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Abstract

Background: Cystic fibrosis is the most common autosomal recessive genetic disease in Caucasians. It is caused by
mutations in the CFTR gene, leading to poor hydration of mucus and impairment of the respiratory, digestive, and
reproductive organ functions. Advancements in medical care have led to markedly increased longevity of patients
with cystic fibrosis, but new complications have emerged, such as early onset of colorectal cancer. Although the
pathogenesis of colorectal cancer in cystic fibrosis remains unclear, altered host-microbe interactions might play a
critical role. To investigate this, we characterized changes in the microbiome and host gene expression in the
colonic mucosa of cystic fibrosis patients relative to healthy controls, and identified host gene-microbiome
interactions in the colon of cystic fibrosis patients.

Methods: We performed RNA-seq on colonic mucosa samples from cystic fibrosis patients and healthy controls to
determine differentially expressed host genes. We also performed 16S rRNA sequencing to characterize the colonic
mucosal microbiome and identify gut microbes that are differentially abundant between patients and healthy
controls. Lastly, we modeled associations between relative abundances of specific bacterial taxa in the gut mucosa
and host gene expression.

Results: We find that 1543 genes, including CFTR, show differential expression in the colon of cystic fibrosis
patients compared to healthy controls. These genes are enriched with functions related to gastrointestinal and
colorectal cancer, such as metastasis of colorectal cancer, tumor suppression, p53, and mTOR signaling pathways. In
addition, patients with cystic fibrosis show decreased gut microbial diversity, decreased abundance of butyrate
producing bacteria, such as Ruminococcaceae and Butyricimonas, and increased abundance of other taxa, such as
Actinobacteria and Clostridium. An integrative analysis identified colorectal cancer-related genes, including LCN2
and DUOX2, for which gene expression is correlated with the abundance of colorectal cancer-associated bacteria,
such as Ruminococcaceae and Veillonella.

Conclusions: In addition to characterizing host gene expression and mucosal microbiome in cystic fibrosis patients,
our study explored the potential role of host-microbe interactions in the etiology of colorectal cancer in cystic
fibrosis. Our results provide biomarkers that may potentially serve as targets for stratifying risk of colorectal cancer
in patients with cystic fibrosis.
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Background
Cystic fibrosis (CF) is the most common autosomal re-
cessive genetic disease in Caucasians, where it occurs
with a frequency of 1 in 3000 births [1]. CF is caused by
mutations in the cystic fibrosis transmembrane con-
ductor regulatory (CFTR) gene, which plays critical func-
tions in epithelial ion transport and hydration of mucus.
Absent or reduced CFTR activity results in thick, viscous
secretions that impair functions of the respiratory, di-
gestive, and reproductive organ systems.
Multiple advances in medical care in CF, once a fatal

pediatric disease, have led to remarkable gains in patient
life expectancy. However, increased longevity of CF pa-
tients into adulthood has led to new challenges, such as
gastrointestinal cancer. The average onset of colorectal
cancer (CRC) in CF patients is approximately 20–30
years earlier than in the general population [2, 3]. Sys-
tematic data on colonoscopic screening and surveillance
suggest that CF-associated CRC arises via the classical
adenoma to cancer sequence, but adenomatous polyps
develop at a younger age in CF and progress faster to
more advanced neoplasms [4]. In fact, loss of CFTR ex-
pression in tumors of non-CF patients has been associ-
ated with a worse prognosis in early-stage CRC [5].
Recently, specific recommendations for CRC screening
were introduced in standard care of adult CF patients,
which include earlier initiation of screening and shorter
intervals for surveillance [6].
Although previous studies have identified CFTR as a

tumor suppressor gene that may play a role in early on-
set of colon cancer [5, 7], the pathogenesis of CRC in CF
remains unclear. A number of factors can be considered.
It is likely that the altered microbiota composition and
microbiota-mucosal interface are also the reasons for a
chronic state of low-grade mucosal inflammation in CF
[8]. Notably, CFTR is hyper-expressed in the stem cell
compartment of the intestinal crypt [9], which is the site
of CRC origination [10].
Than and colleagues have shown altered expression of

genes involved in immune cell homeostasis and inflam-
mation, mucins, cell signaling and growth regulation,
detoxification and stress response, lipid metabolism, and
stem cell regulation in the intestines of CFTR mutant
mice [5]. The intestinal microbiota of these animals is
also distinguished by lower bacterial community rich-
ness, evenness, and diversity, consistent with a major im-
pact of CFTR deficiency on gastrointestinal physiology
[11]. Altered fecal microbiome has also been demon-
strated in a number of clinical CF cohorts, where it was
characterized by decreased microbial diversity, lower
temporal microbial community stability, and decreased
relative abundances of taxa associated with health, such
as Faecalibacterium, Roseburia, Bifidobacterium, Akker-
mansia, and Clostridium cluster XIVa [12–17]. Greater

degrees of dysbiosis were noted to correlate with severity
of CF disease phenotype, burden of antibiotics, and evi-
dence for intestinal inflammation in diverse pediatric co-
horts with varying degree of fat malabsorption.
Here, we compare the mucosal microbiome (via 16S

rRNA sequencing) and colonic gene expression (via
RNA-seq) in adult patients with CF and healthy controls
undergoing CRC screening by colonoscopy. By using an
integrative analysis approach, we identified correlations
between host colonic gene expression and mucosal
microbiome data. This allowed us to characterize poten-
tial interactions between host genes and microbes, pro-
viding insight on the early development of CRC in CF
patients. We also hope these host gene-microbiome as-
sociations can serve as a precursor for designing future
hypothesis-driven studies that can help tease out the dir-
ectionality of causation.

