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Abstract: The polymer water-lubricated bearing is widely used in marine transmission systems, and
the tribological properties can be improved by addition of inorganic nano-fillers. The aim of this
study is to investigate the effect of SCFs and temperature on the water-lubricating properties of
high-density polyethylene (HDPE) composites. HDPE composites reinforced by varying content of
short carbon fibers (SCFs) were fabricated via twin-screw extrusion and injection molding techniques
to study the hardness and surface wettability of those composites. The tribological properties under
water-lubricated conditions were investigated through a pin-on-disk reciprocating tribometer under
different temperatures. The results showed that the increase in hardness of HDPE composites reached
maximum to 42.9% after adding 25 wt % SCFs. The contact angle also increased with the increase
in SCFs content and reached a maximum of 95.2◦ as the amount of SCFs increased to 20 wt %. The
incorporation of SCFs increased the wear resistance and lubricating property of HDPE composites at
different temperatures. The HDPE composite containing 20 wt % SCFs showed the lowest friction
coefficient of 0.076 at 40 ◦C, and the wear track depth reached a maximum of 36.3 mm at 60 ◦C.
Based on the surface wetting property and wear analysis, potential effect mechanisms of fillers and
temperature were discussed. The knowledge from this study is useful for designing the anti-wear
water-lubricated polymer bearing.

Keywords: HDPE composites; SCFs; water-lubrication; high-temperature

1. Introduction

Compared to metal material, polymer matrix materials are increasingly used in aerospace,
marine, and subsea equipment to reduce the weight and improve the corrosion resistance
of key components [1,2]. Polymer matrix materials are the potential materials for a water-
lubricated bearing due to its low friction coefficient and good fatigue resistance [3,4].

However, the disadvantage of the mechanical properties and wear resistance hinders
its further application. The solid particles, such as layered particles and hard particles,
were added to polymer matrix composites, which have greatly improved the tribological
and mechanical properties, as well as wettability [5–8]. With high modulus and strength,
carbon fiber and glass fiber can significantly enhance the mechanical properties and wear
resistance of polymer matrix composites when used as additives [9,10]. The tribological
and mechanical properties of polyetherimide (PEI) composites were improved after the
addition of short carbon fiber and expanded graphite; the excellent bearing capacity of short
carbon fiber and self-lubricating characteristics are considered to be the main reason [11].
It was found that the friction and wear modification of polyimide (PI) composites had been
achieved by introducing multiscale CFs, the main mechanism is the decrease in stress con-
centration between the matrix and reinforcement phase caused by multiscale characteristics
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of fillers [12]. CNTs with high elastic modulus and strength are also usually used as addi-
tives to enhance the tribological and mechanical characters of polymers matrix composites,
and the lubrication and wear mechanism is similar to SCFs reinforced composites [13–15].

The friction heat accumulation between lubricated contacts has greatly limited the
application of polymer materials under dry sliding conditions, and water-lubrication
can well improve this situation. the polymer materials possess high corrosion resistance
compared to traditional metal materials and relatively low wear rate in water-lubricated
environments; these factors make the polymer materials widely applied as a seal and
bearing in water [16–18]. The different types of additives were also used to promote
the water lubrication capacity and wear resistance of polymer materials, such as rubber,
polyether-ether-ketone (PEEK), and phenolic [19–21]. It is reported that the addition of
microcapsules can cause the decrease in the friction coefficient and wear loss of ultra-
high molecular weight polyethylene (UHMWPE).The palmityl palmitate was released and
attached to the surface of the counterpart during the sliding process, preventing the direct
contact between composites and counterpart [4,22]. Similar to the dry sliding condition,
the use of nano-diamond, CNTs, and graphene oxide (GO) can also improve the hardness,
elasticity modulus, and transfer film forming property of polymer materials that results
in a high wear resistance under water lubrication [23,24]. The surface wettability has
a significant effect on lubrication film characteristics and water absorption of polymer
materials [25,26], and is an important influence factor on tribological properties of polymer
materials besides the mechanical properties. It is also found that the contact angle of
polypropylene increases with the addition of reduced graphene oxide (rGO). The analysis
reveals that the increased hydrophobicity and high energy difference with water result in
the lower friction coefficient under boundary lubrication [22]. However, because UHMWPE
exhibits a decreased contact angle reinforced by GO and the UHMWPE composites show the
enhanced tribological properties, the author believes that increased wettability is beneficial
to improve the friction and wear resistance properties under seawater lubrication [27].

