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Virtual user modeling research has attempted to address critical issues of human-computer interaction (HCI) such as usability
and utility through a large number of analytic, usability-oriented approaches as cognitive models in order to provide users with
experiences fitting to their specific needs. However, there is demand for more specific modules embodied in cognitive architecture
that will detect abnormal cognitive decline across new synthetic task environments. Also, accessibility evaluation of graphical user
interfaces (GUIs) requires considerable effort for enhancing ICT products accessibility for older adults. The main aim of this study
is to develop and test virtual user models (VUM) simulating mild cognitive impairment (MCI) through novel specific modules,
embodied at cognitive models and defined by estimations of cognitive parameters. Well-established MCI detection tests assessed
users’ cognition, elaborated their ability to perform multitasks, and monitored the performance of infotainment related tasks to
provide more accurate simulation results on existing conceptual frameworks and enhanced predictive validity in interfaces’ design
supported by increased tasks’ complexity to capture a more detailed profile of users’ capabilities and limitations. The final outcome
is a more robust cognitive prediction model, accurately fitted to human data to be used for more reliable interfaces’ evaluation
through simulation on the basis of virtual models of MCI users.

1. Introduction

As people age, they experience alterations in cognitive
abilities such as working memory, at attention processes
and spatial cognition, especially when confronting new
technology [1]. The design of human-computer interfaces’
requires careful study of multitasking capability [2] and has
to take into account cognitive aging changes on older adults’
perception [3]. The line between normal aging and dementia
may comprise conditions in which heterogeneous patterns
of cognitive impairment may be observed. Indeed, memory
disorders with no dementia in the elderly population are
frequently reported, and their prevalence varies from 22% to
56% [4].

So far, research efforts have developed cognitive archi-
tectures and theories in order to capture the essential rep-
resentations of cognition. This activity has gradually moved
from a focus on the functional capabilities of architectures
to the ability to model the details of human behaviour,
and, more recently, brain activity [5]. Cognitive models have
been used to simulate humans’ performing multiple tasks in
order to improve the quality and usability of the interface
designs [6]. A bunch of models that merge psychology
and artificial intelligence termed as cognitive architecture
like SOAR [7], ACT [8], and EPIC [9] have been used to
simulate human-machine interaction to both explain and
predict interaction behaviour. A simplified view of these
cognitive architectures is known as the GOMS model [10].
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Commonly, models developed using cognitive architectures
consider the uncertainty of human behavior in detail but
have not been widely adopted for simulating HCI as their use
demands a detailed knowledge of psychology [11]. Existing
user modeling tools, focusing on inclusive interaction like
EASE [12] or CogTool [13], do not yet cover a wide range of
users with perceptual, cognitive, and motor disabilities.

The SOAR architecture was created to demonstrate gen-
eral human-level intelligence and focuses more on high-
level functionality than on low-level cognitive fidelity, which
makes it less suited to predict people’s errors and limitations
[14]. EPIC is especially suited for modeling human mul-
timodal and multiple-task performance including sensory-
motor processors. The ACT-R theory for simulating and
understanding human cognition enabled serious considera-
tion of the cognitive, perceptual, and motor capabilities of
the user, to describe interactivity in HCI [15] and provided
a reliable cognitive architecture for the development of
large-scale, functional, cognitively motivated models. ACT-
R implementations may vary in technical details such as
time parameters of the user model [16]. For computational
reasons, most actual ACT-R implementations use additional
submodules as noise generators applied on the output in
order to create noisy parameters.

The cognitivemodule proposed in this paper is based on a
modification of theACT-R implementationmodel in order to
achievemore accurate prediction of theMCI elderly memory
changes mirrored at the performance on infotainment tasks.
One effective approach could be to intervene in the internal
part of the ACT-R cognitive architecture by introducing a
dual submodule (one for the declarative memory and one
for the procedural) that can affect memory as well as the
overall cognitive functionality. The further challenge was to
determine the error rates and the extra time needed by MCI
virtual user models (VUMs) and compare timing and success
rate results with those generated by real MCI users while
interacting with interfaces.

(1.1) Cognitive VUMs Based on ACT-R. Cognitive models
have been used to improve the quality of interface design by
applying what is known from psychology to the design of
interfaces [6]. ACT-R, EPIC, and SOAR have been employed
extensively in psychology and the cognitive sciences tomodel
human behaviour [17]. Moreover, these techniques may be
used to explain and predict human-computer interaction.
However these cognitive architectures, known as the GOMS
(goals, operators, methods, and selection rules) model, are
mainly suitable for modeling the optimal (skilled) behaviour
of users.

Various user model representations have been proposed
from ontology based architectures [18] to XML-based lan-
guages [19]. Based on ACT-R cognitive architecture, Serna
et al. [20] aimed to model and simulate cognitively impaired
people such those suffering from Alzheimer’s disease by
evaluating performance in the execution of an activity of daily
living. They simulated the loss of memory and increase in
error for a representative task at kitchen by changing different
ACT-R parameters. The technique is interesting but their
model still needs rigorous validation through other tasks and
user communities.

Biswas et al. [21] developed a simulator to help with
the evaluation of assistive interfaces using the CPM GOMS
[10] model to simulate the optimal behavior and a new
model based on Markov processes for suboptimal behavior.
The CogTool system [22] builds on the existing architecture
of GOMS models and ACT-R system in order to provide
quantitative prediction on interaction. However, the system
simulates expert performance with GOMSmodeling support
while the ACT-R system helps to simulate novice users.
It does not yet seem to be used for users with disability
or assistive interaction techniques. The GUIDE user mod-
eling system considers the needs of users with disability
and age related impairments. Despite the many conceptual
advances in cognitive architecture research and the strength
in modeling cognition and general intelligence, there are
some open issues that deserve attention. Among their known
limitations is that detailed physical, cognitive, and behavioral
characteristics cannot be sufficiently represented.

Comparatively little research has been paid on the
simulation of memory loss and more rigorous approaches
of predictive parameters that concern specific population
groups such as the mild cognitive impairment are needed.
Virtual user models have commonly been shown to provide
insufficient knowledge to the product designers in order
to differentiate normal from pathological origins of age-
related cognitive changes and provide interface prototypes
with enhanced accessibility.