Methods
Patients and mucosal biopsy samples
Mucosal biopsies were obtained from patients undergo-
ing CRC screening and surveillance colonoscopies at the
University of Minnesota (Additional file 1). The majority
of CF patients receiving care at the Minnesota Cystic Fi-
brosis Center participate in a systematic colonoscopic
CRC screening program as described previously [4].
None of the CF patients had acute infections within the
preceding 3 months of the procedure, and CF patient
colonoscopies were done for colon cancer screening and
not acute gastrointestinal symptoms. Control samples
were obtained from non-CF patients with average risk of
CRC undergoing routine colonoscopic CRC screening or
surveillance. Pinch biopsies, four per patient, were ob-
tained using the Radial Jaw 4 Jumbo w/Needle 240
(length) forceps for a 3.2-mm working channel (Boston
Scientific, Marlborough, MA; Catalog # M00513371) in
the right colon and placed into RNAlater stabilization
solution (Thermo Fisher Scientific, Waltham, MA). The
protocol was approved by the University of Minnesota
Institutional Review Board (IRB protocol 1408M52889).
Gene expression was analyzed by RNA-seq from a total
of 33 samples obtained from 18 CF patients and 15 non-
CF control participants (Additional file 2: Figure S1).

RNA extraction and sequencing
Biopsy tissue was kept in the RNAlater stabilization so-
lution overnight at 4 °C. RNA was prepared following
tissue homogenization and lysis using the TRIzol Plus
RNA Purification Kit (Thermo Fisher Scientific; catalog
# 2183–555) following detailed manufacturer’s instruc-
tions. Total RNA samples were converted to Illumina se-
quencing libraries using Illumina’s Truseq Stranded
mRNA Sample Preparation Kit (Cat. # RS-122-2103).
Total RNA was oligo-dT purified using oligo-dT-coated

Dayama et al. Genome Medicine           (2020) 12:12 Page 2 of 15



magnetic beads, fragmented, and then reverse tran-
scribed into cDNA. The cDNA was adenylated and then
ligated to dual-indexed (barcoded) adaptors and ampli-
fied using 15 cycles of PCR. Final library size distribution
was validated using capillary electrophoresis and quanti-
fied using fluorimetry (PicoGreen). Indexed libraries
were then normalized, pooled, and then size selected to
320 bp ± 5% using Caliper’s XT instrument. Truseq li-
braries are hybridized to a paired-end flow cell, and indi-
vidual fragments were clonally amplified by bridge
amplification on the Illumina cBot. Once clustering is
complete, the flow cell is loaded on the HiSeq 2500 and
sequenced using Illumina’s SBS chemistry (Add-
itional file 2: Figure S1).

Host RNA-seq quality control, read mapping, and filtering
We performed quality check on raw sequences from all
33 samples (to assure better downstream analysis using
FastQC) [18]. This helped assess any biases due to pa-
rameters such as quality of the reads, GC content, num-
ber of reads, read length, and species to which the
majority of the reads mapped (Additional file 2: Figure
S2). The FASTQ files for forward and reverse (R1 and
R2) reads were mapped to the reference genome using
kallisto [19], where an index for the transcriptomes was
generated to quantify estimated read counts and TPM
values. Mean distribution for the TPM values was plot-
ted using R to filter all the transcripts below a threshold
value of log2[TPM] < 0. We generated PCA plots using
sleuth [20] to examine sample clusters and visualization
of expression patterns for genes using bar plots (Add-
itional file 2: Figures S3 and S4). For further analysis of
outlier samples, box plots were generated using Cook’s
distance and heat map clustered by condition and muta-
tion status was generated for the top 20 expressed genes
(Additional file 2: Figures S5 and S6).

Host RNA-seq differential expression and enrichment
analysis
To determine differentially expressed genes between CF
and healthy samples, we quantified and annotated the
transcripts using DESeq2 [21]. The output from kallisto
was imported into DESeq2 using the tximport package
[22]. The transcripts were annotated against the ensem-
ble database using bioMART to obtain gene symbols
[23]. Transcripts below a threshold of row-sum of 1
were filtered and collapsed at a gene symbol level. Prior
to differentially expressed gene analysis, the read counts
were normalized and the gene-wise estimates were
shrunken towards the fitted estimates represented by the
red line in the dispersion plot (Additional file 2: Figure
S7). The gene-wise estimates that are outliers are not
shrunk and are flagged by the blue circles in the plot
(Additional file 2: Figure S7). DESeq2 applies the Wald’s

test on estimated counts and uses a negative binomial
generalized linear model determines differentially
expressed genes and the log-fold changes (Add-
itional file 2: Figure S8). The log-fold change shrinkage
(lcfshrink()) function was applied for ranking the genes
and data visualization. For data smoothing, MA plots
were generated before and after log2 fold shrinkage. We
found no change in the MA plot (Additional file 2: Fig-
ure S9) post smoothing, as there are no large log-fold
changes in the current data (log2 fold change between −
1 and 1) due to low counts. The data were further trans-
formed, and the normalized values were extracted using
regularized logarithm (rlog) to remove the dependence
of variance on mean. We used the Benjamini-Hochberg
method for reducing the false discovery rate (FDR) with
a cutoff of 0.05 for identifying differentially expressed
genes for further analysis. Enrichment analysis was done
using Ingenuity Pathway Analysis (IPA, QIAGEN Inc.,
https://www.qiagenbioinformatics.com/products/inge-
nuitypathway-analysis). The log-fold changes, p values,
and FDR values (for all the genes with FDR < 0.05) were
fed into IPA for both up- and downregulated differen-
tially expressed genes between CF and healthy samples.
Disease/functional pathways and gene networks were de-
termined based on the gene enrichment. Furthermore,
we looked at how many target upstream regulators were
enriched based on our list of differentially expressed
genes using IPA. We found 134 targets that passed the
filter (p value < 0.01) from a total of 492 targets, of
which 96 were transcription regulators.