As described above, the tribological properties and bearing capacity of polymer
materials can be improved by adding different types of fiber or particles under dry sliding
or water lubrication conditions. HDPE is widely used as water-lubricated bearings because
of its excellent chemical stability and good creep strength. The temperature rise will occur
when the bearing undergoes high-speed and heavy-load conditions or in a thermal water
environment, such as geothermal water and bio-implant applications, which accelerate
the wear and aging of polymer composites [28–30]. Inorganic fillers, as a good additive,
possess high temperature stability and can effectively enhance the tribological and bearing
capacity of composites [31–33]. The carbon fiber is an appropriate additive to modify
the surface and mechanical properties of the HDPE materials. This study focused on
the effects of SCFs and temperature on the surface and tribological properties of HDPE
composites under water-lubricated conditions, and aimed to investigate the modification
mechanism of filler, as well as influence law and mode of action of temperature on the
lubrication and wear of composite. For this purpose, we fabricated the HDPE composite
reinforced by SCFs through hot extrusion process. The hardness, surface contact angle,
and tribological behaviors were evaluated, and the essential enhancement mechanisms of
tribological properties were discussed.

2. Materials and Experiment

The twin-screw process is one of the most common methods in polymer composite
preparation, and the manufacture quality can be controlled by adjusting the speed and
temperatures of the twin-screw extruder.

2.1. Materials

HDPE micro-particles with a diameter of 50–150 µm were purchased from WANGDA
Plastic company, Shenzhen, China (Figure 1b,d). SCFs with diameter of 7 µm and length
of 2–5 mm were supplied from ACP Composites, Livermore, CA, USA (Figure 1a,c). The
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surface hydroxyl treatment of carbon fibers was conducted with a concentrated nitric
acid and concentrated sulfuric acid mixed solution (1:3 by mass) to enhance the interface
bonding force between the matrix and fiber [34].
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Figure 1. Optical image of (a) SCFs and (b) HDPE micro-particles; SEM image of (c) SCFs, and
(d) HDPE micro-particles.

2.2. Preparation of HDPE Composites

As shown in Figure 2, the fabrication of CF/HDPE composites was based on hot
extrusion forming method [35]. The test composite samples consist of HDPE and CF at
different contents. The mixtures containing a certain weight fraction of SCFs (0 wt %,
5 wt %, 10 wt %, 15 wt %, 20 wt %, and 25 wt %) and HDPE were extruded through a
twin-screw extruder (WLG10, Xinshuo Precision Machinery, Shanghai, China) with a screw
speed of 60 rpm and barrel temperature of 200 ◦C. After compounding for 10 min, the
mixtures were then transferred to a micro-injection molding machine (WZS10G-D from
Shanghai Xinshuo Precision Instrument Co., Ltd., Shanghai, China). During the preparation
process, the barrel temperature was kept at 200 ◦C while the mold temperature was set
as 60 ◦C, and the pressure was maintained at 20 MPa for 10 min. The size of prepared
composites for the tribological test is Φ 50 × 5 mm.
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2.3. Characterization

The tribological properties of HDPE composites were evaluated using the HRS-2M
pin-on-disc high speed reciprocating tribometer (Lanzhou Zhongke Kaihua Technology
Development Co., Ltd., Lanzhou, China). The experiment schematic diagram is shown
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in Figure 3. The sample was first fixed in the carrier through the compact and the carrier
was filled with distilled water acting as lubricant, and then the motor drove the stage to
reciprocate on the slide rail and the metal pin (45# steel with a diameter of 4 mm). The tests
were carried out with a normal load of 180 N and speed of 100 R/min, and the reciprocating
sliding length was 8 mm. The water was heated by a self-made heating device to maintain
the temperature in preset range (20 ± 1 ◦C, 40 ± 1 ◦C, and 60 ± 1 ◦C).
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Contact angle measurements were performed using a dynamic contact angle mea-
surement instrument by sessile drop method at room temperature. For each composite,
10 times measurement were performed and the average values were taken as results. The
hardness of HDPE composites was measured by a Vickers hardness instruments (TIME
TMVS-1, Sinowon Innovation Metrology Manufacture Limited, Dongguan, China) with an
indenter load of 0.98 N, each sample repeated 5 times for accuracy.

