inflammatory cells. Fn14-
deficient mice fed a CDE diet display a delayed response of
CD45+ (general inflammatory) and F4/80+ (macrophage) leuko-
cytes. Conversely, stimulation of LPC proliferation and the DR
with recombinant TWEAK injections results in an increase in
CD45+ cells (22), suggesting that the amplitude of the DR might
have an impact on the level of inflammatory cell recruitment.
Given that LPCs express chemokine (C–C motif) ligand 2 (CCL2),
also referred to as monocyte chemotactic protein-1 (MCP-1),
and chemokine (C-X3-C motif) ligand 1 (CX3CL1), and have
a demonstrated ability to attract CD11b+ macrophages isolated
from normal and CDE-injured livers in vitro (33), the dynam-
ics of the DR may play a role in regulating the inflammatory
response. Since inflammatory cells, particularly the macrophage
compartment, support the establishment of fibrosis in chronic
liver injury by affecting HSC activation (45), influences on inflam-
matory cell recruitment may also affect the dynamics of liver
fibrosis initiation and injury progression. Consequently, target-
ing the TWEAK/Fn14 pathway may be an effective way to alter
the wound healing response by influencing the dynamics of
LPC/inflammatory cell/HSC cross-talk.

LPC/HSC CROSS-TALK VIA LTβ SIGNALING
In an effort to understand the opposing roles of LPCs and HSCs
in controlling regeneration and wound healing versus fibrogenesis
progression and carcinogenesis, pathways involved in LPC/HSC
cross-talk are currently under investigation. As we have discussed,
modulating the LPC response via TWEAK signaling affects the
dynamics of liver fibrosis mediated by HSCs. Additionally, Boulter
et al. demonstrated regulation of LPC differentiation by acti-
vated HSCs through expression of the Notch ligand Jagged 1
and Notch-dependent biliary specification in adjacent LPCs (24).
Conversely, expression of MCP-1 by cholangiocytes within hyper-
plastic or mature bile ducts was shown to drive HSC/myofibroblast
chemotaxis in chronic cholestatic liver disease (25). These
studies demonstrate the clear interactions of LPCs and HSCs
during progressive chronic liver injury. Thus, interventions
targeting pathways modulating LPC/HSC interactions might be of
therapeutic benefit in patients with chronic liver disease. One such
novel target is the TNF family member LTβ, which was recently
discovered as a key regulator of LPC/HSC cross-talk, facilitated by
NFκB-dependent downstream signaling (13).

LTβ is a type II transmembrane protein that signals as a cell
surface-anchored heterotrimer with LTα (i.e., LTα2:β1 or pre-
dominantly LTα1:β2) (46). LTβ levels are increased in various
animal chronic liver injury models including bile duct ligation
(47) and CDE-induced injury (48, 49) and its expression corre-
lates with the severity of fibrosis in chronic HCV infection in
humans (50). It has been demonstrated on the surface of cells
of the lymphocytic lineage, including activated B and T cells as
well as natural killer cells (51) but interestingly also on small por-
tal hepatocytes and proliferating LPCs during chronic liver injury
(50). In our CDE injury model, these LTβ+ LPCs are observed in
close proximity to activated HSCs, which express the LTβ recep-
tor (LTβR). In vitro studies revealed that upon receptor binding,
LTβ initiates a NFκB-dependent signaling cascade in HSCs that
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results in expression of chemotaxis-associated mediators ICAM-
1 and RANTES, which in turn recruit RANTES receptor (C–C
chemokine receptor type 5, CCR5)-positive LPCs (13). Hence this
paracrine cytokine/chemokine cross-talk has the capacity to facili-
tate LPC and HSC migration through the liver parenchyma to sites
of injury in addition to promoting wound healing by recruitment
of new leukocytes, LPCs and HSCs. The LTβ signaling pathway also
plays a role in fibrogenesis, since chronically injured LTβR knock-
out mice show reduced numbers of αSMA+ HSCs and decreased
collagen deposition as evidenced by reduced Sirius Red staining
(13). Concurrently, numbers of A6+ and muscle pyruvate kinase
2 (M2PK)+ LPCs are reduced (48), which once again suggests the
co-regulation of the fibrogenic and the progenitor cell response in
chronic liver injury. The significance of the LTβ pathway in liver
disease and hepatocarcinogenesis was highlighted by Haybaeck
et al. who analyzed tg1223 mice, which overexpress lymphotoxin
in the liver, and showed that sustained expression leads to chronic
hepatitis and eventually to HCC. To confirm results, LTβ overex-
pression was neutralized by pharmacological blocking of LTβR,
which drastically reduced liver injury and prevented HCC forma-
tion (19). Hence, suppression of this pathway might be beneficial
in liver diseases with a chronic overexpression of cytokines that sig-
nal through LTβR, including LTα and LTβ or LTβ-related inducible
ligand competing for glycoprotein D binding to herpes virus entry
mediator on T cells (LIGHT), such as seen in chronic HBV or
HCV infection.