16S rRNA extraction and sequencing
Mucosal biopsies samples (~ 3 × 3mm) from 13 CF and
12 healthy individuals were collected in 1 mL of RNAla-
ter and stored for 24 h at 4 °C prior to freezing at −
80 °C. DNA was extracted using a MoBio PowerSoil
DNA isolation kit according to the manufacturer’s in-
structions (QIAGEN, Carlsbad, USA). To look at the
tissue-associated microbiome, the V5-V6 region of 16S
rRNA gene was amplified as described by Huse et al.
[24] using the following indexing primers (V5F_Nextera:
TCGTCGGCAGCGTCAGATGTGTATAAGAGA
CAGRGG ATTAGATACCC, V6R_Nextera: GTCTCG
TGGGCTCGGAGATGTGTATAAGAGACAGCGAC
RRCCATGCANCACCT). Index and flowcell adaptors
were added with this step. Forward indexing primer used
is - AATGATACGGCGACCACCGAGATCTACAC
[i5] TCGTCGGCAGCGTC and reverse indexing
primers used is - CAAGCAGAAGACGGCATACGA-
GAT [i7]GTCTCGTGGGCTCGG. Post two rounds of
PCR, pooled, size-selected samples were denatured with
NaOH, diluted to 8 pM in Illumina’s HT1 buffer, spiked
with 15% PhiX, and heat denatured at 96 °C for 2 min
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immediately prior to loading. A MiSeq 600 cycle v3 kit
was used to sequence the sample.

Gut mucosal microbiome data processing, quality
assessment, and diversity analysis
We processed the FASTQ files using FastQC [18] to
perform quality control on the raw sequences. We then
used SHI7 [25] for trimming Nextera adaptors, stitching
paired-end reads and performing quality trimming at
both ends of the stitched reads until a minimum Phred
score of 32 was reached. Following quality control, we
obtained an average of 217,500 high-quality reads per
sample (median 244,000; range 9551–373,900) with an
average length of 281.9 bases and an average quality
score of 37.19. These merged and filtered reads were
used for closed reference operational taxonomic unit
(OTU) picking and taxonomy assignment against Green-
Genes database with 97% similarity level using the
NINJA-OPS program [26].
To identify any potential contaminants originating

from laboratory kits and reagents, we used two negative
controls consisting of “blank” DNA extractions that were
processed and sequenced alongside the true samples.
The principal coordinates analysis (PCoA) plot of the
true samples with the negative controls shows clustering
by sample type (Additional file 2: Figure S10) suggesting
that most sequences observed in true samples were not
derived from reagent contamination. We used these se-
quenced negative controls for identification of contami-
nants by applying decontam, an R package that
implements a statistical classification procedure to detect
contaminants in 16S and metagenomic sequencing data
and has been shown to identify contaminants across di-
verse studies, including those from biopsy samples [27].
We used the prevalence-based contamination identifica-
tion approach that is recommended for low biomass en-
vironments, like tissue biopsy. This method computes a
prevalence-based score (ranging from 0 to 1) that is used
by decontam to distinguish between contaminant and
non-contaminants. A small score (less than 0.5) indicates
that a sequence feature is likely to be a contaminant,
while higher score (greater than 0.5) indicates non-
contaminants (i.e., true sequences). We plotted the dis-
tribution of prevalence-based scores assigned by decon-
tam (Additional file 2: Figure S11) that shows that most
of the OTUs in our samples were assigned high scores
(> 0.5), thus suggesting non-contaminant origin. Never-
theless, in order to identify any potential contaminants,
we ran decontam analysis at the default classification
threshold of 0.1, and at a higher threshold of 0.2.
We performed alpha- and beta-diversity analysis in R

using the vegan [28] and phyloseq [29] packages. We used
resampling-based computation of alpha diversity, where
the OTU table is subsampled 100 times at minimum read

depth (9551 reads) across all samples and computed aver-
age richness estimate for each alpha-diversity metric
(chao1, observed OTUs, and Shannon). Wilcoxon rank-
sum test was used for testing the statistical significance of
the associations between alpha diversity of the CF and
healthy conditions. For computing beta-diversity, we first
rarefied the OTU table (using vegan’s rrarefy() function)
at a minimum sequence depth (i.e., 9551 reads) across the
samples and then computed Bray-Curtis dissimilarity,
weighted UniFrac, and unweighted UniFrac metrics. The
Adonis test was used for assessing if there is significant as-
sociation between the beta-diversity of the CF/healthy
condition and the diversity results are plotted using the
ggplot2 package in R.

Gut mucosal microbiome differential abundance and
functional analysis
We performed differential abundance testing between
CF and healthy conditions using the phyloseq [29] pack-
age in R. We first created a phyloseq object from the
OTU table (using the phyloseq() function) and filtered
this object to only include OTUs occurring in at least
half of the number of samples in the condition with
fewer samples (i.e., min (number of samples in CF, num-
ber of samples in Healthy)/2)) with at least 0.1% relative
abundance (using the filter_taxa() function). The filtered
phyloseq object was converted into a DESeqDataSet ob-
ject (using phyloseq_to_deseq2()), and the DESeq() func-
tion was invoked. This performed dispersion estimations
and Wald’s test for identifying differentially abundant
OTUs, with their corresponding log-fold change, p value,
and FDR-adjusted q values between the CF and healthy
conditions. We agglomerated the OTUs at different
taxonomic ranks (using the tax_glom() function) and re-
peated the above steps to identify differentially abundant
taxa at genus, family, order, class, and phylum levels.
We also tested for associations between taxonomic

abundance and mutation status of CF samples. We first
categorized samples into three genotype categories: (1)
Healthy: Samples with no mutations; (2) CF_df508: CF
samples with homozygous delta-F508 deletion, which is
associated with more severe CF condition [30]; and (3)
CF_other: CF samples with df508 heterozygous deletion
or other mutation status. We used DESeq2’s likelihood
ratio test (LRT) to identify taxa that showed significant
difference in abundance across the three categories.
We then generated the predicted functional profiles

for the gut microbes using PICRUSt v1.0.0 pipeline, [31]
where pathways and enzymes are assigned using the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
database. The KEGG level 3 pathways were filtered for
rare pathways by only including pathways with relative
abundance > 0.1% in at least half of the samples, normal-
ized to relative abundance, and tested for association
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with CF/healthy conditions using non-parametric
Wilcoxon rank-sum test followed by FDR adjustment.
To verify that our results were not affected by poten-

tial contaminants, we applied the prevalence-based con-
tamination identification approach implemented in the
decontam R package described above. We repeated the
differential abundance analysis after removal of OTUs
identified as contaminants and found the same microbes
to be differentially abundant between CF and healthy
samples or mutation status as those in the analysis
without contamination identification. This confirmed
that our results were not influenced by potential
contaminants.