The microstructure of HDPE microparticles and SCFs was characterized by a field
emission scanning electron microscope (SEM, Gemini SEM 500 at 10 kV, Carl Zeiss AG,
Oberkochen, German) and digital cameras, respectively. The crystalline phase composition
of HDPE composites was detected by an X-ray diffractometer (XRD, D8 Advance A25 at
40 mA and 40 kV, Bruker AG, Karlsruhe, German). The morphologies of worn surface of
HDPE composites and pins were characterized by using SEM. The wear track depth and
three-dimensional profile of HDPE composites were measured through a laser scanning
confocal microscope (Olympus OLS4000, Olympus Corporation, Tokyo, Japan).

3. Result and Discussion

The tribological behaviors are comprehensive results of mechanical properties and
surface properties of polymer composites. Meanwhile, the working condition and ambi-
ent temperature also have an important impact on the lubrication and wear properties
of composites.

3.1. Effects of SCFs on the Hardness and Wettability of HDPE Composites

The hardness of polymer matrix composites plays an important role in friction and
wear behaviors of polymer matrix composites. Figure 4 shows the Vickers hardness of
HDPE composites reinforced by different content of SCFs. It can be succinctly observed
that the hardness of HDPE composites achieved enhance with the addition of SCFs and
reached the maximum when the content of SCFs increased to 25 wt %.

The surface wettability of six different types of HDPE composites is shown in Figure 5.
It can be seen that the addition of SCFs could cause different levels of increase in contact
angle of the HDPE composites. The major trend is that the contact angle increases with
the increases in content of SCFs. However, different from hardness variation trends, the
HDPE composites exhibit the maximum contact angle of 95.2◦ when the content of SCFs is
20 wt %, which exhibits the hydrophobicity; the contact angle decreased to 93.5 while the
content of SCFs continued increasing. The SCFs have a lower surface energy compared to
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the HDPE matrix and, thus, cause an increase in contact angle of HDPE composites [36];
nevertheless, the SCFs are prone to agglomeration when the concentration reaches 25 wt %,
which might reduce the specific surface area of HDPE composites. As a result, the contact
angle decreased.
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Figure 5. (a) Water contact angle of the HDPE composites with different content of SCFs: (b) pure
HDPE, (c) 5 wt % SCFs, (d) 10 wt % SCFs, (e) 15 wt % SCFs, (f) 20 wt % SCFs, and (g) 25 wt % SCFs.

The XRD pattern of 20 wt % SCFs filled with HDPE composites is shown in Figure 6.
The diffraction peaks at 2θ = 21.4◦ and 24.8◦ are assigned to plane of the HDPE matrix.
After enhancing by SCFs, the peaks at 2θ = 23.5◦ are observed, which is assigned to (002)
plane of cubic spinel crystal structure of SCFs. The results indicate that the significant
modification of crystal structure of HDPE occurred with the addition of SCFs.
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3.2. Effects of Temperature on Tribological Properties

Figure 7 shows the tribological properties of six types of HDPE composites filled with
different content of SCFs under different temperatures. From Figure 7a it can be seen that
when under 20 ◦C, the addition of SCFs can cause the obvious reduction in the friction
coefficient. For the pure HDPE, the friction coefficient decreases with running time and
reached a stable value after about 30 min, and the composites have a shorter running
time when filled with 5 wt % SCFs. From Figure 7b,c, all types of composites showed the
more stable friction curve with increasing temperature. The average friction coefficient
of six types of HDPE composites under different temperatures is shown in Figure 7d. It
can be seen that the friction coefficient decreases with the increases in content of SCFs
and reached the minimum value when the content of SCFs increased to 20 wt % at any
temperature. After that, the friction coefficient of HDPE composites increases with the
SCFs proportion further increasing to 25 wt %. The HDPE composites showed a better
lubricity at 60 ◦C compared to that under 20 ◦C, and reached the lowest friction coefficient
of 0.072 when the ambient temperature increased to 40 ◦C, which shows an excellent
lubrication performance compared with previous studies and similar tendencies with
changes in temperature [30,31].