(1.2) Novel MCI Virtual UserModels. In our approach, ACT-R
has been chosen as the theoretical framework as it is the most
representative example of cognitive modeling architecture
being pushed to its limits by large-scale modeling and
used to develop specific models. ACT-R comprises a series
of modules which serve to represent different information
such as goals and declarative memory. ACT-R can model
characteristic errors of human performance; however, the
work in cognitive simulation is in progress and in con-
tinuous update to reflect subtle changes of cognition and
behavior. The specific challenge was to extend capabilities
and functionality of already existing cognitive mechanisms.
Therefore the proposed dual submodule could be viewed as a
shift in specific cognitive representations. Moreover different
cognitive modules could be plugged in for more accurate
evaluation purposes.

Initially, our main challenge was to enhance the cogni-
tive realism of computer generated models and afterwards
provide a second generation of VUMs on the basis of a
novel submodule that will reflect representative and subtle
cognitive changes of elderly and people with memory decline
as an early onset in mild cognitive impairments. MCI is
the transitional stage between normal ageing and demen-
tia. More specifically, amnestic mild cognitive impairment
(aMCI) is characterised by memory complaints, so the
simulated memory of the VUM had to be affected. Moreover,
verbal fluency ability is affected in a MCI and thus some
extra delays in communication tasks would give VUM results
closer to those of the actual users [23].

In order to describe a set of users with specific disabilities
we instantiated a generic VUM (GVUM), representing the
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specific group of elderly and MCI population. The general
concept of the generic user model has been defined by the
Veritas project VUMs [24]. In this experiment, as in previous
studies [25], these instances of the GVUMs were intended to
be used for simulation purposes to test user interfaces against
various disabilities. In order to form and evaluate the pro-
posed virtual user models we have been based on high level
languages for describing cognitive models and simulation
frameworks supporting these languages. More specifically,
our virtual user models were formed by separating user
models from taskmodels according to the UsiXML Language
[26].

Our simulator, based on well-known literature findings
[25, 27], like the Hick-Hyman law for cognitive information
capacity [28, 29] and Fitts’ law for human movement [30]
became capable of predicting the number of interaction
events within infotainment scenarios and the time needed to
complete them [31]. Hick’s law states that the time between a
stimulus and the user’s response is increasing by the number
of available choices at any given time. Users, when facing a
decision making problem, need more time to react as their
perceived alternatives increase. In a GUI control element, for
instance, a long drop-down list requires more time to pick
the wished choice. The time is calculated in the beginning of
the user’s reaction in order not to be confused with motor
abilities. Hick’s law was not used in equally probable choices;
the following formula was used to take into account the
entropy of the decision:
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theoretic entropy). Fitt’s law is awell-establishedmodelwhich
describes the time needed for a human movement from an
initial state to a target based on the (a) Euclidean distance to
the target and (b) the size of the target. In simple words, this
model is used to predict pointing actions either by a physical
touch or a virtual one, like in cursor pointing using a mouse
device.The predicted time is given by the following equation:
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2
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where: 𝑇: time needed to complete the task, 𝑎, 𝑏: model
parameters, 𝐷: distance from the current cursor position to
the center of the target, and𝑊: width of the target along the
axis of motion.

To overcome the limitation of screen sizes, the size of the
target𝑊 is considered very large (infinite) in case of targets
located at the edge of the screen. Task analysis and prediction
of real user’s performance (durations) have been used in the
past with good prediction accuracy over predefined tasks
[32].

This study investigated how subtle changes in cognition
could affect GUI interaction for elderly and MCI groups.
Cognitive functioning data correlatingwithmemory capacity
have been considered to be of critical importance to be
encoded into VUMs that would be assessed through sim-
ulations over GUIs. Figure 1 briefly describes the submod-
ules of the new ACT-R approach. The first line contains

memory components which are being affected by cognitive
impairments. The control component located at the center
(procedural) orchestrates all others by exchanging messages.
Located at the bottom are the perceptual system possibly
affected by visual and/or aural impairments and the response
system where the motion planning of the cursor is generated,
along with the button clicks and the key strokes (motor). The
extension to the existing architecture is the MCI modeling
submodule which temporarily modifies the random rules,
memory retrievals, and messages exchanged between other
parts of the VUM, to simulate the cognitive decline. An
internal interface has been designed for this submodule. For
compatibility reasons the functionality of the submodules has
been implemented in the simulator with keeping the VUMs
structures unaffected.

The modification of the memory-related features of the
VUM (mostly declarative memory and current goal) is simu-
lated by inserting additional time delays on the performance
of the elderly VUM.Thus, according to the current approach,
the time to complete a given scenario by the MCI cognitively
impaired VUMs is defined by

(i) the human movement model known as Fitt’s law
mounted in the motor sector of the response system,

(ii) Hick’s law which describes the time needed by the
VUM to make a choice among many interaction
controls on a given interface based on its current goal
[28],

(iii) the new additional time delay inserted in thememory
modules caused by the MCI and being scaled accord-
ing to the assumed Montreal Cognitive Assessment
test (MoCa) [33] and the Boston Naming Test (BNT)
[34] results,

(iv) other delays issues to the ACT-R itself, the hypo-
thetical age of the VUM, or the existence of physical
impairments.

Summarizing, the proposed MCI submodule is affecting
the error rate and the execution time of tasks. Those two
parameters were trained using tests with real users that are
reported in the next section.

2. General Objectives

Computer and information technologies’ use could improve
the quality of life of older people. However, successful use of
technology by the elderly is limited by age-related cognitive
and perceptual changes. Designers have to use as an index
not generally age but concrete cognitive, perceptual, and
behavioural changes to identify early indicators of dementia
and customize the entire process of design accordingly [1].
Existing design practices have provided a few accessibility
features for elderly or disabled users, mainly covering motor,
vision, and hearing impairments. Unfortunately, up to now
accessibility guidelines do not systematically consider users
with perceptual and cognitive abilities [21].

Within this research work, we undertook a multifacet
study, focusing on robust cognitive prediction models for
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Figure 1: The revised cognitive model of the VUMs (extended ACT-R model).

mild cognitive impairment within the scope of graphical
users’ interfaces accessibility and evaluation. The main aim
is to introduce novel virtual user models with enhanced
predictive validity inmental processes that will be utilised for
accurate simulation results in interface design.

Cognitive-based evaluation of interface accessibility and
evaluation are proposed as interface design support towards
more inclusive graphical user interfaces. However, user inter-
face evaluation is also the means to arrive at the optimization
of the proposed novel cognitive models. Our approach is
to initially research the relationship between some design
variables and the mental processes required to perform
successfully some indicated scenarios and then utilise the
effectiveness of user interfaces to optimize the MCI VUMs.
The main vision of the proposed research is approached
through the synthesis of the following objectives.