Integrated analysis of interactions between host gene
dysregulations and changes in microbiome
For this analysis, differentially expressed genes from host
and gut microbial OTUs from their respective overlap-
ping samples were used (22 samples in total, with 12
healthy samples and 10 CF samples). We further subset
differentially expressed genes between CF and healthy
conditions (FDR < 0.05), specifically enriched for gastro-
intestinal cancer disease pathways (524 genes). Using ab-
solute expression log ratio greater than 0.35, we
obtained a representative set of both up- and downregu-
lated genes from these pathways, leaving 250 genes for
downstream analysis. The OTU table was collapsed at
the genus level (or the last characterized level) and fil-
tered for rare taxa by only including taxa with at least
0.1% relative abundance present in at least half of the
number of samples in the condition with fewer samples
(i.e., min (number of samples in CF, number of samples
in Healthy)/2)), resulting in 35 taxa for further process-
ing. Following this, centered log ratio transform was ap-
plied on the filtered table. We then performed
correlation analysis between host gene expression data
for 250 genes and gut microbiome abundance data for
35 taxa (genus level) defined above. Spearman correl-
ation was used for this analysis as it performs better with
normalized counts (gene expression) as well as compo-
sitional data (microbiome relative abundance) compared
to other metrics, such as Pearson correlation [32]. We
computed the Spearman rank correlation coefficients
and the corresponding p values using the cor.test()
function with two-sided alternative hypothesis. A total of
8750 (250 genes × 35 taxa) statistical tests were per-
formed, and p values were corrected for multiple com-
parisons using the qvalue package in R [33].
Representative gene-taxa correlations were visualized
using corrplots [34] in R, where the strength of the
correlation is indicated by the color and size of the
visualization element (square) and the significance of the
correlation is indicated via asterisk. We also computed
the Sparse Correlation for Compositional Data (SparCC)

[35] for the taxa found significantly correlated (q value
< 0.1) with the CRC genes. Pseudo p values were com-
puted using 100 randomized sets. Significant gene-
microbe correlations (q value < 0.1) and significant
microbe-microbe correlations (SparCC |R| > =0.1 and
p value < 0.05) were visualized as a network using
Cytoscape v3.5.1 [36].
To ensure that these correlations were not influenced

by any potential contaminants, we repeated the analysis
after removing any contaminants identified by decontam
as described above and found that the associations
remained unchanged. Additionally, we also verified
whether any correlated taxa coincided with known lab
contaminants mentioned by Salter and colleagues [37].
We found no overlapping microbes with the list of
known contaminants, except Pseudomonas. Pseudo-
monas was not identified as a contaminant in our decon-
tam analysis. Interestingly, Pseudomonas aeruginosa,
which is a major pathogen in cystic fibrosis lung infec-
tion [38, 39], has previously been isolated from the fecal
samples of patients with cystic fibrosis [17, 40]. This
suggests that the presence of Pseudomonas in our
samples is not due to contamination and could be
potentially attributed to the cystic fibrosis condition of
our patient cohort.

Results
Host RNA-seq sample preprocessing and quality
assessment
We first examined gene expression in colonic biopsies
from 18 CF and 15 healthy individuals. Overall, CF and
healthy samples had comparable number of reads (28,
250,473 and 30,041,827 reads on average, respectively)
with the average quality greater than 30 phred score
across all samples (Additional file 2: Figure S2). The se-
quences were annotated to generate estimated read
counts and transcripts per kilobase million (TPM) using
kallisto [19], resulting in 173,259 total transcripts, of
which 56,283 passed the filter of mean TPM greater
than 1 (TPM > 1). While the principal component ana-
lysis (PCA) plots showed an overlap between the expres-
sion profile of most samples from CF and healthy
individuals, it identified two possible outliers (samples
1096 and 1117) (Additional file 2: Figure S3). In
addition, the top five transcripts driving the PC were of
mitochondrial origin (Additional file 2: Figure S4).
Hence, to reduce any bias in identifying differentially
expressed genes, we filtered out all the mitochondrial
transcripts from the data. We further investigated the
outliers using the remaining transcripts by calculating
Cook’s distance between the samples and found that the
two samples (1096 and 1117) were still outliers (Add-
itional file 2: Figure S5). This was further evident by the
heatmap of the top 20 most highly expressed genes

Dayama et al. Genome Medicine           (2020) 12:12 Page 5 of 15



(Additional file 2: Figure S6), where we found an alter-
nate expression pattern for the two samples, compared
to the rest. Therefore, the two outlier CF samples (1096
and 1117) were eliminated from further analysis.

Differentially expressed host genes between CF and
healthy mucosal samples
To examine gene expression differences we used read
counts from the remaining 16 CF and 15 healthy sam-
ples. Using DESeq2, we identified 1543 differentially
expressed genes at q value < 0.05 (Benjamini-Hochberg
correction; see Additional file 2: Figure S8 for a volcano
plot). Of the 1543 differentially expressed genes, 919
(59%) were upregulated and 624 (41%) were downregu-
lated in CF patients. Including sex as a covariate in the
model did not substantially alter the results (only 43
additional differentially expressed genes were identified);
therefore, we did not include sex in downstream ana-
lyses. The full list of differentially expressed genes sig-
nificant at q value < 0.05 is available in Additional file 3.
We visualized the expression pattern of five (three up-