The worn surface of HDPE composites with different content of SCFs at 20 ◦C are
analyzed to evaluate the wear resistance of HDPE composites, and the results are shown in
Figure 8. For the neat HDPE, the wear furrows and holes and large cracks were generated
on the sliding surface caused by the peeling off of the matrix, indicating a transfer of
matrix. The boundary lubrication is the dominant lubrication mode in this study because
of the lower sliding velocity (8 mm/s), which was unable to prevent the direct contact
between sample and counterpart; the break of the matrix therefore occurred due to its
low strength and viscoelastic and the wear mode of neat HDPE was primarily adhesive
wear. As shown in Figure 8b, the holes with smaller sizes are observed on the surface of
HDPE composites containing 5 wt % SCFs, and the wear furrows were also generated. The
HDPE composites possess enhanced hardness and bearing capacity with the addition of
SCFs, resulting in the better wear resistance. When the SCFs content increased to 10 wt %,
HDPE composites exhibited a similar worn morphology to that reinforced by 5 wt %
SCFs from Figure 8c.Theholes are also observed on the worn surface, showing a smoother
worn surface, while the fiber pull-out is not obviously observed. As shown in Figure 8d,
besides holes, the short fiber is also observed on the wear of HDPE composites when the
content of SCFs is 15 wt %. From the macroscopic scale, the high filling content led to the
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high hardness of HDPE composites, resulting in a reduced contact area between HDPE
composites and counterpart; as a result, the friction coefficient decreased. Additionally,
from the meso-scale, the contact number between fiber and counterpart increases with
increasing SCFs content, which results in a more continuous contact between counterpart
and fiber. As a result, the HDPE composites exhibited a more stable friction curve compared
to that filled with low content SCFs. Wear mode could also transit to the abrasive wear
because of the high hardness and brittle characteristics of SCFs, which causes a decrease
in wear loss of HDPE composites. From Figure 8e, many smooth regions can be seen on
the worn surface of HDPE composites filled with 20 wt % SCFs, while only broken fibers
are observed, indicating a better wear resistance of HDPE composites compared with that
filled with 15 wt % SCFs. However, it can be seen from Figure 8f that many cracks were
generated on the worn surface of HDPE composites when the content of SCFs further
increased to 25 wt %; the main reason can be attributed to the stress concentration around
SCFs caused by the agglomeration of SCFs when the volume content of filler is relatively
high [11,37].
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Figure 7. Friction coefficient of HDPE composites with different content of SCFs at (a) 20 ◦C, (b) 40 ◦C,
and (c) 60 ◦C, respectively; (d) average friction coefficient of HDPE composites with different content
of SCFs at different temperature.
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Figure 9 shows the wear track profiles and three-dimensional morphologies of 20 wt %
SCFs filled HDPE composites at 20 ◦C, 40 ◦C, and 60 ◦C, respectively. As shown in Figure 9a,
the HDPE composites have a rough wear region at 20 ◦C. When the water temperature is
20 ◦C, the matrix of HDPE composites exhibits relatively high hardness and low toughness,
thus the wear debris are more likely to fall off from the sliding surface in large sizes, forming
a rough wear surface. The plasticity of the matrix increases with the increase in temperature,
hence how the relatively smooth wear track profile was generated, which provides an
important reason for the decrease in friction coefficients with increasing temperature. The
temperature rise is not a positive effect on the wear resistance of the HDPE matrix; the high
temperature causes the low strength and bearing capacity of HDPE matrix, so the wear
resistance of HDPE composites is relatively poor. The variations significantly disagree with
the result of polymer composites under the dry sliding condition [29]. The high temperature
generated by friction promotes the formation of transfer film and graphitic-like crystallized
structure, so the composites exhibited a reduction in wear loss when above the critical
temperature. In this study, the temperature of interface was below 100 ◦C due to the
presence of water, thus phase changes may not occur. However, the temperature has
different effects on the mechanical properties of HDPE matrix and carbon fiber. As the
polymer material, the larger decline will occur in both elasticity modulus and hardness of
HDPE matrix than carbon fiber [38,39]. This phenomenon caused the more severe strain
and stress disaccord of matrix and fiber. As a result, the composites showed a decrease
in interface bonding force between matrix and fiber, and the debonding and removals of
fibers was apt to occur. The increased plasticity caused by high temperature led to severe
deformation of matrix—the abundant wear debris is generated in the wear track margin
(Figure 9b,c)—indicating the sharply deteriorating wear resistance at high temperature.
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3.3. High Temperature Wear Properties