(i) Model elderly with mild cognitive impairment for an
in-depth analysis of their perceptual and cognitive
abilities.

(ii) Evaluate cognitive decline through GUI accessibility
assessment.

(iii) Utilize the effectiveness of user interfaces to optimize
MCI VUMs.

To that end, we organized our work in a set of 4 studies,
each one aiming to provide a specific set of qualitative and
quantitative results in order to arrive at the aforementioned
objectives. These studies, as well as their methodologies and
results, are detailed in the following sections.

3. Study 1: Preliminary Study with
Real Subjects

3.1. Introduction to Study 1. With an ever-increasing pro-
portion of the total elderly population suffering from MCI
symptoms, GUI designers need to deliver ICT products
which have been previously tested for their accessibility
features. According to our approach, simulation testing can
make this possible to a certain extent using VUMs instead
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of real users. To train the MCI cognitive VUMs, that is,
to stabilize the cognitive-impaired VUM parameters and
regulate their simulating performance, we first needed to
assess the MCI symptoms of real users and then examine
these users’ performance (extra time needed to complete
tasks and a higher error rate). To achieve this, initially
real users have been recruited to perform well-established
screening tests for cognitive evaluation.

3.2. Materials and Methods of Study 1. Among various MCI
screening tests that are already applied in day-care organiza-
tions, the short version of BNT screening test (30BNT) was
chosen as one of the most well-established MCI tests. The
MoCa test, supplementary to BNT, was also chosen due to
its verbal fluency part so as to test users’ verbal ability and
strengthen their profiles. A computer-based version of the
aforementioned tests was implemented and its validity has
been checked against the paper-and-pencil versions of the
tests.

The test had five discrete steps: (a) introduction to the
scopes of the test by the pilot test supervisor (5min), (b)
initialization of hardware and software (3min), (c) creating
new user profile (1min), (d) performing a demo example for
each test (30 sec), and (e) actual test and log file creation
(20min). During the screening tests, the cognitively impaired
elderly, as well as all other elderly and young participants, did
not have to navigate themselves in the screening application.
Instead, a member of the research personnel (RP) was navi-
gating for them; from the participant’s log files a constant time
delay factor (psychomotor noise) was removed to correct the
timestamps. A simple reaction time (SRT) was taken as a
constant calculated from Hick-Hyman law [28, 29].

Considering the right and wrong answers of the elderly
as equally probable choices, the RP had to press the “correct
answer” button or press the spacebar to start writing the
user’s own word. Each RP, who was responsible for pilot
tests, performed ten (𝑁 = 10) tries on a reaction time
test to measure the response times for keyboard presses and
mouse clicks.The average response times were removed from
the time-stamped answers of all elderly testers who were
recorded by this RP. Regarding the BNT test, the subjects
who were unable to provide the correct name of the depicted
object within 20 s were given a semantic cue and if they were
still unable to give the answer after a further 20 sec, they
were given a verbal cue. The 20 sec threshold for giving help
was given by the institution responsible for taking the paper-
based BNT test.

Finally, the screening assessment produced log fileswhich
contained the time-stamped responses of the participants.
A mass log reader tool was used later for data extraction.
The screening test itself, as well as the log files reader and
other supplementary software tools, were engineered with
Delphi andC++ programming languages. A screenshot of the
computer-based MCI screening test interface can be seen in
Figure 2.

MCI screening tests were performed with real users,
constituted by three groups: (a) young people, (b) healthy
elderly, and (c) MCI users (aMCI). Recruitment criteria for

Figure 2: The computer-based BNT Interface.

MCI users included at least 55 years of age, being self-
handlers, having basic computer skills and fluency in Greek
language (checked by phone interview). Twenty-five (𝑁 =
25) elderly persons of different ages from 55 to 78 (𝑀 = 65.56,
SD = 5.89) composed the testing group. Approximately 40%
(𝑁 = 10) of the elderly were MCI positives, nondemented.
The control group consisted of eleven (𝑁 = 11) young expert
computer users, 26.27 years old in average (SD = 1.95).

3.3. Results of Study 1. The data produced by the computer-
based version of theMCI screening tests showed significantly
strong correlation with those produced by the institutional-
ized hard-copy versions of the 30BNT andMoCa.This initial
step was necessary to make the computer-based versions of
the MCI screening tests a valid reference for the following
steps. To be noted that the follow-up time of BNT test was
six (6) months later in average for most participants and less
than one (1) year for all people taking part in this study.

The linguistic MoCa results were found normally dis-
tributed (Shapiro-Wilk test), in contrast with BNT results
which were not, since results were significantly negatively
skewed. Linguistic MoCa results for healthy elderly (𝑀 =
13.80, SD = 4.94) were found significantly different (𝑡 =
2.317, 𝑃 < 0.05) than those having MCI (𝑀 = 9.10, SD =
4.84). The Shapiro-Wilk test showed significant deviance
from normality for BNT results, so nonparametric test was
used.TheMann-WhitneyU test gave 𝑃 < 0.05 for the elderly
group. So, among elderly users, those having MCI (𝑀 =
21.78, SD = 5.40) had significantly different BNT results
than the healthy ones (𝑀 = 25.90, SD = 1.97) as expected.
Regarding the age variable, the independent samples test
showed that, as expected, no significant differences were
found on linguistic MoCa results between the elderly users
and the young group (𝑃 > 0.05) [35]. Similar results were
found for BNT scores: a Kruskal-Wallis test confirmed that
age does not make the difference (𝑃 > 0.05).

The Mann-Whitney U test for the duration of the
computer-based BNT test, a variable that was found not
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Table 1: MCI screening test results.

Variables Young Healthy elderly MCI
Sex M/F 4/7 10/5 6/4
Age (in years) 26.27 (SD = 1.95) 64.69 (SD = 4.80) 66.70 (SD = 7.18)
Education (in years) 17.36 (SD = 0.80) 13.46 (SD = 3.33) 12.9 (SD = 3.38)
MoCa number of words (in 60 sec) 13.64 (SD = 4.03) 13.80 (SD = 4.94) 9.1 (SD = 4.84)
MoCa duration between words (in sec) 4.70 (SD = 1.186) 5.05 (SD = 2.36) 8.45 (SD = 4.76)
BNT answers without help 25.56 (SD = 2.18) 25.90 (SD = 1.97) 21.78 (SD = 5.40)
BNT answers with semantic help 26.00 (SD = 2.06) 26.20 (SD = 1.39) 22.22 (SD = 5.12)
BNT answers with phonemic help 26.11 (SD = 2.14) 26.20 (SD = 1.39) 22.56 (SD = 5)
BNT duration (in sec) 113.3 (SD = 33.60) 117.49 (SD = 21.80) 167.3 (SD = 71.65)

normally distributed, showed that the time needed by par-
ticipants to complete the BNT is not an efficient separator
for MCI users (𝑃 > 0.05) and only the right-responses are.
Table 1 presents the results per young, well-being elderly and
MCI groups. Research results confirm that among young and
healthy elderly the decline in lexical retrieval is not notable
[35]. Finally, variables of the linguistic MoCa and the BNT
present a notable correlation (𝑟 = 0.395, 𝑃 ≤ 0.05), though
further analysis revealed different qualities among them.
Furthermore, statistical analysis reported good cohesion and
separation ability of the linguistic MoCa and BNT clustering
model with a score of about ≈ 0.6.