regulated and two downregulated) randomly selected
differentially expressed representative genes and CFTR,
from genes included in the colorectal cancer disease
pathway (Fig. 1a). Consistent with the expectation of
changes in mucosal immunity that could compensate for
a diminished protective mucus function, we noted LCN2
to be one of the top differentially expressed genes (q
value = 2.54E−08, Wald’s test). LCN2 encodes for lipoca-
lin 2, which limits bacterial growth by sequestering iron-
laden bacterial siderophore [41]. However, a number of
other top genes are involved in major cellular biology
processes and were previously related to cancer patho-
genesis and colon cancer. Examples include RRS1 (q
value = 6.16E−09), which encodes for the ribosomal bio-
genesis protein homolog that promotes angiogenesis and
cellular proliferation, but suppresses apoptosis [42];
KRTAP5-5 (q value = 4.89E−08), which encodes for
keratin-associated protein 5-5, a protein that plays im-
portant roles in cytoskeletal function and facilitates vari-
ous malignant behaviors that include cellular motility
and vascular invasion [43]; and ALDOB (q value = 2.64E
−07), which encodes for aldolase B, an enzyme that pro-
motes metastatic cancer-associated metabolic repro-
gramming [44]. Additional examples of differentially
expressed genes (log-fold change > 0.5 and q value < 0.05),
such as CDH3, TP53INP2, E2F1, CCND2, and SERPINE1,
were also previously shown to have direct roles in colo-
rectal and digestive cancers [45–47]. While some of
these genes participate in basic cancer-related cellular
functions such as proliferation and invasion [45, 47–50],
others, e.g., BEST2, play important roles in gut barrier
function and anion transport [51]. To test signatures
of inflammation in our data, we intersected our DEGs

(q value < 0.05) with data from Hong et al. [52], who com-
pared gene regulation in Crohn’s disease (CD) patients
(with and without inflammation) and healthy controls. Of
the 43 genes enriched in CD patients with inflammation
in their study [52], we only found 2 genes, SERPINE1 and
APOB that overlapped with our DEGs (Fisher’s exact test,
p value = 1). In addition to the genes visualized in Fig. 1a,
additional randomly selected differentially expressed
genes are visualized in Additional file 2: Figure S12),
showing expression pattern differences between the
CF and healthy samples.
We next performed an enrichment analysis to

categorize functional and disease pathways among differ-
entially expressed genes (q value < 0.05) in IPA. The top
canonical pathways (Additional file 2: Figure S13) are
mostly responsible for signaling and regulatory func-
tions, such as EIF2 signaling (p value = 3.32E−35),
mTOR signaling (p value = 3.83E−08) and regulation of
chromosomal replication (p value = 1.60E−06). Of the 39
significantly enriched disease and functional pathways (p
value < 1.00E−05; Fig. 1b), 14 are related to cancer,
including gastrointestinal cancer (p value = 2.61E−06),
abdominal cancer (p value = 9.23E−03), large intestine
cancer (p value = 7.00E−05), and colorectal cancer (p
value = 8.63E−03). In addition, using the list of differen-
tially expressed genes, we found that the promoter se-
quences are enriched with binding sites of 96 potential
transcription regulators (p value < 0.01; see “Methods”).
Among these transcription factors, many have been pre-
viously shown to control cancer-related pathways. For
example, MYCN and KRAS are prominently involved in
neuroblastoma and colorectal cancer, respectively [53,
54]. NHF4A is involved in transcriptional regulation of
many aspects of epithelial cell morphogenesis and
function, which has been linked to colorectal cancer
[55]. CST5, which encodes cytostatin D, is a direct target
of p53 and vitamin D receptor and promotes
mesenchymal-epithelial transition to suppress tumor
progression and metastasis [56]. E2F3 is a potent regula-
tor of the cell cycle and apoptosis that is commonly
deregulated in oncogenesis [57].
A metabolic network for the gastrointestinal (GI)

cancer-related differentially expressed genes is shown in
Fig. 1c, illustrating the interactions between genes that
are upregulated in CF (e.g., TP53INP1, SERPINE1,
NCOR1, and CAPN2) and downregulated in CF (E2F1,
MED1, ECND2, and AS3MT), highlighting the cellular
location of these genes’ product. Additional gene
network for colorectal cancer can be found in
Additional file 2: Figure S14), where the genes are also
positioned in the region of the cell where they are most
active. We found that genes such as BEST2 (involved in
ion transport) and RUVBL1 (involved in cell cycle, cell
division, and cell damage) are downregulated, while
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Fig. 1 (See legend on next page.)
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genes such as TP53INP2 (involved in transcription regu-
lation) and CDH3 (involved in sensory transduction) are
upregulated. Given the predicted role of gene regulation
in colorectal cancer and the dysregulation of CRC-
related pathways, these results may help understand
mechanisms controlling early onset of colon cancer in
cystic fibrosis.

Difference in microbiome composition between CF and
healthy gut mucosa
To further understand the potential of altered
microbiota-host interaction in the CF colon, we next in-
vestigated differences in the composition of the mucosal
microbiome between CF and healthy individuals. We
used negative sequenced controls to verify that our
downstream results were not affected by any potential
contaminants (see “Methods”). We found a significant
difference between beta-diversity of gut mucosal micro-
biome in CF patients compared to healthy individuals
with respect to unweighted UniFrac and non-
phylogenetic Bray-Curtis metrics (Adonis p value =
0.001). As observed in the PCoA plot (Fig. 2a), the sam-
ples were clustered based on their disease condition (CF
or healthy). The overall biodiversity of mucosal micro-
biome was depleted in CF compared to healthy samples,
which was depicted by a significant decrease in alpha di-
versity measured by Chao1 (p value = 0.015, Wilcoxon
rank-sum test, Fig. 2a) and observed OTUs (p value =
0.024, Wilcoxon rank-sum test, in Additional file 2: Fig-
ure S15)) metrics in CF relative to healthy controls.
We assessed the changes in abundance of microbes at

various taxonomic levels between CF and healthy gut
mucosal microbiome using phyloseq. We found 51
OTUs that were significantly differentially abundant
between CF and healthy individuals (q value < 0.1, Add-
itional file 4). At different taxonomic ranks, we found 7
genera, 10 families, 4 orders, 4 classes, and 5 phyla dif-
ferentially abundant between CF and healthy samples (q
value < 0.1 by Wald’s test; Additional file 4). Overall, an
increased abundance in taxa, predominantly belonging
to Firmicutes (specifically Clostridium) and Fusobacteria,
was observed in CF individuals compared to healthy
controls, while taxa belonging to Bacteroidetes, Verruco-
microbia, and Proteobacteria phyla showed a marked de-
crease in patients with CF relative to healthy controls

