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Oral microbiome transplantation (OMT) has the potential to serve as a therapeutic approach for 
managing dental caries; however, it is essential to identify suitable donors. The aim of this study was 
to analyse the relationship between dietary (i.e., energy, water, carbohydrate and sugar intake), 
saliva quality (i.e., saliva flow rate and salivary pH), and clinical factors (i.e., past caries experience 
and fluoride exposure) on the oral microbiome composition of potential OMT donors. For this cross-
sectional study, a comprehensive dental examination was conducted for 93 healthy, caries-free adults 
(aged 18–85 years) without systemic or oral disease. All participants completed questionnaires on food 
frequency and socio-economic, lifestyle, and behavioural factors. Supragingival plaque samples were 
collected, and bacterial 16S rRNA genes were amplified, sequenced, and assigned to bacterial taxa. 
Stimulated saliva samples were collected for salivary flow rate and pH measurements. Constrained 
partial ordination analysis revealed that dietary factors, such as carbohydrate and sugar intake, had 
strong directional influences on microbial composition, while salivary factors like flow rate and pH 
showed opposing effects. Correlation analysis linked high sugar intake and reduced salivary pH to 
increased Streptococcus abundance. Differential abundance analysis identified significantly higher 
abundance of Streptococcus species among low water and high carbohydrate and sugar consumers. 
In mediation analysis, sugar consumption was directly and indirectly linked to reduced salivary pH, 
with Streptococcus showing a significant negative mediation effect (mean: -0.198; 95% CI: -0.387 to 
-0.010). High carbohydrate and sugar intake significantly influenced alpha diversity metrics (p < 0.05). 
Beta diversity permutational multivariate ANOVA revealed that covariates explained 11.45–12.52% of 
microbial variation (p < 0.05). This study emphasises that OMT donors with diverse oral microbiomes, 
low sugar and carbohydrate intake, and reduced levels of acidogenic taxa, such as Streptococcus, which 
significantly mediate salivary pH reduction, may be preferred for caries prevention.
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According to the Global Burden of Disease Data1, dental caries is one of the most prevalent chronic disease 
worldwide, affecting individuals across all age groups and disproportionately impacting minority populations2. 
Dental caries are primarily caused by consuming dietary free sugars, such as sucrose, glucose, and fructose, which 
provide the essential substrate for cariogenic oral bacteria, enabling them to produce acids that demineralise 
tooth enamel and lead to cavity formation3. In recent years, there has been growing interest in the role of the 
oral microbiome in maintaining oral health and its potential as a therapeutic target for caries management. The 
oral microbiome, a complex ecosystem of microorganisms, is now recognised as a key player in maintaining 
oral health. Modulating this microbial community offers a promising strategy for creating an environment less 
conducive to caries development by fostering a healthy and diverse microbiome that naturally resists caries-
causing pathobionts4. This approach marks a shift from traditional caries management by prioritising non-
invasive strategies, such as fluorides, chemical agents for biofilm control, and dietary management, and invasive 
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procedures such as placement of restorations5. Oral Microbiome Transplantation (OMT) is an intervention being 
studied to reduce caries risk by transferring a microbial community from a healthy donor to a recipient at risk 
of developing caries6,7. The goal of OMT is to modulate the recipient’s oral microbiome, shifting its composition 
toward a more protective state against caries. For OMT to be successful, it is crucial to identify donors who pose 
minimal risk for future caries development. In the context of fecal microbiome transplantation, such individuals 
are referred to as “super donors” due to their highly beneficial microbial profiles8.

Key factors affecting the oral microbiome include diet, salivary pH and flow rate, fluoride exposure, and 
past caries history. Frequent consumption of carbohydrates and sugars promotes the proliferation of acidogenic 
and aciduric bacteria, such as Streptococcus mutans, Lactobacilli, Scardovia, Bifidobacteria, and Actinomyces9,10. 
Salivary pH and flow rate are also critical determinants of oral microbial dynamics. A higher salivary flow 
rate enhances the buffering capacity of saliva, diluting acids and facilitating remineralisation by maintaining a 
neutral pH conducive to oral health10,11. Conversely, low salivary pH and reduced flow rates are associated with 
increased bacterial adhesion and metabolic activity of cariogenic species, contributing to caries progression10. 
Fluoride exposure further influences microbial composition by selectively reducing the abundance of cariogenic 
bacteria, such as Streptococcus, and Scardovia11,12. The microbial profiles of individuals with a history of dental 
caries but no active lesions may differ from those who have never experienced caries13. Even after treatment, 
residual cariogenic bacteria can persist in the oral environment, maintaining their metabolic activity, increasing 
the risk of secondary caries or degradation of restorations, and increasing the risk of developing new caries 
lesions.

It is also important to consider the ecological plaque hypothesis14, which posits that during disease, intrinsic 
homeostasis within the microbial community is disrupted, often due to environmental changes such as increased 
exposure to fermentable carbohydrates, and this leads to a lower pH in plaque, altering the competitiveness and 
stability of individual microbial species. Such changes are thought to facilitate the development of caries by 
favouring acidogenic and aciduric bacteria, even after caries treatment, as the ecological niche may still support 
recolonisation by cariogenic species. We hypothesise that a combination of factors, including consistent low 
fermentable carbohydrate intake, adequate water consumption, and the absence of caries experience, are crucial 
for donor selection. The complex interactions between these factors remain an open question in determining 
whether they can reliably predict an ideal donor profile for OMT. Therefore, this paper aims to investigate the 
diversity and composition of oral microbiota in healthy individuals’ diet, salivary and clinical factors and define 
a comprehensive profile of a “super donor” for OMT. The findings may contribute to developing evidence-based 
donor selection criteria and improving the efficacy of OMT as a preventive strategy against dental caries.