3.4. Brief Discussion of Study 1 Results. The screening pro-
cedure through MoCa and BNT tests serves as a starting
point to the wholemethodology of the current researchwork.
Initially, the MCI symptoms of real users had to be assessed
as evidence of cognitive decline. This evidence was needed
to formulate the quantitative data which will be later related
to users’ performance while performing interface tasks.Thus,
results from MoCa and BNT screening tests assessed users’
cognitive and perceptual factors that encompass also the
mental state behind response time and general behavioral
performance that will be resulted from the following study.

4. Study 2: Simulating Tasks with
Cognitive VUMs

4.1. Introduction to Study 2. Our proposed VUMs were
trained based on the data obtained from the afore-described
screening tests. The trained MCI cognitive VUMs were
then used for the simulation of tasks execution in human-
computer interaction with graphical user interfaces (GUI).
VUMs in this paper are named according to the cognitive
impairment they simulate and the strength (percentile of
the total population) of the impairment they correspond to.
For example, the “75MCI” VUM is a virtual user model
which can simulate the behavior of the 75% of the cognitive
impaired elderly population, which is calculated by creating a
Gaussian distribution from the obtained data and taking the
75th percentile (i.e., the distribution’s value, belowwhich 75%
of the observations may be found). The alphanumeric suffix
describes the impairment and the numeric prefix indicates
the strength or the earliest symptomatic stage of MCI.

To obtain a reference for comparing the performance of
the virtual users (i.e., trained VUMs) to the performance of
real users, initially, the testing GUI application is initiated in
the host device (PC, laptop, smartphone, PDA, and tablet)
and the optimal user (OpUs), who is a nonimpaired real
young user with expert computer handling abilities and suf-
ficient knowledge of the testing interface, is asked to perform
a series of tasks. Those groups of tasks, called scenarios, are
described by the task model specification (an XSD schema)
and are stored in the task model bank.The optimal recording
is critical as it provides a proper reference (ground truth)
for comparing the performance of VUMs to the one of real
users at later stages. Before any simulation preparation, GUI
designers need to define the activities they want to test for
accessibility. This means that a formal description of the
series of actions in order to arrive at a given result must
be produced. To proceed to the actual experimental phase,
we introduce “scenario files,” which describe structured tasks
used in order to describe the expected, by either real user
or VUM, activity during the computer-based experiment.
Those files initially describe tasks in an abstract format
(e.g., locate another user in the Metaverse), but using a
scenario editor tool we developed that they are matched to
actions performed on the actual user interface by annotating
which areas of the testing interface correspond to active
GUI elements in order to match the tasks with the related
GUI elements. Eventually, the annotated interface is used
in making connections between the interaction events and
the tasks described in the scenario (simulation preparation).
Figure 3 gives an overview of the simulation framework and
the basic data flow between the main components.

During the simulation phase, initially we constructed
three representative cognitive models: (a) elderly, (b) MCI,
and (c) young users’ group. These models were thereafter
used to simulate scenarios similar to the ones performed
by respective real users, toward determining and validating
the comparison capacity of the system. Task validation was
expanded in iterative trials with slightly different scenarios
structured as sets of tasks. Those tasks were randomised so
as to mitigate the learning effect. The results of the initial
validated cognitive tasks were correlated and analysed with
regard to the overall duration and the number of the low-level
(LL) interaction events related to the input devices produced
during the experiment.
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Figure 3: The basic components and data flow of the simulation framework.

The LL events included keystrokes cursor𝑋-𝑌movement
on the screen andmouse button clicks all hooked by a custom
software tool from the lower OS layers (operating system
messaging system). According to our simulation approach,
the number of interaction events worked as an error rate
indicator. Additionally, the “soft fail” concept was introduced
to allow VUMs to retry the failed tasks in simulation time.
Correspondingly, the “hard fail” concept terminates the
simulation at the very first fail-point. In “soft fails” the VUMs
have the chance to retry on failed tasks up to the limit of 200%
of the OpUs time. This limitation allowed VUMs to repeat
internal trial-and-error cycles without exceeding the doubled
OpUs duration. We introduced this technique of VUMs
to retry on failed tasks in order to prevent unsuccessfully
completed tasks by a constrained VUM in infinite time
(endless loop).

Finally, experimental results were exported in simulation
reports which contained detailed information about the
VUM’s performance. Simulation reports were structured
with respect to anXSD schemadefinition to formally describe
measured elements as extensible markup language (XML)
documents. A short human-readable description on the find-
ings, including statistics on error rates, durations, number,
and type of OS interaction events was included in the header
of the simulation reports in order to allow results comparison
with the performance of the real users (saved in log files). Real
users performed in an external-to-the-simulator software
environment, namely, the MCI screening tool and the real
user’s logging approach.

The accessibility assessment approach using VUMs pro-
posed herein could effectively describe memory decline in
mild cognitive impairment. The main quantitative measures
were (a) the number of interaction events produced by the
user during the scenario execution and (b) the time needed to
complete the scenario (duration). Infotainment results were
initially checked for correlation with age and MCI results, to
construct a prediction model upon statistical methods using
SPSS v.19.Moreover, the proposed cognitivemodels, based on

Figure 4: The Metaverse viewer used here as the testing interface.

the new dual cognitive module, were evaluated over whether
they are better predictors of the time that actual MCI patients
need to complete the tasks than the previously used cognitive
architecture, without the new MCI submodule.