THERAPEUTIC POTENTIAL AND FUTURE DIRECTIONS
In the Western world, chronic liver injury is ever increasing in
prevalence. A variety of etiologies including chronic HBV/HCV
infection, and non-alcoholic fatty liver disease can cause fibro-
sis and, subsequently, cirrhosis and HCC. The World Health
Organization ranks CLD as the ninth commonest global cause
of death with end organ failure as a result of cirrhosis and
HCC, accounting for half the mortality each (52). Most HCC
cases arise in the setting of established cirrhosis, with a median
survival of 6–16 months, if untreated (53). At present, a range
of primary treatment options including antiviral therapy and
weight reduction strategies are variably effective in these con-
ditions. Unfortunately, a significant number of patients still
progress to end-stage liver disease and many require orthotopic
liver transplantation. However, limited availability of donor
organs and religious and/or economic reasons may restrict access
to transplantation surgery. Prolonged waiting times for donor
organs often result in disease progression and death of patients
with initially treatable disease. Thus, the development of new
therapeutic strategies for the prevention or treatment of hepatic
fibrosis and its sequelae of cirrhosis and HCC are urgently
required.

The carcinogenic and fibrogenic processes are amenable to
manipulation by agents, which interfere with these processes,
however to date approaches have been limited, and new targeted
therapies such as tyrosine kinase inhibitors have not significantly
improved survival (54, 55). Identification of new cellular targets
for preventative therapies that minimize fibrosis or carcinogenesis
represent the future for advancement of therapy, and knowledge
of cross-talk and signaling pathways such as those defined here are

critical for such advancement. The key will be balancing beneficial
effects on reduced fibrosis and carcinogenesis against detrimental
effects consequential to impaired replacement of healthy hepa-
tocytes or cholangiocytes, as can be seen following IFN-based
therapies for chronic viral hepatitis (56).

SUMMARY
The liver responds to chronic injury by initiating an inflamma-
tory response, which enables the dual action of resolving injury,
through the activation of fibrosis, and regeneration of injured tis-
sue comprising the activation and differentiation of LPCs. These
processes are inextricably linked and act in concert to reinforce and
progress the chronic injury response until such a time that injury
abates. Since these processes are linked, affecting the biology of one
necessarily affects the dynamics of the whole system. As we have
discussed in this review, TWEAK/Fn14 signaling plays a primary
role in regulating LPC expansion and in doing so, affects both the
inflammatory and wound healing responses of the liver through
cellular cross-talk. Through interactions between LPCs and the
immune system, TWEAK modulation of LPC numbers may act
to enhance the inflammatory response at the site of regeneration,
reinforcing LPC expansion. Likewise, LPC interactions with HSCs
via LTβ signaling may also promote recruitment of leukocytes to
the site of injury, amplifying the fibrogenic response of the liver.
Accordingly, TWEAK signaling may be an important “valve” with
which we might modulate the landscape of chronic liver injury.
Therefore, we propose that therapies targeting TWEAK signaling
in chronic liver injury may be useful for reducing the severity of
fibrosis through its dual action on the inflammatory and HSC
compartments via LPCs. In doing so, it may be possible to dimin-
ish progression to cirrhosis and liver failure, as well as limiting the
pro-tumorigenic environment existing in the regenerative niche
supporting LPCs.
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