Results
Participant characteristics
This study collected samples from 93 healthy adults with no dental or systemic conditions and revealed several 
significant associations between sociodemographic, lifestyle factors and dietary, salivary, and clinical covariates 
(Table 1). Water intake showed statistically significant differences (p = 0.02), with the 26–35 age group having the 
highest mean intake (3190 ± 1143 ml/day). Australian-born and employed participants had a higher mean daily 
sugar intake (92.8 ± 32.5 g/day, p = 0.03; 91.9 ± 39.9 g/day, p = 0.04). The Missing + Filled (MF) score significantly 
differed among age groups (p < 0.01). The > 35y age group had the highest mean MF score (4.85 ± 4.12). Mental 
well-being correlated with differences in caries scores (p = 0.01), saliva pH (p = 0.04), and fluoride application 
rates (p = 0.04). Regular alcohol consumers had higher water intake compared to occasional or non-consumers 
(p = 0.01). Lastly, recent dental visits were associated with higher MF scores and saliva flow rates (p = 0.02 and 
p = 0.05), possibly indicating more frequent visits for those with active dental issues. These findings underscore 
the complex interplay between demographic factors, lifestyle choices, and oral health outcomes.

Dietary factors and salivary factors drive the oral microbial composition
The constrained partial ordination analysis identified statistically significant associations between dietary factors, 
salivary parameters, and microbial composition after controlling for age. The dietary factors, such as high energy, 
carbohydrate, and sugar intake, demonstrated strong directional influences on microbial community variation 
among Australian-born individuals, as indicated by the longer arrows in Fig. 1A. In contrast, saliva flow rate 
and salivary pH post-glucose had opposing effects on microbial composition. The correlation heatmap (Fig. 1B) 
further identified high sugar consumption correlated positively with Veillonella and negatively with Leptotrichia, 
Prevotella, and Cardiobacterium. High energy and carbohydrate consumption were negatively associated with 
Leptotrichia, Fusobacterium, Prevotella, Selenomonas, Capnocytophaga, and Campylobacter. Salivary parameters 
also played a role: lower salivary pH post-glucose (more acidic condition) is associated with higher Streptococcus 
(negative correlation) abundance and lower abundance of Alloprevotella (positive correlation), while a high 
saliva flow rate correlated positively with Lautropia. Interestingly, fluoride application exhibited a suppressive 
effect and was negatively associated with most taxa’s abundance. The differential abundance analysis further 
supports these findings (Fig. 1C, Table S1). High carbohydrate intake was associated with a higher abundance 
of Comamonadaceae, Actinomyces, Corynebacterium, Streptococcus, and Veillonella, while Parvimonas showed 
a lower abundance. Similarly, low sugar intake was linked to a lower abundance of Stomatobaculum and 
Streptococcus and a higher abundance of Peptococcus and Treponema. Lower water consumption was associated 
with higher abundance of Streptococcus and lower abundance of Aggregatibacter. The salivary pH post-glucose 
was associated with lower abundance of Neisseria, Comamonadaceae, Corynebacterium, and Lautropia. The 
genus Parvimonas was abundant in caries experience. This suggests that dietary factors like high sugar and 
carbohydrate intake significantly influence the oral microbiome, altering the abundance of specific microbial 
genera. Saliva pH and flow rate impact microbial composition, and fluoride suppresses most genera.
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Category Subgroups N Energy, kJ/day Water (ml/day)
Carbohydrate 
(g/day) Sugar (g/day)

Caries score 
(missing + filled 
teeth)

Saliva 
pH, pH 
unit

Saliva 
flow rate 
(ml/min)

Number 
of fluoride 
application, 
n (%)

Age 18–25 33 8960 ± 4017 2647 ± 1215 210 ± 105 83 ± 45.5 0.39 ± 0.89 6.19 ± 0.82 1.98 ± 0.77 19 (57.5%)

26–35 40 9151 ± 2700 3190 ± 1143 202 ± 68.4 90 ± 40.8 1.58 ± 2.51 6.13 ± 0.86 2.07 ± 0.70 22 (55%)

> 35 20 8971 ± 3748 3093 ± 912 195 ± 88.8 95.5 ± 38.3 4.85 ± 4.12 6.47 ± 0.85 2.12 ± 0.74 11 (55%)

p-value 0.6 0.02 0.64 0.12 < 0.01 0.25 0.63 0.97

Gender Male 32 9186 ± 4101 2972 ± 934 201 ± 83.8 88.1 ± 39.4 1.56 ± 2.61 6.21 ± 0.93 2.10 ± 0.63 17 (53.1%)

Female 61 8970 ± 3003 2979 ± 1243 204 ± 88.8 89.4 ± 43.4 2.02 ± 3.24 6.23 ± 0.80 2.02 ± 0.78 35 (57.3%)

p-value 0.72 0.83 0.85 0.94 0.67 0.85 0.48 0.86

Country of 
birth Australian 36 9182 ± 3098 3047 ± 960 209 ± 74.8 92.8 ± 32.5 2 ± 2.88 6.16 ± 0.88 2.09 ± 0.75 25 (69.4%)

Other 57 8962 ± 3603 2932 ± 1248 199 ± 93.8 86.5 ± 46.9 1.77 ± 3.15 6.26 ± 0.83 2.02 ± 0.72 27 (47.3%)

p-value 0.55 0.28 0.25 0.03 0.83 0.39 0.66 0.06

Level of 
education Tertiary education 57 9028 ± 3126 3091 ± 1026 203 ± 74.4 92.5 ± 40.6 2.14 ± 2.94 6.21 ± 0.93 1.99 ± 0.68 29 (50.8%)

Secondary education 
or less 36 9072 ± 3843 2796 ± 1297 203 ± 104 83.3 ± 43.7 1.42 ± 3.17 6.23 ± 0.80 2.15 ± 0.80 23 (63.8%)

p-value 0.86 0.07 0.68 0.07 0.14 0.75 0.38 0.3

Employment Employed 61 9351 ± 3795 3045 ± 1131 209 ± 93.7 91.9 ± 39.9 1.97 ± 3.17 6.28 ± 0.88 2.13 ± 0.76 39 (63.9%)

Not working 32 8473 ± 2466 2846 ± 1167 192 ± 71.2 83.3 ± 45.6 1.66 ± 2.79 6.12 ± 0.77 1.90 ± 0.66 13 (40.6%)

p-value 0.4 0.17 0.28 0.04 0.81 0.47 0.14 0.05

Physical 
activity

Minimal activity (< 600 
met min) 35 8440 ± 2802 2878 ± 1170 203 ± 80.3 93.9 ± 43.6 1.97 ± 3.38 6.28 ± 0.89 2.15 ± 0.75 20 (57.1%)