4.2. Methods of Study 2. Pilot studies with elderly and MCI
users took place on September 2013. The second life (SL)
viewer of (Figure 4) was used to allow participants interact
with the Metaverse and other distant visitors. The special
version of the SL application used in the infotainment tests
was developed using the OpensSim server platform and
the source code version of the official SecondLife viewer
application. This way, a private and fully controlled by the
authors’ team SL Metaverse environment—not visible from
other SL visitors—was made available for subjects (real users
and VUMs). It is worth noting that the capability to control
the custom Metaverse refers not only to the features of the
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Table 2: Scenarios performed in the infotainment pilot test.

id Scenario name Scenario description Tasks Required abilities
S1 Enter the Metaverse It is required that users type username and password 5 Memory

S2 Change Outfit Having a second outfit available, users are asked to
change from outfit 1 to outfit 2 5 Decision-perception

S3 Upload file in Metaverse Choose an image file from the local drive and upload 8 Information orientation
S4 Build 3D Object Create a new cube in the virtual environment 5 Perception-reflection
S5 Scale 3D Object Scale the cube to make its side equal to 1m 5 Perception-reflection

S6 Rotate 3D Object Rotate the cube in 𝑥, 𝑦, and 𝑧 using the colored rotation
rings 8 Motor-vision

S7 Move 3D Object Move the 3D object in 3 directions using the colored
moving arrows 8 Motor-vision

S8 Navigate Avatar in Free
Mode

Rotate the head-camera of the avatar in space and then
move few steps forward 3 Visual-motor

S9 Navigate Avatar to
Sound Source

Navigate the avatar from a random position to the
source of the sound 4 Visual-acoustic-motor-

decision-perception

S10 Interact with Dynamic
Object Touch an object with dynamic behaviour 2 Motor-perception

S11 Interact with
Multimedia Object Touch an object which makes a sound 2 Motor-perception

S12 Initiate Chat with
Another User

Locate another user in the Metaverse and send a
“Hello” message 5 Perception-verbal

S13 Share Folder with
Another User Share folder with another user 9 Information

orientation-memory

interface, but to the content of the immersive environment as
well (2D and 3D content and functionality).

The infotainment tests were completed in the same day as
the computer-based MCI screening test (Figure 4). In tests’
iteration the scenarios were presented at a slightly different
manner in order to eliminate the learning effect. However, the
difficulty level of tasks has been maintained at both pilots in
order to be comparable.

After performing the MCI screening tests, participants
were entering a spacious demo room reserved for the pilot
tests, usually in pairs. To ensure participants feel confident in
using the Metaverse interface, after a demonstrating execu-
tion of all scenarios by the RP, the elderly participants were
asked to follow.Thirteen relatively easy scenarios of common
infotainment tasks were created for the test purposes. Some
examples of scenarios are (Table 2): “enter the Metaverse”
which is the user authentication process (S1), “change outfit in
avatar’s appearance” (S2), “create and manipulate 3D objects”
(S4–S7), “navigate avatar” (S8-S9), “interact with objects”
(S10-S11) and “interact with other visitors” (S12-S13). The
length of each scenario, represented by the “number of tasks”
indicates how many tasks must be completed by the user
successfully to achieve the scenario goals.

4.3. Results of Study 2. The infotainment findings indicated
that the number of interaction events, which also expresses
the error rate due to the “hard error” and “soft error” concept,
is a not a strong separator for the elderly and theMCI groups,
so it was gradually repealed. Table 3 presents in detail the

results of the infotainment pilot test organized per scenario
for the two testing groups (elderly and MCI).

The research hypothesis here is “if some portion of the
population has cognitive impairments which affect memory,
then for those who failed in the MCI screening test, it is
expected that their scores in the related infotainment scenarios
will be lower than for others.” It is critical that not all the
scenarios are equally interesting for the dual cognitive mod-
ule development. For example, the scenarios where mostly
motor, visual, and acoustic abilities are needed for their
successful performancewere intact for theMCIusers. Indeed,
among the available GUI scenarios, thosewhich requiremore
complex mental processes proved to be the appropriate for
the distinction between MCI and healthy elderly users. Thus,
in this study, emphasis is given on those scenarios which are
primarily affected by memory and decision making decline.

Having the scores expressed as percentage differences of
the OpUs performance, healthy elderly perform the infotain-
ment scenarios in the 432.94% of the OpUs time and they
produce the 50.77% of the OpUs events. Similarly, the results
for the MCI users are 446.48% of the OpUs time and 56.20%
of the OpUs events. Although the average values show that
MCI users need more time and more keyboard and mouse
clicks to perform the same scenarios; this extra effort may not
be significant.

After normality tests, all variables related to scenario
duration and events were tested for equality of means in the
two testing groups (healthy elderly users andMCI users). For
healthy elderly, the time needed to complete the first scenario
(S1:𝑀 = 59.53, SD = 21.85) and the last one (𝑀 = 83.43,
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Table 3: Performed scenarios and scores.

Scenario Optimal user Healthy elderly user MCI User
Events Time∗ Events Time∗ (SD) Events Time∗ (SD)

S1 46 15.35 59.82 (23.43) 59.53 (21.85) 53.63 (5.07) 87.00 (32.34)
S2 10 8.73 13.64 (2.65) 46.88 (19.07) 15.00 (3.20) 56.75 (15.55)
S3 16 15.65 26.18 (9.44) 104.180 (44.35) 24.25 (8.37) 126.54 (44.07)
S4 10 6.64 11.91 (2.70) 35.37 (16.93) 13.38 (2.56) 47.33 (21.91)
S5 10 12.82 15.64 (7.31) 55.65 (32.80) 17.00 (3.38) 73.65 (23.19)
S6 12 12.15 20.36 (4.34) 63.3 (19.98) 20.88 (7.08) 63.50 (18.54)
S7 12 15.36 19.82 (4.99) 54.08 (19.75) 28.50 (16.41) 69.78 (25.901)
S8 6 4.59 7.82 (2.60) 14.07 (6.33) 6.88 (1.24) 16.93 (7.09)
S9 12 7.39 39.36 (25.31) 42.10 (16.24) 23.63 (9.70) 30.73 (15.55)
S10 4 1.51 5.09 (1.86) 10.10 (6.54) 5.38 (2.66) 12.36 (7.80)
S11 4 1.03 4.45 (0.82) 5.20 (3.80) 5.57 (4.20) 7.01 (7.42)
S12 22 12.79 26.64 (8.60) 51.97 (23.00) 26.13 (9.07) 47.68 (10.77)
S13 27 14.86 33.64 (10.14) 83.43 (25.05) 42.50 (23.39) 121.53 (45.42)
∗Time is in seconds.
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Figure 5: Two dendrograms as result examples which represent the variables of the number of interaction events (a) and time in seconds (b)
using average linkage between groups.