(Fig. 2b). In particular, there was an increase in abun-
dance of class Actinobacteria in individuals with CF
compared to healthy controls (q value = 0.079), while
Butyricimonas (q value = 0.009), Ruminococcaceae (q
value = 0.081), and Sutterella (q value = 0.040) were
found depleted in CF samples (Fig. 2c). Additional ex-
amples of differentially abundant taxa between CF and
healthy samples can be found in the Additional file 2:
Figure S16).
Next, we tested whether CFTR genotype, which affects

disease severity, is associated with variation in the
microbiome. Specifically, we hypothesized that variation
in the microbiome is correlated with the number of al-
leles of the DF508 mutation, a deletion of an entire
codon within CFTR that is the most common cause for
CF. To test this, we performed a likelihood ratio test to
identify differentially abundant taxa between three geno-
type classes: CF-DF508 (homozygous for the DF508 mu-
tation), CF-other (either one or zero copies of the DF508
mutation), and healthy (no known mutations in CFTR).
We found a gradient-like trend in abundance for
Actinobacteria (q value = 0.081), showing increase in
abundance with increasing severity of mutation status
(Fig. 2d).
To assess the potential functional changes in the

microbiome, we predicted abundance of metabolic path-
ways and enzymes using the PICRUSt pipeline [31] and
KEGG database and compared them for differences be-
tween CF and healthy individuals. Seven predicted path-
ways (as defined by KEGG level 3) were found to be
differentially abundant between CF and healthy: bacterial
toxins were enriched in CF compared to healthy, while
propanoate metabolism, restriction enzyme, pantothen-
ate and CoA biosynthesis, thiamine metabolism, amino
acid-related enzymes, and aminoacyl-tRNA biosynthesis
were depleted in CF compared to healthy (q value < 0.2
using Wilcoxon rank-sum test; in Additional file 2:
Figure S17).

Interactions between gastrointestinal cancer-related host
genes and gut microbes
In order to investigate the relationship between host
genes and microbes in the colonic mucosa and their po-
tential role in the pathogenesis of gastrointestinal can-
cers in CF patients, we considered correlations between

(See figure on previous page.)
Fig. 1 Differentially expressed (DE) genes in the host. a Box plot of six genes that are a part of the gastrointestinal cancer pathway (one of the
key disease pathways influenced by DE gene at q value < 0.05 cutoff), showing differential expression between healthy and CF samples. b
Disease and functional pathways that are most significantly enriched with DE genes (q value < 0.05), sorted by the p value (cut off − log10(p
value) < 5). The dark gray bars represent cancer-related pathways. c Gastrointestinal cancer pathway gene network with upregulated genes
represented in green and downregulated genes represented in red. The intensity of the color is indicative of higher (brighter) or lower (duller)
difference in expression. The shapes represent each protein’s role (see legend) and the figure also illustrates the part of the cell they are most
active in
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250 differentially expressed genes enriched for GI can-
cers and 35 microbial taxa (collapsed at the genus or last
characterized level and filtered at 0.1% relative abun-
dance, see “Methods”). Using Spearman correlations, we
found 50 significant unique gene-microbe correlations in
the gut (q value < 0.1), where the magnitude of correl-
ation (Spearman rho) ranged between − 0.77 and 0.79
(Additional file 5). Interestingly, most of the taxa that
significantly correlated with the genes also differed sig-
nificantly in abundance between CF and healthy individ-
uals. We visualized all the correlations between taxa
abundance and host gene expression in Fig. 3a. In par-
ticular, we found some significant positive gene-taxa
correlations (q value < 0.05), between Butyricimonas and
ZNHIT6 (Spearman rho = 0.76), Christensenellaceae and

MDN1 (Spearman rho = 0.78), and Oscillospira and
NUDT14 (Spearman rho = 0.79). A few significant nega-
tive correlations (q value < 0.05), such as between Chris-
tensenellaceae and TBX10 (Spearman rho = − 0.78), and
Ruminococcaceae and LCN2 (Spearman rho = − 0.77)
were also found.
To characterize potential microbe-microbe interac-

tions in our dataset, we computed correlations between
the microbes significantly correlated (q value < 0.1) with
the genes using SparCC (see “Methods” and Add-
itional file 5) [35]. The notable aspects of the significant
gene-microbe correlations (q value < 0.1) and significant
microbe-microbe correlations (SparCC |R| > =0.1 and
pseudo-p value < 0.05) are graphically represented in Fig.
3b, where solid edges denote gene-microbe correlations

Fig. 2 Differences between cystic fibrosis (CF) and healthy gut mucosal microbiota. a (left) Principal coordinate analysis plot based on Bray-Curtis
distance indicating difference in beta-diversity between CF and healthy gut mucosal microbiome. The axes represent the percentage variance
along the first two principal components and the color of samples indicates their mutation status, i.e., Healthy, CF (other), and CF (df508); (right)
Boxplot depicting difference in alpha diversity (Chao1 metric) between CF and healthy gut microbiome. b Dotplot showing significantly
differentially abundant OTUs (q value < 0.1), where OTUs are grouped by genera along the y-axis and colored by phylum. The x-axis indicates the
log2 fold-change in CF compared to healthy as baseline. c Boxplots indicating the percentage relative abundance of taxa showing differential
abundance between CF and healthy gut microbiome (q value < 0.1). d Boxplot depicting gradient-like trend in abundance for Actinobacteria for
three genotypes—Healthy, CF (other), and CF (df508)
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and dashed edges represent microbe-microbe correla-
tions. This subnetwork of microbe-microbe correlations
depicts correlated abundance changes in the microbiome
as a function of their presence (Fig. 3b, dashed edges).
For instance, Bilophila and Butyricimonas are both de-
pleted in CF (q value < 0.05), and the abundance of the
two genera is also correlated across individuals (SparCC
R = 0.5, pseudo-p value = 0.04). On the other hand,
Ruminococcaceae was found depleted in CF (q value =
0.081), while Clostridium was enriched in CF (q value =
0.0004), and this inverse co-occurrence pattern leads to
a negative correlation between the two taxa across study
participants (SparCC R = − 0.66, pseudo-p value = 0).
Furthermore, in the gene-microbe subnetwork (Fig. 3b,