Moderate activity 
(600–1500 met min) 25 9722 ± 3897 3044 ± 1038 213 ± 106 86.7 ± 38.5 1.56 ± 2.89 6.19 ± 0.80 1.89 ± 0.73 19

High activity (> 1500 
met min) 33 9156 ± 3565 3031 ± 1209 196 ± 78.9 85.4 ± 43.2 1.97 ± 2.82 6.20 ± 0.86 2.06 ± 0.71 13 (39.3%)

p-value 0.43 0.69 0.62 0.65 0.74 0.94 0.35 0.02

Mental well 
being Low distress 42 8451 ± 2553 3086 ± 1267 187 ± 63.1 86.5 ± 43.0 2.48 ± 3.46 5.99 ± 0.81 2.09 ± 0.63 19 (45.2%)

Moderate distress 19 8039 ± 2335 2974 ± 916 189 ± 59.8 86.1 ± 37.7 0.63 ± 2.09 6.46 ± 0.68 2.04 ± 0.87 15 (78.9%)

Severe distress 32 10,468 ± 4443 2835 ± 1102 232 ± 116 93.8 ± 43.5 1.78 ± 2.74 6.39 ± 0.92 2.00 ± 0.78 18

p-value 0.07 0.9 0.11 0.74 0.01 0.04 0.73 0.04

Alcohol 
consumption

>= 1 standard drink/
week 34 8616 ± 3138 3270 ± 1004 196 ± 62 88.3 ± 32.2 2.71 ± 3.63 6.15 ± 0.90 2.13 ± 0.78 24 (70.5%)

Occasional/non-
alcohol consumers 59 9285 ± 3547 2808 ± 1188 207 ± 98.4 89.3 ± 46.4 1.37 ± 2.54 6.27 ± 0.82 2.00 ± 0.70 28 (47.4%)

p-value 0.23 0.01 0.99 0.39 0.17 0.56 0.39 0.05

Smoking Smoker 18 9530 ± 3839 3183 ± 1002 213 ± 89.5 97.6 ± 42.0 3.06 ± 3.35 6.33 ± 0.74 2.13 ± 0.75 12 (66.6%)

Non-smoker 75 8936 ± 3316 2927 ± 1172 201 ± 86.4 86.9 ± 41.9 1.57 ± 2.90 6.20 ± 0.87 2.03 ± 0.75 40

p-value 0.57 0.17 0.5 0.14 0.07 0.82 0.56 0.44

Tooth 
brushing 
frequency

Once 21 9117 ± 2283 3172 ± 1291 208 ± 77.7 99.2 ± 50.2 1.52 ± 2.34 6.16 ± 0.96 1.87 ± 0.72 12 (57.4%)

Twice or more 72 9026 ± 3668 2920 ± 1096 202 ± 89.5 85.9 ± 39.0 1.96 ± 3.22 6.24 ± 0.82 2.10 ± 0.73 40 (55.5%)

p-value 0.38 0.66 0.72 0.28 0.63 0.59 0.19 0.99

Flossing 
frequency Once or more everyday 25 8692 ± 2752 3009 ± 710 185 ± 53 80.4 ± 29.4 2.04 ± 2.85 6.40 ± 0.90 2.24 ± 0.78 14 (56%)

Occasionally/never 68 9170 ± 3616 2965 ± 1267 210 ± 95.5 92.1 ± 45.4 1.79 ± 3.12 6.16 ± 0.82 1.98 ± 0.70 38 (55.8%)

p-value 0.82 0.46 0.52 0.37 0.36 0.22 0.17 0.99

Last dental 
visit Less than 12 months 52 9482 ± 3814 2930 ± 1046 217 ± 102 91.7 ± 40.9 2.65 ± 3.64 6.27 ± 0.82 2.17 ± 0.72 32 (61.5%)

More than 12 months 41 8502 ± 2762 3036 ± 1261 186 ± 59.6 85.4 ± 43.3 0.85 ± 1.56 6.17 ± 0.89 1.89 ± 0.72 20 (48.7%)

p-value 0.25 0.83 0.1 0.28 0.02 0.65 0.05 0.3

Table 1. The socio-demographic data of the study participants based on eight selected covariates. Mean and 
standard deviations were calculated for energy intake, water consumption, carbohydrate intake, sugar intake, 
caries score, saliva pH, and saliva flow rate, and prevalence of fluoride application was calculated. Kruskal 
Wallis test was used for multiple group comparisons, followed by post hoc Dunn’s test, and for two group 
comparisons, the Wilcoxon test was used. The p-value of < 0.05 was considered significant.
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Daily carbohydrate and sugar intake have a significant impact on oral microbial diversity
The alpha diversity of daily carbohydrate intake showed significant differences in both observed features (OF) 
(χ2 = 3.90; p = 0.05) and Shannon’s index (SI) (χ2 = 4.69; p = 0.03) (Fig. 2A), and daily sugar intake exhibited 
highly significant differences in both metrics (OB: χ2 = 9.14, SI: χ2 = 13.32; p < 0.01) (Fig.  2B). Professional 
fluoride application status was associated with a significant difference in the SI (χ2 = 3.77; p = 0.05) (Table S2). 
For the linear regression model (Table S3), significant associations were identified for carbohydrate intake (OF: 
R2 = 0.10, p = 0.02; SI: R2 = 0.11, p = 0.01) and sugar intake (OF: R2= 0.08, p = 0.01; SI: R2 = 0.07, p = 0.04), indicating 
that these dietary factors influence microbial diversity. Daily energy intake was significantly associated with the 
SI (R2 = 0.08, p = 0.02). Other variables did not demonstrate significant associations. These findings suggest that 
dietary factors, mainly carbohydrate and sugar intake, influence microbial diversity.