SD = 25.05) was found to be significantly different than the
duration of the first (𝑀 = 87.00, SD = 32.34) and the last
scenarios (𝑀 = 121.53, SD = 45.42) of those having MCI
(S1: 𝑡 = −2.21, 𝑃 < 0.05 and S13: 𝑡 = −2.34, 𝑃 < 0.05). Also,
this difference was found at a significant effect size: 𝑟 = 0.445
for S1 and 𝑟 = 0.461 for S13. For all other scenario durations,
the null hypothesis for equity of means was not rejected.

Regarding the other testmetric, the number of interaction
events (keystrokes and mouse clicks produced during the
experiments), the null hypothesis for equity of means was not
rejected (𝑃 > 0.05) in all tests. Concerning the number of
interaction events, results indicate no difference between the
two target groups. The same result was extracted from the
test (Mann-WhitneyU test) between the institutionalized and
noninstitutionalized MCI.

4.4. Brief Discussion of Study 2 Results. The duration and the
number of events for each scenario are not always following
each other’s fluctuations. Strong correlations between the
duration and the number of interaction events were found
only on scenarios S2 (𝑟 = 0.730, 𝑃 < 0.001), S5 (𝑟 = 0.669,
𝑃 < 0.05), S6 (𝑟 = 0.525, 𝑃 < 0.05), S9 (𝑟 =
0.477, 𝑃 < 0.05), and S11 (𝑟 = 0.859, 𝑃 < 0.001). In
Figure 5 two representative dendrograms of the duration and
events variables are presented as the result of the hierarchical
variable clustering. The vertical axis represents the number
of interaction events (Figure 5(a)) and the overall duration
(Figure 5(b)).

Following the results of the running data through the
average linkage between groups, it is obvious that the two
memory-related scenarios S1 and S13, as well as the two
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information orientation scenarios S3 and S13 are outliers
and are fused in arbitrarily at much higher distances than
others. The main aim was to extend all the knowledge
acquired by the statistical analysis of the infotainment data in
order to optimise the VUMs performance towards a second
generation of VUMs, especially designed and tested for the
selected MCI group.

The following section describes how the measures of the
experiment were fitted to a regression equation in order
to develop a performance prediction model for the second
generation of VUMs. The expecting generation of VUMs,
optimized based on the findings of study 2, summarizes all
our expectations regarding the prediction of real MCI user’s
performance when working on interface designs.

5. Study 3: Optimization of VUMs

5.1. Introduction to Study 3. The currently presented effort is
about the optimization of VUMs based on real users’ data
and the cognitive architecture proposed by theACT-Rmodel.
The ultimate goal was to create robust VUMcognitivemodels
as an internal mental representations of elderly users that
will constitute their exact cognitive profile. In a first level
the insertion of the MCI submodule as a perceptual module
targeted at better estimations for early dementia prodromes.
The new challenge was to determine the error rates and the
extra time needed by MCI-VUMs and compare timing and
success rate results with those generated by real MCI users.
In a second level, a more detailed representation of the VUM
cognitivemodel was used in interface accessibility assessment
in a simulator. The results extracted from the infotainment
test were used to compute which cognitive parameters should
be updated.

5.2. Methods of Study 3. A regression equation was used
to find out what relationship, if any, exists between the
durations of performed—by real users—infotainment tasks
and MCI screening test results given by the same subjects.
As long as the predicted VUM’s scores, as outcomes of the
simulation tests, can fit to a regression equation, we can
remodel the cognitive submodule of the existing VUMs for
future experiments (optimized VUM).

This section explains the results of the forward selection
procedure we followed as a strategy to choose the order of
the approximate polynomial which calculates the scenario
durations given the MCI screening scores. Using the BNT
score as the independent variable, we successively fitted the
models in increasing order and tested the significance of
regression coefficients at each step of model fitting.

At first we assumed linearity as a starting point for cal-
culating an equation which minimizes the distance between
the fitted line and the experiment measure points (scenario
durations). The linear regression equation was considered
statistically significant (𝑃 < 0.05) and it gave a nice fit in our
experimental results. Next, following our forward selection
strategy, we upgraded our model to become a second-order
model by trying to keep the statistical significance of the
highest order term in the range of accepted values (<0.05)
and at the same time to increase the 𝑅-squared (𝑅2) statistic

(coefficient of determination). Calculated as the percentage of
the response variable variation that is explained by our linear
model, the 𝑅-squared statistic was found to be equal to 0.322.
Keeping this value for future reference, the quadratic model
can be expressed as

𝑌 = 𝑋
2

𝑏
2
+ 𝑋𝑏
1
+ 𝑐, (3)

where 𝑌: duration of scenario, 𝑋: MCI screening score
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2
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The above method was used to calculate the expected
duration of the scenarios when MCI users took part in the
experiment. The final simulation report gives as predicted
duration

𝐷


𝑖
= 𝐷
𝑖
+ 𝐶


𝑖
, (7)

where 𝐷
𝑖
: duration of scenario 𝑖 for a VUM with 50% MCI,

𝐷
𝑖
: duration of scenario 𝑖, for a healthy elderly VUM, and 𝐶

𝑖
:

constant coefficient.
As an example, given the duration of scenario 1 for a

healthy elderly, the coefficients of (3) for calculating the
duration of the scenario using a 50MCI VUM were found
𝑏
1
= 41034.988, 𝑏

2
= −979.606, and 𝑐 = −399951.739.

In order to keep the simple rule that cognitive decline
(e.g., MCI) adds extra time to the duration of scenarios, 𝐶

𝑖

in (7) must be always greater than zero (nonnegative). So, the
standard coefficient 𝑐, as calculated before, subtracts𝐷

𝑖
from

the result of (3) in order to express the amount of time added
to the healthy elderly as a result of the cognitive decline.

The quadratic model gave an accepted statistical signif-
icance (𝑃 < 0.05) and moreover it offered a significantly
higher 𝑅-square (𝑅2 = 0.459) than the linear model (𝑅2 =
0.322). By carrying on the model upgrading procedure, the
next polynomial regression model (the cubic) was found not
much better (𝑅2 = 0.456, 𝑃 < 0.05) than the previous
one and thus we did not upgraded our model more. The
second-ordermodel wasmore preferable due to its simplicity,
so the quadratic effect parameter remained as the highest
order term in our prediction model. To be noted is that other
models, like the logarithmic, power, and exponential, were
used to give no better results than the quadratic model.