solid edges), microbial nodes have more edges on aver-
age compared to genes, where Christensenellaceae and
Clostridium formed distinct hubs in the network. This
potentially implies that these microbes and their path-
ways are shared across multiple GI cancer-associated
genes. Of note, Bilophila, Clostridium, and Pseudomonas
are mostly negatively correlated with GI cancer genes,
while Haemophilus, Oscillospira, Veillonella, Fusobacter-
ium, and Acidaminococcus are only positively correlated
with GI cancer genes (q value < 0.1).
In addition to the overall network, Fig. 3c depicts pair-

wise correlations between host gene expression and mi-
crobial taxa where both have been previously linked to
CRC and thus may be of interest. For example, LCN2,

Fig. 3 Interactions between genes associated with colorectal cancer and gut mucosal microbes. a Correlation plot depicting gene-microbe
correlations. Color and size of the squares indicate the magnitude of the correlation, asterisks indicate significance of correlation (** indicates q
value < 0.05 and * indicates q value < 0.1). b Network visualizing significant gene-microbe correlations (solid edges, q value < 0.1) and significant
microbe-microbe correlations (dashed edges, SparCC |R| > =0.1 and p value < 0.05). Blue edges indicate positive correlation and red edges
indicate negative correlation. Edge thickness represents the strength of the correlation. c Scatterplots depicting pattern of grouping by cystic
fibrosis (red) and healthy (blue) samples in a few representative gene-microbe correlations, where the strength of correlation (Spearman rho) and
significance (q) is indicated at the top of each plot
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known to be overexpressed in human CRC and other
cancers [58], is negatively correlated with Ruminococca-
ceae (Spearman rho = − 0.77, q value = 0.040), which is
found depleted in CRC [59, 60]. Both DUOX2 and
DUOXA2 are found to be negatively correlated with
Christensenellaceae (Spearman rho < − 0.65, q value <
0.1), while DUOXA2 is positively correlated with Veillo-
nella (Spearman rho = 0.70, q value = 0.082). DUOX2
and its maturation factor DUOXA2 are responsible for
H2O2 production in human colon and are known to be
upregulated in gastrointestinal inflammation [61, 62].
Christensenellaceae, a heritable taxon [63], has been
shown to decrease in abundance in conventional aden-
oma [60], a precursor of CRC, whereas Veillonella,
which is known to be proinflammatory, is found to be
represented in human CRC [64]. Thus, the pattern of
grouping by CF and healthy samples in these representa-
tive correlations are found to be similar to known asso-
ciations in CRC and other gastrointestinal malignancies.

Discussion
Recent advances in treatment have significantly pro-
longed the lives of CF patients [65]. However, this has led
to new challenges, such as an elevated risk for gastro-
intestinal cancer [66]. Thus, CF patients show 5–10-fold
increased risk of CRC compared to healthy individuals
and that increases even further with immunosuppressive
drugs [3, 6]. Understanding the molecular mechanisms
that control the increased risk is key for early detection
and the development of tailored treatments [6]. The im-
portance of interactions between host and microbiome
in the pathogenesis of colorectal cancer has become in-
creasingly clear [59, 67]. To understand the role of these
interactions in CF, we jointly profiled host colon gene
expression and mucosal microbiome composition data
in CF patients and healthy controls. We observed an
enrichment of cancer-associated dysregulated genes—
specifically colon cancer—in CF patients compared to
healthy controls. We also observed a shift in the micro-
biome and identified taxa previously linked to colon can-
cer that varied in their abundance between CF and
healthy individuals. We further found relevant correla-
tions between these cancer-enriched genes and microbes
that may illuminate the mechanisms of CRC develop-
ment in CF patients.
Several previous studies have studied the role of host

gene regulation in CF patients [5, 68]. While results from
previous studies are based on either phenotypic observa-
tions, examining candidate genes such as CFTR, or an
exploration of gene expression data from respiratory or
blood samples [5, 69], our work is the first, as far as we
know, that focused on a comprehensive transcriptomic
analysis of colon biopsies. This allowed us to characterize

patterns of host gene regulation specific to the CF colon
epithelium. In addition to an enrichment of cancer-related
pathways among genes that are differentially expressed in
CF, we also observed an enrichment for immune response
pathways, including signal transduction, cell adhesion, and
viral infection. Interestingly, one of the most significant
pathways enriched in our current data, the eIF2 signaling
pathway, has been previously shown to play an important
role in immune response, and cells with defective eIF2 sig-
naling pathway were more susceptible to bacterial infec-
tions [70]. Furthermore, our analysis revealed that tumor
suppressor genes are differentially regulated in the colon
of CF patients. In addition to CFTR, we found other
tumor suppressor genes, such as HPGD, to be downregu-
lated in CF patients’ colon. HPGD was previously shown
to be downregulated in the lungs of CF patients [5, 71].
Downregulation of these tumor suppressor genes can lead
to predisposition of colon cancer [72]. Additionally, while
we did see an enrichment of genes related to CRC path-
way, we further tested these enrichments to see if this was
a result of inflammation or high mucosal turnover in CF
patients. No signatures of inflammation were found in our
study when compared to the genes enriched in Crohn’s
disease (CD) patients with inflammation [52]. This further
suggests a potential mechanism underlying the reported
increased risk and early development of colon cancer in
CF patients [5, 66].
In addition to host gene regulation, the microbiome