For the PERMANOVA model (Table S4) using Euclidean distance, the covariates significantly explained 
11.45% of the variation (R2 = 0.11; p = 0.02) (Fig. 2C). Similarly, for the Bray-Curtis model, the results showed 
that the covariates collectively explained 12.52% of the variation in microbial community composition (R2 = 0.12; 
p < 0.01) (Fig.  2D). Carbohydrate intake significantly impacted Euclidean distances (R2 = 0.02, p = 0.02) and 
Bray-Curtis distances (R2 = 0.02, p = 0.02) (Fig. 2E). Sugar intake showed similar significant effects for Euclidean 
(R2 = 0.02, p = 0.01) and for Bray-Curtis (R2 = 0.01, p = 0.04) (Fig.  2F). Saliva pH post-glucose and fluoride 
application influenced Bray-Curtis metrics only (R2 = 0.022, p < 0.01), which is associated with changes in the 
relative abundances of taxa.

High sugar consumption mediated by Streptococcus is linked to reduced salivary pH
A mediation model was constructed where sugar consumption directly and indirectly influences the saliva 
pH, mediated through changes in the oral microbiome, accounting for confounding factors (Fig. 3A). Results 
indicated a negative direct effect of sugar consumption on salivary pH, with a mean estimate of -0.02 (0.65) and 
− 0.40 (0.65) (Fig. 3B, Table S5), suggesting that sugar consumption, directly and indirectly, lowers salivary pH 
through its influence on the microbiome. Certain microbial taxa play varying roles in mediating the relationship 
between sugar consumption and salivary pH post-glucose (Fig.  3C, Table S6). Streptococcus demonstrated a 

Fig. 1. (A) Constrained partial ordination plot: constructed using Euclidean distance, controlling for age. The 
arrows represent constraint vectors for key explanatory variables, including energy intake, water consumption, 
carbohydrate intake, sugar intake, saliva flow rate, fluoride application, salivary pH post-glucose, and past 
caries experience score (MF). Samples are coloured by country of birth (red for Australia, blue for Other). The 
plot was generated using the microViz package. (B) Correlation heatmap: constructed with centre-log ratio 
transformation, using Pearson’s method for the top 20 genera to observe an association between continuous 
variables and the oral microbiome. The variables tested were coefficients between microbial genera (rows) and 
host variables (columns), including fluoride application, past caries score (MF), energy intake, carbohydrate 
intake, sugar intake, water consumption, saliva flow rate, and salivary pH post-glucose. The colour gradient 
represents the strength and direction of the correlation, with red indicating positive correlations and 
blue indicating negative correlations. The plot was generated using the microViz package. (C) Differential 
abundance analysis: The significantly abundant taxa were mapped according to their standard coefficient. The 
plot was created using MaAsLin2 and ggplot2 package.
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statistically significant negative mediation effect (mean: -0.198; 95% CI: -0.387 to -0.010), highlighting its critical 
role as an acidogenic taxon contributing to pH reduction in response to sugar intake. Other taxa, such as Neisseria 
and F0332 (family Actinomycetaceae), exhibit negative mediation effects, and Veillonella and Actinomyces show 
positive mediation effects.

Discussion
The findings of this study underscore the significant influence of dietary, salivary, and clinical factors on oral 
microbiome diversity and composition, with important implications for donor selection in OMT for caries 
prevention. High carbohydrate and sugar intake were strongly associated with reduced microbial diversity and 
shifts in community composition, particularly increasing the abundance of acidogenic taxa like Streptococcus, 
demonstrating a significant negative mediation effect on salivary pH. Therefore, potential good donors are 
individuals who follow low sugar dietary patterns, maintain a balanced intake of nutrients, and have low caries 
experience score. By carefully selecting donors based on these criteria, OMT could effectively modulate the 
recipient’s oral microbiome toward a caries-protective state7. While most oral microbiome research primarily 
focuses on dysbiosis associated with disease, it is crucial to understand the factors that drive oral health and 
the role of commensal microbiomes in maintaining a healthy state. This cohort may be utilised to establish 
foundational baselines for a healthy oral microbiome, thereby enhancing the understanding of how specific 
characteristics promote oral health.

The constrained partial ordination analysis revealed strong directional influences of dietary factors on 
microbial community variation. Our analysis indicates that while Australian-born individuals had higher 

Fig. 2. (A-B) Alpha diversity box plot: for the significant variable (carbohydrate and sugar intake stratified 
as high vs. low based on median value) using the observed feature metrics and Shannon’s diversity index. The 
Wilcoxon test was used for comparison. Each dot in the boxplot represents a donor. (C-D) PERMANOVA bar 
plots: the beta diversity metrics were tested for all the variables using the Euclidean distance and Bray-Curtis 
metrics using the PERMANOVA adonis2 function from the vegan package. The R2 is the amount of variation 
explained, while the star represents the significant variables associated with oral microbiome composition (* 
p < 0.05, ** p < 0.01). (E-F) MDS (Multidimensional Scaling) plots: based on carbohydrate and sugar intake, 
significant in Euclidean distance. The PCoA plots with the ellipses represent the clustering of microbial 
communities, showing partial separation between high and low groups for each measured parameter.
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sugar intake, and sugar intake was significantly associated with beta diversity. When included in multivariate 
models, sugar intake remained a significant driver of microbial composition and suggests that the impact of site 
of birth on beta diversity is primarily mediated through dietary behaviours, particularly sugar consumption. 
The mediation analysis investigating the effect of sugar consumption on salivary pH revealed a complex 
relationship mediated by the oral microbiome. This finding aligns with its well-established association with 
cariogenic activity and its ability to create an acidic oral environment conducive to dental caries development15. 
The differential abundance analysis further supported this, identifying significant associations between specific 
microbial taxa and various dietary variables. For instance, high carbohydrate intake was positively correlated 
with taxa such as Comamonadaceae, Actinomyces, Corynebacterium, Streptococcus, and Veillonella, while high 
sugar intake was linked to changes in Stomatobaculum and Streptococcus abundance. These findings align 
with previous studies that have implicated these genera in caries development and progression, highlighting 
the potential role of diet in modulating the oral microbiome’s cariogenic potential15–17. There was also a 
negative association between high energy and carbohydrate consumption and the abundance of genera such 
as Leptotrichia, Fusobacterium, Prevotella, Selenomonas, Capnocytophaga, and Campylobacter. These genera 