The prediction models used for calculating the more
accurate task durations of the MCI VUMs were incorporated
into the GUI simulator to achieve optimized simulation
results. Thus, the simulation reports produced on the later
stages of the experiment contained more accurate results and
were better fitted to the GUI designer’s decision making. The
optimized VUM behaviour was now both visually observed
during simulation and imprinted in experiment reports.This
was achieved by taking into account the updated parameter
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Table 4: Test the new VUMs by example.

Users Comments S1 duration in
sec

Fraction of the
average MCI user

OpUs Duration of the optimal user 15.35 0.17
Healthy Elderly Score recorded in the infotainment pilot test 59.53 0.68
MCI Score recorded by the actual MCI users 87.00 1.00
50Elderly VUM of the first generation 17.30 0.19
50MCI VUM of the second generation (MCI-ready) 78.38 0.90

values which were responsible for the control of the simula-
tion time flow. The optimized time management regulation
mechanism had a direct effect on the task completion
times of the MCI VUMs, while in VUMs free of abnormal
cognitive decline, the GUI simulation functionality remained
unaffected. To be noted is that the optimized functionality of
the MCI VUMs refers only to the time delays related to the
cognitive decline and not the other kinds of time regulators
(like in the motor submodule, e.g.).

The optimized version used the same motor, vision, and
perception submodules as in any other case. Only when
an MCI VUM was present in a simulation scenario task,
the simulator adjusted its time management functionality
according to the quadratic predictionmodel inserted into the
optimized VUM. Practically, this was implemented as series
of time delays between the task sequence calls. The rate and
duration of these delays were corresponding to the degree
of the cognitive decline (expressed as a “hypothetical BNT
test” result). Finally, when the experimental simulation tasks
were performed, the visually perceived difference between a
healthy elderly and anMCI VUM (macroscopical difference)
was like an unexpected or unjustified delay in the cursor
motion planning. This distortion on cursor movement was
due to the simulated “forgetfulness” of the VUMs which had
lost control over their performed tasks, although their tasks
were simply noted in the loaded scenario file.

Another important time regulator of the optimizedmodel
is the time needed by the VUM to select one option in the
interface instead of another, whenmany options were present
at the same time.This is quite similar to the commonquestion
“Which button does the job, this one or some other?” The
simulator takes into account the Hick-Hyman law as already
described, but not the human processing speed that may be
affected because of the intelligence quotient (IQ) of theVUMs
[36]. Real users were not asked to give an IQ test before or
after the test and so the IQ was not taken into account by the
optimized VUMmodel.

The outcome to this point is a more detailed represen-
tation of the VUM cognitive model for use in interface
accessibility assessment in a simulator. The results extracted
from the infotainment test were used to compute which
cognitive parameters should be updated and by which factor
in order to eliminate the differences between the scores of
VUMs and the real elderly users.

5.3. Results of Study 3. The new cognitive architecture,
inserted into the cognitive-aware VUMwas evaluated against

the old VUM generation to measure the benefit from the
adoption of the new cognitive model. As an example, in
Table 4, a comparison between the time scores of the realMCI
users, the 50Elderly (old VUM) and the 50MCI (new VUM)
in seconds are presented. Data were extracted by simulating
the “Enter theMetaverse” scenario (S1) and the optimal user’s
performance has been subtracted.

Practically, the optimization of the cognitive models was
proved by using statistical methods over a set of experi-
mental time and score recordings. A number of regression
models have been used for prediction purposes as it was
previously described. The lower and upper bounds of the
95% confidence interval for each of the coefficients of the
regression equation were used to produce the range of the
percentage MCI VUMs, starting from the barely 1MCI up to
the maximum 100MCI. As an example when the OpUs needs
15.35 sec to complete the user authentication scenario (S1),
the healthy elderly need 59.53 sec on average as seen in the
infotainment pilot test, and the averageMCI user needs 87 sec
for the same task.

The 50Elderly VUM needed 17.30 sec, which is far away
from the actual user because a VUM does not take into
account common typing mistakes made by the average
user or momentary lapse of memory (e.g., forgetting one’s
password). This exemplary performance is not convincing
because it is closer to the OpUs than to the elderly or theMCI
users. The only time-penalty paid above the OpUs duration
is an age-related delay inserted in the motor module (cursor
moves) to justify the difference (1.95 sec).

The 50MCI on the other hand, created with BNT = 22 in
cognitive scores, needed 88.21 sec that is 98% similar to the
actual MCI user’s score, in contrast with the old 50Elderly
VUM which needed only the 19% of the actual time score.

5.4. Brief Discussion of Study 3 Results. The purpose of this
study was the optimization of VUMs performance that was
made possible after a set of testing scenarios, on actual
elderly and MCI users, to fit better the performance of the
real persons. The infotainment application area was selected
as representative of typical computer-based environments,
encompassing from 2D GUI elements to immersive interac-
tivity and social communication with other distant users.

The duration of the scenarios which require strong mem-
ory (remember username and password in S1, the sequence
of the dialog boxes to open in S13) was found to be affected
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Figure 6: The original Metaverse interface (a) and the new design (b).

by the existence of MCI. The same can be generalized for
“deep GUIs” which require that users follow long point and
click routes to master the application, even if the application
itself has a good learning curve. The number of interaction
events produced during testing, which hides the success and
failure rates ofmouse clicks and keyboard strokes, was proven
a weak predictor, probably because of the scenario directions
themselves: the fact that the elderly and MCI testers were
given directions of how to perform the scenarios resulted
in inadvertently correcting errors related to the decision-
making. A nonsupervised pilot test with real users based on
a set of scenarios clearly targeted to the memory-judgment
dipole, in which only the goal is shared with the participants,
would be a more sensitive instrument to detect time delays
and interaction patterns in MCI populations.

Following a deterministic approach, the VUM scores of
every previous test are used to predict more accurately the
behavioural and cognitive alterations of actual end users
by time. This approach allows interface designers to run
accessibility tests on their new designs at early development
phases without the need to recruit real impaired persons.

The new cognitive module, the development of which
was based on the total scenario duration prediction model
(quadratic model), worked as expected and produced timing
scores closer to the actualMCI users than the previousmodel.
Bearing in mind that the achieved quality in the prediction
model development is characterized by the coefficient of
determination𝑅2, in the field of humanbehaviour, such as the
infotainment experiment, it is entirely expected that𝑅-square
values will be lower than 25% [37, 38]. The performance of
human subjects in complex tasks over complex user interfaces
is simply harder to predict than in other research fields.Thus,
the resulting value of 45.9% for𝑅-square satisfies our research
expectations. From the VUM optimization point of view, this
was a key-point result because it let us draw the important
conclusion that theMCI scores of BNT can explain almost the
half of the variability of the response data around its mean.