has also been implicated in the development of many
diseases, including CRC [59, 73]. In the context of CF,
previous studies have focused on characterizing shifts in
the fecal or airway microbiome [14, 74]. Here, we pro-
filed the colonic mucosal microbiome, with the goal of
understanding its role in the development of CRC in CF
patients. We found a clear distinction between micro-
biome populations from CF compared to healthy mu-
cosa. Overall, similar to several other GI diseases, we
also observed a reduced microbial biodiversity in the CF
population [75]. We found an increase in Actinobacteria,
one of the most predominant genera found in the spu-
tum of CF patients [70], but decreased in colon cancer
gut microbiome [73]. Furthermore, our observation of a
significant decrease in the abundance of Verrucomicro-
bia, and increase in abundance of Firmicutes and Acti-
nobacteria in CF patients, is consistent with the findings
from the fecal microbiome of CF patients [17]. We also
found a depletion in butyrate-producing bacteria, such
as Ruminococcaceae and Butyricimonas, similar to previ-
ously reported depletion in butyrate-producing microbes
by Manor et al. [14] in their study comparing CF fecal
samples from children on varying degrees of fat intake.
Butyrate helps promote growth and can also act as an
anti-inflammatory agent and is therefore an important
compound for colon health [14]. Interestingly, mice with

Dayama et al. Genome Medicine           (2020) 12:12 Page 11 of 15



compromised GI defense system also had a reduced
number of butyrate-producing bacteria, similar to our
observations in the CF patients, who generally consume
a high-fat diet [76]. The loss in abundance of butyrate-
producing Ruminococcaceae has also been previously
observed in CRC [59, 77]. While the mechanism of Clos-
tridium and Fusobacterium in tumorigenesis is yet to be
defined, several studies have reported an increased pres-
ence of these two taxa in colon of CRC patients [78].
Interestingly, we also found an increase in these two pre-
viously known carcinogenic bacteria in CF patients.
Thus, higher abundance of potentially pathogenic bac-
teria, such as Clostridium and Fusobacteria, combined
with depletion of protective microbes, such as Rumino-
coccaceae, may facilitate carcinogenesis in the CF gut.
Understanding the underlying mechanism of carcino-
genesis can not only be useful for developing therapeu-
tics, but potentially help define biomarkers for early
detection of CRC in CF patients. Lastly, we found an in-
crease in predicted bacterial toxins in the CF population,
which might be explained by the increase in pathogenic
bacteria such as Pseudomonas and Veillonella. This can
potentially damage epithelial cells or induce mutations
leading to unfavorable clinical outcome [79].
Integrating mucosal microbiome and host gene ex-

pression profiles, we observed several correlations be-
tween differentially expressed colon epithelial genes and
gut mucosal bacteria in CF. Co-culture and obligate
cross-feeding studies have shown an increased virulence
of a pathogen in the presence of other bacteria, thus
triggering an immune response that can determine the
clinical outcome [80, 81]. One such example is the in-
creased virulence of Pseudomonas in the presence of
Veillonella as seen in a mice tumor model resulting in
host clinical deterioration [81]. Interestingly, we found
both of these microbes (Veillonella and Pseudomonas) in
higher abundance in CF patients. However, we have also
observed an example of the opposite pattern, showing a
depletion in a downregulated pathogenic bacterium,
Bilophila, in CF population compared to healthy con-
trols. While Bilophila has previously been associated
with CRC, its decrease in CF patients in our current
study can be due to the lack of availability of necessary
substrate, environmental conditions, or presence of
other commensal rivals, which in our study might be
Acidaminococcus due to its negative correlation with the
pathogen [82]. Furthermore, we also found a strong
correlation between Veillonella and DUOXA2, a
highly expressed gene causing inflammation in ulcera-
tive colitis [83]. Another such correlation that we
observed was between highly expressed LNC2 gene,
which plays a role in innate immunity and has been
previously found to be upregulated in human colon
cancers [58], and depletion of Ruminococcaceae, a

butyrate-producing bacteria that helps maintain colon
health [14].
Our study has limitations. First, all CF patients have a

substantial burden of antibiotic exposure. Since antibi-
otics affect the gut microbiome [84–86], this may im-
pact the differences we observe between CF and
healthy mucosal microbiome. Since the colonoscopies
were done electively for colorectal cancer screening,
none of the patients were being treated for acute infec-
tions. However, it is difficult to account for long-term
effects of antibiotics as there is no comparable exposure
in non-CF patients. Similarly, CF patients are also on a
high-calorie diet that is high in protein and fat, this
might be an additional factor impacting the micro-
biome. Furthermore, due to their inability to break-
down and absorb nutrients, the CF patients also have
to supplement for pancreatic enzymes. Thus, our study
considers the joint effects of diet, medication, and dis-
ease, as it is challenging to deconfound these effects in
human studies of CF. Secondly, while some of the CF
patients undergoing biopsy had polyps, none of them
had developed tumors. It would be interesting to see if
patients with tumors also show similar enrichments
and correlation, which can help achieve a more com-
prehensive insight into the early development of CRC
in CF patients. In addition, although we report a poten-
tial role for host gene-microbe and microbe-microbe
interactions in the pathology of CRC, our study focused
on correlations, and causality is not inferred. Consider-
ing that studying causality is challenging in humans,
future studies using in vivo or in vitro models can be
useful to study specific host gene-microbe connections,
understand the mechanism, and disentangle the direction
of interaction [87].

Conclusions
To summarize, we report an analysis of the mucosal
microbiome and host gene expression in the gut of CF
patients and healthy controls. We find downregulation
of tumor suppressor genes, as well as upregulation of
genes that play a role in immune response and cause
inflammation. Furthermore, we observe a shift in
microbiome with depletion in butyrate-producing bac-
teria that may help maintain colon health and increase
in pathogenic strains in individuals with CF. Lastly, our
study provides a set of candidate interactions between
gut microbes and host genes in the CF gut. Our work
sheds light on the role of host-microbiome interactions
and their relevance for the early development of CRC
in CF patients. Our results can provide clinicians and
researchers with biomarkers that may potentially
serve as targets for stratifying risk of CRC in patients
with CF.
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