Fig. 3. (A) Directed Acyclic Graph (DAG): a conceptual framework of the mediation analysis model. Sugar 
consumption (exposure) influences salivary pH post-glucose (outcome) and the oral microbiome (mediator). 
Confounding factors accounted for in the analysis included age, dental visit frequency, fluoride exposure, 
saliva flow rate, country of birth, and education level. The direct effect represents the pathway from sugar 
consumption to salivary pH, while the indirect effect captures the influence mediated by changes in the 
oral microbiome. (B) The stacked bar graph quantifies the total effect of sugar consumption on salivary pH, 
partitioned into direct and indirect effects, highlighting the dominant role of microbial mediation. (C) Forest 
plot showing component-wise mediation effect of individual microbial taxa on the relationship between 
sugar consumption and salivary pH. Each point represents the mean effect size, with error bars indicating 
95% confidence intervals. The red dashed line indicates no mediation effect (effect size = 0). The analysis was 
conducted using the SparseMCMM package.
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are often associated with periodontal health, suggesting that high carbohydrate diets may promote cariogenic 
bacteria and suppress beneficial microbes, as previously suggested16,18. This dual effect could exacerbate the risk 
of oral diseases and underscores the importance of dietary moderation in maintaining oral health. Our analysis 
of alpha diversity metrics further emphasises the significant impact of carbohydrate and sugar intake on oral 
microbial diversity. The differences in observed features and Shannon’s index suggest that these dietary factors 
influence the abundance of specific taxa and affect the overall community structure and evenness, as observed 
by others15. This finding has important implications for understanding how diet shapes the oral microbiome and 
potentially influences its resilience and stability. However, the relationship between sugar intake and caries risk 
is not always consistent, and the resilience of the oral microbiome can modulate this relationship. Interventions 
like OMT may help restore or enhance this microbial resilience, supporting the reestablishment of a balanced 
and robust microbial ecosystem even in dietary or environmental challenges19. Overall, these results emphasise 
the significant role of Streptococcus in mediating the acidogenic effects of sugar consumption on salivary pH 
while highlighting the need for further research to clarify the roles of other taxa with borderline or uncertain 
effects, especially in healthy people without active caries.

Significant associations exist between salivary parameters and specific microbial taxa and the correlation 
between genera such as Haemophilus and Parvimonas with caries experience. Other studies also found a higher 
abundance of Haemophilus in a healthy group than those with past caries experience19. The observed suppressive 
effect of fluoride application on the abundance of most genera is noteworthy and aligns with fluoride’s known 
antimicrobial properties12. This finding supports the continued use of fluoride as a preventive measure in oral 
health care while highlighting the need for further research into its long-term effects on oral microbial ecology20 
.

This study’s strength is its comprehensive analysis of the oral microbiome of a healthy, caries-free population 
of potential donors for OMT in Australia. Nevertheless, there are some limitations. The population was skewed 
towards younger age groups, and there was no representation from the Aboriginal population, potentially 
limiting the generalizability of the findings to a broader and more diverse population, highlighting the need for 
future research to enhance representativeness21. Another important limitation of our study was that it focused 
exclusively on bacterial components of the oral microbiome, without analysis of other microorganisms such as 
viruses, fungi, and archaea. These non-bacterial components constitute a significant part of the oral microbiota 
and may play important roles in oral health and disease. Also species level profilling was not possible with 
16S sequencing platform.  We excluded low-abundance taxa for statistical analysis to ensure robustness and 
interpretability. While this approach minimises data sparsity and noise, it may overlook ecologically relevant 
low-abundance species, including potential pathobionts that could be important OMT.

In conclusion, our study provides a comprehensive view of the factors shaping the oral microbiome in healthy 
people, with diet emerging as a primary driver of microbial composition and diversity. The complex interactions 
between dietary factors, host physiology, and the oral microbiome in influencing salivary pH and potentially 
oral health outcomes emphasise the need for personalised approaches to oral health care. Future research should 
focus on longitudinal studies to elucidate the temporal dynamics of these relationships and explore potential 
interventions targeting diet and the oral microbiome to promote oral health.

Materials and methods
The data used in this study is part of the OMT study conducted at the School of Dentistry, University of Adelaide, 
Adelaide, Australia, from June 2021 to July 2022. This study recruited healthy participants to identify a suitable 
donor for microbiota transplantation. The study was approved by the University of Adelaide Human Research 
Ethics Committee (H-2020-34609). All study participants gave informed consent before participating, and the 
research was conducted under the declaration of Helsinki. A detailed protocol for the study has been published7 
and follows the STORMS guideline (Supplementary file).

Participant recruitment and data collection
This cross-sectional study included adults (> 18–85 years) without active dental caries or periodontal disease. 
Caries activity was assessed using the Decayed, Missing, and Filled Teeth (DMFT) index22. Participants 
were considered free of active caries if they had no teeth with untreated carious lesions (D = 0) at the time of 
examination and periodontally healthy if they exhibited probing depths (PD) of ≤ 4 mm, no clinical attachment 
loss, and less than 20% of sites with bleeding on probing (BOP). All oral examinations were conducted by two 
calibrated dental examiners (SN & KK) who underwent training and calibration before the study to ensure 
consistency and reliability in the assessments. Individuals with systemic diseases (e.g., diabetes, cardiovascular 
disease, cancer), pregnant or lactating women, or those who have used medications that may impact the oral 
microbiome (e.g., antibiotics, corticosteroids), or had dental treatment in the last three months were excluded. 
Our previous publication detailed participant screening, exclusion, and inclusion criteria6,7. A self-administered 
questionnaire was used to capture sociodemographic data, general health status, oral health behaviours, and 
dental hygiene using REDCap (Research Electronic Data Capture) software. Dietary information was collected 
using a Dietary Questionnaire for Epidemiological Studies (DQES v3.2)23.