6. Study 4: Accessibility Assessment with
Optimized VUMs

6.1. Introduction to Study 4. This simulation test using the
newVUMs based upon the optimizedGUI aimed at support-
ing more tangible graphical user interfaces and directed the
Metaverse developers to redesign the user interface according
to the needs of all potential users, including those having
MCI (Figure 6). Towards VUM optimization according to
the needs of MCI users, some dialog boxes have been
simplified enough to minimize the cognitive load, while
pictograms were preferred for triggering common tasks and
thus eliminating memory retrieval.

6.2. Methods of Study 4. The new interface was tested by
a new group of VUMs, starting from 50MCI and reaching
85MCI. Instead of creating a completely new VUM, the
elderly VUMwasmodified in such away that an architectural
extension (MCI submodule) is affecting its performance
in the same way MCI is affecting humans. The duration
predictions of the optimized VUM were sliding in the range
indicated by the lower and upper bounds of the model
coefficients as expected. Above the 90MCI threshold, the
interfacewas considered by its creators as not capable of being
redesigned without losing its basic functionality.

6.3. Results of Study 4. The test performed following the
same protocol on the updated interface yielded better results,
namely, reduced times needed to complete the scenarios in
average by 14.09%. In the memory-demanding scenarios (S1
and S13), which are of particular interest for MCI users, the
elderly reduced the user authentication time to 57 sec (SD =
23.36) from 59 sec (SD = 21.85), but MCI users reduced to
65 sec (SD = 34) from 87 sec (SD = 31.54).

6.4. Brief Discussion of Study 4 Results. Accessibility assess-
ment through the optimized VUMs has practically proved
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that inserting the novelMCI cognitive submodule in the over-
all VUM architecture provides the potential that interface
designers canmake tests on the simulator for decisionmaking
on interface redesign. The results were proven valuable as
the new accessible interface design reduced the memory load
in memory demanding tasks and also the cognitive load
in decision making tasks. The new generation of VUMs,
the cognition-enabled ones, responded in a human-like way
pointing to the interface designers which design feature
changes were positives according to the accessibility rules.

7. General Discussion of All Studies

The simulator used to perform experiments through VUMs
was developed to be results-oriented. The ultimate goal was
to enhance interfaces’ quality in order to support designers
performing realistic simulations. On the other hand, the
ACT-R model, in which the structure of our VUMs was
based, was initially proposed as ameaning-oriented structure
for general user modeling use. The multiple studies and
experiments we performed targeted the development of
a novel cognitive model customized to MCI users as an
extension to existing cognitive models.

Each study has contributed in its own way in the overall
effort to simulate dementia for interface accessibility assess-
ment.The first study provided the necessary quantitative data
to describe the medical state of the participants on the basis
of well-establishedMCI screening tests.The second study has
served as a systematic semiautomated observation of MCI
and controls over a period of time, during task oriented
scenarios. Among the performed tasks, those pointing on
memory and decision making processes were of particular
importance for the target audience of patients suffering from
dementia. The third study indicated the relation between the
performed timing scores and the state of cognition. From
the results we gathered, the model which best described in
statistical importance the relation of user’s performance and
cognitive decline associatedwithMCIwas a quadraticmodel.
Using these outcomes, we optimized ourmodels according to
the results of the previous study checking also the consistency
with the simulator requirements. The cognitive submodule
in particular, which was inserted into the existing virtual
user architecture introducing a new generation of cognitive-
aware VUMs, is capable of performing the same tasks as real
users in amore realisticmanner.The same testbed (Metaverse
environment) was used to evaluate the expected benefits
on VUM’s quality, as a matter of prediction ability. Indeed,
the novel VUMs achieved simulation performances closer to
those of the real users. With a better VUM quality available,
the last study was performed on a real world interface
problem concerning the interface accessibility assessment
for GUI designers. The Metaverse designers redesigned its
interface so as not to exclude MCI users from the potential
body of target users. The new design was evaluated by the
novel VUMs to indicate results according to which, when
the MCI cognitive submodule was enabled and active, the
simulator produced results closer to the real MCI users,
especially inmemory-demanding and decisionmaking tasks.

The followed user-centric methodology and mainly the
novel VUMs created by this study can be used in most cases
of interface accessibility assessment covering over 90% of all
common interface accessibility issues. It is limited only by
an extreme cognitive disability threshold which corresponds
to the 90% MCI users. VUMs of very high dementia levels
can produce valid simulation results, but their duration
predictions cannot always be valuable for interface designers
as extreme interventions on an interface designmay cause the
interface to lose an important part of its functionality.

8. Conclusion

Commonly, GUI designers rescale GUI elements or increase
color contrast to serve the needs of elderly or impaired users.
However, there is still need for specific interface design strat-
egy for the reconfiguration and change of visual metaphors
to customize interfaces to the specific needs of groups
with cognitive related limitations. Our approach combined
literature findings and experimental data to predict in better
accuracy the performance of cognitive impaired VUMs over
known interface accessibility limitations. In the proposed
VUMarchitecture implementation, we inserted an additional
cognitive submodule to produce “noisy” functionality in the
internal VUM structure instead of producing noisy data in
the output.

Pilot tests on the simulator indicated high correlation
between the tests scores of real users and VUMs. These find-
ings should be viewed as an early approach about the latent
interest in encompassing cognitive features in the design
of infotainment simulation models. Evaluation tests from
infotainment products have shown that the proposed VUMs’
modification customized according to cognitive impairments
can be a valuable asset to the designer, as a way of increasing
products’ and services accessibility for elderly with varying
deficits of memory, attention, judgment, and communication
ability. The utilised scenarios required not only memory but
even more complex cognitive functions, such as decision
making abilities.

After the encouraging results extracted from the pilot test
presented herein, the forthcoming tests will be performed by
recruiting a wider body of subjects (30–50 persons). Those
tests will include the test-retest reliability evaluation of the
computer-based screening test and, moreover, it is expected
to improve the prediction accuracy of the simulation results
between VUMs and actual users. Recruitment criteria could
be extended so as to include a depression detection test
like the Beck Depression Inventory (BDI-II) to eliminate
possible effects caused by extraneous to theMCI itself factors.
Moreover, among our future plans is the actual use and
evaluation of vocal and aural modules.

This research effort, being in-line with the “design for
all” principle, is helping people with cognitive functionality
decline to improve their quality of life in an indirect way: not
by providing therapeutic appliances straight to them, butwith
changing the design culture of the industrial world on their
behalf.
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