In order to further evaluate the high temperature wear properties of HDPE composites,
all kinds of HDPE composites were further investigated, the results as shown in Figure 10.
It can be seen that the neat HDPE exhibits the worst wear resistance. Nevertheless, the
significant improvement is achieved by introducing SCFs to matrix and exhibiting the
lowest wear volume until the content of SCFs reached 20 wt %. As the content of SCFs
content increased to 25 wt %, the wear track profile HDPE composites exhibits a rough
characteristic. The reason is mainly due to the appearance of stress concentration caused by
intensified fiber aggregation at the high temperature, the wear debris was removed from
the sliding surface in a large size.
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3.4. Water Lubrication and Wear Mechanism of SCFs

The research in previous parts mainly focuses on the influence factors of friction
behavior of HDPE composites in terms of changes in mechanical properties caused by
the addition of SCFs. However, these effects do not fully explain the reduction in friction
coefficient and wear loss. It is reported that the variation in surface energy of composites
may be another important factor to consider [40]. Figure 5 shows an increase in con-
tact angle of HDPE composites when increasing the SCFs content, and the contact angle
reached 95.2◦ when the SCFs content was 20 wt %; namely, the composites exhibit the
hydrophobicity. As shown in Figure 11a, the water molecule is more easily adsorbed on the
surface of neat HDPE due to its low surface energy; the water absorbing of matrix is thus
enhanced and then results in the decrease in the hardness and plasticizer resistance of neat
HDPE. As shown in Figure 11b, the hydrophobic HDPE composite and the hydrophilic
pin are beneficial in reducing the formation of transfer film. Liquid slipping velocity in a
region that is close to the solid surface is increased for liquid contact with hydrophobic
or low-surface energy materials, resulting in faster water flow, as well as more efficient
heat diffusion [41,42]. These factors make SCFs reinforced HDPE composites more adapt
to the water lubrication condition; however, the surface and block properties of HDPE
composites changed with the high water temperature. The high temperature results in the
low hardness and contact angle. As a result, the bearing capacity, surface flow velocity, and
plasticity of HDPE composites is reduced, so the HDPE composites show decreased water
lubrication at high temperature.
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4. Conclusions

In this study, the SCFs were introduced to HDPE to enhance the mechanical and
tribological properties of HDPE composites under water lubrication conditions. The SFCs
fraction and water temperature on the surface wettability, mechanical, and tribological
properties of HDPE composites were investigated and related mechanisms were illustrated.
The main conclusions are drawn as follows:

(a) The incorporation of SCFs increased the hardness of HDPE composites, and simulta-
neously improved the contact angle. The hardness increased by 42.9% after adding
25 wt % SCFs, and the contact angle achieved the maximum of 95.2◦ when the content
of SCFs was 20 wt %.

(b) The HDPE composites exhibited the reduction in friction coefficient and wear loss
compared with neat HDPE, and showed the lowest friction coefficient of 0.076 when the
content of SCFs was 20 wt %. The addition of SCFs improved the hardness and bearing
capacity of HDPE, resulting in the smaller contact area of composites and counterpart, so
wear loss and friction coefficient were reduced. The incorporation of SCFs decreased the
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surface energy of HDPE composites, which cause the faster water flow near the surface
of composites, and the matrix adhesion and heat diffusion decreased.

(c) The friction coefficient and wear resistance achieved reduction for each type of HDPE
composites at the higher temperature. The enhanced plasticity caused by temperature
rise decreases the shear force for the matrix and leads to low friction coefficient.
However, the decline in hardness and increase in stress disaccord at high temperatures
do not contribute to increased wear resistance. Moreover, the high temperature
changes the water flow state in near surface of HDPE composites, which also results
in the poor lubrication.
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