Sample collection
Plaque samples were collected from six combined sites using a sterile curette, pooled in a phosphate buffer 
solution (PBS), immediately transported to the Oral Microbiology Laboratory, University of Adelaide, and 
stored at -80 °C for microbial analysis. The six sites were selected: the mesio-buccal surfaces of a right maxillary 
molar, a left mandibular molar, a right mandibular molar, and a mesio-palatal surface of a maxillary molar. 
Curette wash (CW) samples were collected each collection day to create an instrumental control for microbiome 
sampling. Stimulated saliva samples were collected to measure the salivary flow rate and baseline and post-
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glucose challenge pH. A detailed description of the sample collection, saliva sample testing, and categorisation 
of covariates is provided in Supplementary Text S1.

DNA extraction, Microbiome sequencing and data-preprocessing
DNA was extracted from samples using the Qiagen DNeasy PowerSoil Pro Kit (Qiagen, Hilden, Germany), 
with extraction blank controls included for every 12 samples. DNA was extracted from dental plaque, CW, and 
extraction blank controls (EBCs) and negative controls (NTCs) for contamination control. In total, 93 samples 
and 48 controls were sequenced (14 EBCs, 17 NTCs, and 17 CWs). The V4 region of the bacterial 16 S rRNA 
gene was amplified in each sample, uniquely barcoded24. PCR was performed with Invitrogen Platinum High 
Fidelity DNA polymerase, and products were quantified using the Qubit dsDNA BR assay. Amplicons were 
pooled, purified with AxyPrep Mag PCR Clean-up beads, and quantified using TapeStation D1000 reagents 
(Agilent). Sequencing was performed using the Illumina MiSeq 2300 platform (Illumina, San Diego, CA) at 
the Pennsylvania State University Genomics Core Facility. Raw paired-end reads were processed in QIIME2 
(v2024.11)25, including quality filtering, denoising, and amplicon sequence variant (ASV) inference using 
the DADA2 plugin26. Taxonomy was assigned with the SILVA 138 database. The entire process, including 
contaminant assessment and filtering, is described in Supplementary Text S2. From 93 samples, 5,702,771 DNA 
sequences were obtained, with averages of 61,320 and 56,091 and min/max reads of 1,017 and 304,058. The total 
number of ASVs detected was 968.

Statistical analysis
Statistical analysis was conducted in R Statistical software (v 4.4.2, R Core Team, 2024). All analyses were 
based on eight covariates, including dietary factors (energy, water, carbohydrate, and sugar intake), salivary 
measures (saliva flow rate and saliva pH post-glucose), and clinical variables (MF score and professional fluoride 
application status). The codes used for analysis can be accessed on GitHub ( h t t p s :   /  / g i t h u  b . c o  m / s o n i  a n a  t h  / C a r i   
e s _ F a c  t  o r s _   O M T . g i t).

Participant co-variables
The mean and standard deviation were reported for continuous variables, and a count and a percentage were 
reported for categorical variables. Initially, a Shapiro-Wilk test and histograms were plotted, and the data 
followed a non-normal distribution. Kruskal-Wallis test was used, followed by a post hoc Dunn’s test with 
Bonferroni’s correction for pair-wise comparison, or the Wilcoxon test was used to assess statistical significance. 
A p-value < 0.05 was considered significant.

Microbiota community analysis
After pre-processing, a phyloseq27 object was created, checked for ASV distribution, read depth, and missing 
ASVs, and then used for subsequent analysis. First, a constrained partial ordination analysis explored how 
multiple covariates influenced microbial community composition while accounting for age as a conditioning 
variable based on the Euclidean distance. Next, a correlation heatmap using Pearson’s association was constructed 
to examine the relationship between continuous variables and the 20 most abundant taxa. Both analyses were 
done using the MicroViz28 package. Then, the MaAsLin229 package utilised a negative binomial regression model 
for differential abundance analysis. All sociodemographic and lifestyle variables listed in Table 1 were included 
as covariates in differential analysis.

Alpha diversity was assessed using two metrics: observed features and Shannon’s Index, with results visualised 
through boxplots created using the ggplot230 and ggpubr31 packages. These boxplots compared the alpha diversity 
indices across eight covariates to explore variations in microbial diversity. Histograms and Shapiro-Wilk tests were 
performed to assess the normality of the alpha diversity distribution metrics. If non-normal distributions were 
observed across covariates, the Wilcoxon test would be used to compare alpha diversity between the two groups. 
Multiple linear regression models were used with observed features and Shannon’s Index as dependent variables 
to explore the relationship between environmental factors as independent variables. Each model included 
one primary predictor variable alongside age and gender as covariates to account for potential confounding 
effects. Beta diversity was analysed using Euclidean and Bray-Curtis distances in Principal Coordinate Analysis 
(PCoA) and visualised using multidimensional scaling (MDS) plots. The PERMANOVA test from the vegan32 
package was used to evaluate the significance of beta diversity. This test assessed the impact of eight covariates 
on microbial community composition, with both Euclidean and Bray-Curtis distance methods employed to 
calculate dissimilarities33.

Next, a mediation analysis was conducted to explore the potential direct and indirect effects of sugar 
consumption (exposure) on salivary pH (outcome), with the oral microbiome acting as a mediator using the 
SparseMCMM34 package. The relative abundance table was prepared at genus rank, and a filtering threshold 
was set to 0.1% for abundance and 5% for prevalence. Before mediation analysis, propensity score matching 
was conducted as a preprocessing step, following suggestions by Austin et al.35. The propensity score matching 
balanced the characteristics of high and low-sugar consumption (exposure) groups before mediation analysis. 
Using the MatchIt36 package, the nearest neighbour matching with a 1:16 ratio and replacement was conducted, 
focusing on the Average Treatment Effect on the Treated (ATT). The matching was based on several covariates, 
including age (squared), dental visit frequency, fluoride exposure, saliva flow rate, country of birth, and education 
level. A logistic regression model estimated the propensity scores. The balance of covariates between groups was 
assessed using summary statistics and visualised through a love plot (Figure S1), which displays standardised 
mean differences before and after matching. This matching process reduces confounding effects to create 
comparable groups for analysing the impact of sugar consumption on salivary pH via the oral microbiome. The 
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matched data set was then used for mediation analysis, incorporating 100 random data splits to calculate the 
direct, indirect, and total effects. A component-wise effect of each taxon was calculated as a mediator.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author upon 
reasonable request.

Received: 29 March 2025; Accepted: 20 May 2025

References
 1. Vos, T. et al. Global, regional, and National incidence, prevalence, and years lived with disability for 328 diseases and injuries for 

195 countries, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet 390, 1211–1259 (2017).
 2. Nath, S. et al. The global prevalence and severity of dental caries among Racially minoritized children: A systematic review and 

Meta-Analysis. Caries Res. 57, 485–508. https://doi.org/10.1159/000533565 (2023).
 3. Sheiham, A. & James, W. P. Diet and dental caries: the pivotal role of free sugars reemphasized. J. Dent. Res. 94, 1341–1347.  h t t p s : 

/ / d o i . o r g / 1 0 . 1 1 7 7 / 0 0 2 2 0 3 4 5 1 5 5 9 0 3 7 7     (2015).
 4. Rosier, B. T., Marsh, P. D. & Mira, A. Resilience of the oral microbiota in health: mechanisms that prevent dysbiosis. J. Dent. Res. 

97, 371–380. https://doi.org/10.1177/0022034517742139 (2018).
 5. Schwendicke, F. et al. When to intervene in the caries process? An expert Delphi consensus statement. Clin. Oral Investig. 23, 

3691–3703. https://doi.org/10.1007/s00784-019-03058-w (2019).
 6. Nath, S. et al. Characterising healthy Australian oral microbiomes for ‘super donor’ selection. J. Dent. 151, 105435.  h t t p s : / / d o i . o r g 

/ 1 0 . 1 0 1 6 / j . j d e n t . 2 0 2 4 . 1 0 5 4 3 5     (2024).
 7. Nath, S. et al. Development and characterization of an oral Microbiome transplant among Australians for the treatment of dental 

caries and periodontal disease: A study protocol. PLoS One. 16, e0260433 (2021).
 8. Wilson, B. C., Vatanen, T., Cutfield, W. S. & O’Sullivan, J. M. The super-donor phenomenon in fecal microbiota transplantation. 

Front. Cell. Infect. Microbiol. 9. https://doi.org/10.3389/fcimb.2019.00002 (2019).
 9. Tanner, A., Kressirer, C., Rothmiller, S., Johansson, I. & Chalmers, N. The caries microbiome: implications for reversing dysbiosis. 

Adv. Dent. Res. 29, 78–85 (2018).
 10. Cunha-Cruz, J. et al. Salivary characteristics and dental caries: evidence from general dental practices. J. Am. Dent. Assoc. 144, 

e31–40. https://doi.org/10.14219/jada.archive.2013.0159 (2013).
 11. Kulik, E. M. et al. Development of resistance of mutans Streptococci and Porphyromonas gingivalis to chlorhexidine digluconate 

and amine fluoride/stannous fluoride-containing mouthrinses, in vitro. Clin. Oral Investig. 19, 1547–1553.  h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 
/ s 0 0 7 8 4 - 0 1 4 - 1 3 7 9 - y     (2015).

 12. Yang, Z. et al. Effects of topical fluoride application on oral microbiota in young children with severe dental caries. Front. Cell. 
Infect. Microbiol. 13, 1104343. https://doi.org/10.3389/fcimb.2023.1104343 (2023).

 13. Corralo, D. J. et al. Functionally active Microbiome in supragingival biofilms in health and caries. Caries Res. 55, 603–616.  h t t p s : / 
/ d o i . o r g / 1 0 . 1 1 5 9 / 0 0 0 5 1 8 9 6 3     (2021).

 14. Marsh, P. D. Are dental diseases examples of ecological catastrophes? Microbiol. (Reading). 149, 279–294.  h t t p s : / / d o i . o r g / 1 0 . 1 0 9 9 / 
m i c . 0 . 2 6 0 8 2 - 0     (2003).

 15. Fan, X. et al. Altered salivary microbiota associated with high-sugar beverage consumption. Sci. Rep. 14, 13386.  h t t p s : / / d o i . o r g / 1 0 
. 1 0 3 8 / s 4 1 5 9 8 - 0 2 4 - 6 4 3 2 4 - w     (2024).

 16. Angarita-Díaz, M. D. P., Fong, C., Bedoya-Correa, C. M. & Cabrera-Arango, C. L. Does high sugar intake really alter the oral 
microbiota? A systematic review. Clin. Exp. Dent. Res. 8, 1376–1390. https://doi.org/10.1002/cre2.640 (2022).

 17. Millen, A. E. et al. Dietary carbohydrate intake is associated with the subgingival plaque oral Microbiome abundance and diversity 
in a cohort of postmenopausal women. Sci. Rep. 12, 2643. https://doi.org/10.1038/s41598-022-06421-2 (2022).

 18. Monson, K. R. et al. Elevated dietary carbohydrate and glycemic intake associate with an altered oral microbial ecosystem in two 
large U.S. Cohorts. Cancer Res. Commun. 2, 1558–1568. https://doi.org/10.1158/2767-9764.crc-22-0323 (2022).

 19. Belstrøm, D. et al. Salivary microbiota in individuals with different levels of caries experience. J. Oral Microbiol. 9, 1270614.  h t t p s : 
/ / d o i . o r g / 1 0 . 1 0 8 0 / 2 0 0 0 2 2 9 7 . 2 0 1 6 . 1 2 7 0 6 1 4     (2017).

 20. Zhang, Q. et al. Application of fluoride disturbs plaque microecology and promotes remineralization of enamel initial caries. J. Oral 
Microbiol. 14, 2105022. https://doi.org/10.1080/20002297.2022.2105022 (2022).

 21. Nath, S., Handsley-Davis, M., Weyrich, L. S. & Jamieson, L. M. Diversity and bias in oral Microbiome research: A commentary. 
EClinicalMedicine 36, 100923. https://doi.org/10.1016/j.eclinm.2021.100923 (2021).

 22. World Health Organization. Oral Health Surveys: Basic Methods (World Health Organization, 2013).
 23. Giles, G. & Ireland, P. Dietary Questionnaire for Epidemiological Studies (Version 2). (Cancer Council Victoria, 1996).
 24. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the illumina HiSeq and miseq platforms. ISME J. 6, 

1621–1624. https://doi.org/10.1038/ismej.2012.8 (2012).
 25. Bolyen, E. et al. Reproducible, interactive, scalable and extensible Microbiome data science using QIIME 2. Nat. Biotechnol. 37, 

852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).
 26. Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2, 101128msystems00191–

101128msystems00116 (2017).
 27. McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of Microbiome census data. 

PLoS One. 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).
 28. Barnett, D., Arts, I. & Penders, J. MicroViz: an R package for Microbiome data visualization and statistics. J. Open. Source Softw. 6, 

3201. https://doi.org/10.21105/joss.03201 (2021).
 29. Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e1009442. 

https://doi.org/10.1371/journal.pcbi.1009442 (2021).
 30. Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create Elegant Data Visualisations Using Gramm. Graphics Version. 

2, 1–189 (2016).
 31. Kassambara, A. ggpubr:‘ggplot2’based publication ready plots. R Package Version 2 (2018).
 32. Oksanen, J. et al. The vegan package. Community Ecol. Package. 10, 719 (2007).
 33. Chen, B., He, X., Pan, B., Zou, X. & You, N. Comparison of beta diversity measures in clustering the high-dimensional microbial 

data. PLOS ONE. 16, e0246893. https://doi.org/10.1371/journal.pone.0246893 (2021).
 34. Wang, C., Hu, J., Blaser, M. J. & Li, H. Estimating and testing the microbial causal mediation effect with high-dimensional and 

compositional Microbiome data. Bioinformatics 36, 347–355 (2020).
 35. Austin, P. C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. 

Multivar. Behav. Res. 46, 399–424. https://doi.org/10.1080/00273171.2011.568786 (2011).
 36. Ho, D., Imai, K., King, G., Stuart, E. & Whitworth, A. Package ‘matchit’. Version (2018).

Scientific Reports |        (2025) 15:18755 9| https://doi.org/10.1038/s41598-025-03455-0

www.nature.com/scientificreports/

https://doi.org/10.1159/000533565
https://doi.org/10.1177/0022034515590377
https://doi.org/10.1177/0022034515590377
https://doi.org/10.1177/0022034517742139
https://doi.org/10.1007/s00784-019-03058-w
https://doi.org/10.1016/j.jdent.2024.105435
https://doi.org/10.1016/j.jdent.2024.105435
https://doi.org/10.3389/fcimb.2019.00002
https://doi.org/10.14219/jada.archive.2013.0159
https://doi.org/10.1007/s00784-014-1379-y
https://doi.org/10.1007/s00784-014-1379-y
https://doi.org/10.3389/fcimb.2023.1104343
https://doi.org/10.1159/000518963
https://doi.org/10.1159/000518963
https://doi.org/10.1099/mic.0.26082-0
https://doi.org/10.1099/mic.0.26082-0
https://doi.org/10.1038/s41598-024-64324-w
https://doi.org/10.1038/s41598-024-64324-w
https://doi.org/10.1002/cre2.640
https://doi.org/10.1038/s41598-022-06421-2
https://doi.org/10.1158/2767-9764.crc-22-0323
https://doi.org/10.1080/20002297.2016.1270614
https://doi.org/10.1080/20002297.2016.1270614
https://doi.org/10.1080/20002297.2022.2105022
https://doi.org/10.1016/j.eclinm.2021.100923
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.21105/joss.03201
https://doi.org/10.1371/journal.pcbi.1009442
https://doi.org/10.1371/journal.pone.0246893
https://doi.org/10.1080/00273171.2011.568786
http://www.nature.com/scientificreports


Acknowledgements
The authors thank Kostas Kapellas for helping with the recruitment process. Victor Marino and Nicole Moore 
for supporting the laboratory analysis and laboratory management.

Author contributions
S.N: contributed to conception and design, contributed to the acquisition, drafted manuscript, and critically 
revised the manuscript and gave final approval. P.Z: contributed to conception and design, contributed to inter-
pretation, drafted manuscript, and critically revised the manuscript and gave final approval. L.J: contributed to 
design, contributed to interpretation, drafted manuscript and critically revised manuscript. PHRS: contributed 
to design, contributed to analysis and interpretation, drafted manuscript, and critically revised the manuscript 
and gave final approval. DHKK: contributed to design, contributed to analysis, drafted manuscript, and critically 
revised the manuscript and gave final approval. LW: contributed to conception and design, contributed to acqui-
sition, analysis, and interpretation, drafted manuscript, and critically revised manuscript. All authors gave their 
final approval and agreed to be accountable for all aspects of the work and reviewed the manuscript.

Funding
This work was supported by the NHMRC Ideas Grant (Grant Number 2019/GNT1187737), and Sonia Nath was 
supported by the Australian Government Research Training Program Scholarship.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at  h t t p s : / / d o i . o r g / 1 
0 . 1 0 3 8 / s 4 1 5 9 8 - 0 2 5 - 0 3 4 5 5 - 0     .  

Correspondence and requests for materials should be addressed to S.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t t p : / / c r e a t i v e c o m m o 
n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 /     .  

© The Author(s) 2025 

Scientific Reports |        (2025) 15:18755 10| https://doi.org/10.1038/s41598-025-03455-0

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-03455-0
https://doi.org/10.1038/s41598-025-03455-0
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	The influence of diet, saliva, and dental history on the oral microbiome in healthy, caries-free Australian adults
	Results
	Participant characteristics
	Dietary factors and salivary factors drive the oral microbial composition
	Daily carbohydrate and sugar intake have a significant impact on oral microbial diversity
	High sugar consumption mediated by Streptococcus is linked to reduced salivary pH

	Discussion
	Materials and methods
	Participant recruitment and data collection
	Sample collection
	DNA extraction, Microbiome sequencing and data-preprocessing
	Statistical analysis
	Participant co-variables
	Microbiota community analysis

	References


