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The bacterial pathogen Pseudomonas tolaasii severely damages
white button mushrooms by secretion of the pore-forming toxin
tolaasin, the main virulence factor of brown blotch disease. Yet,
fungus-associated helper bacteria of the genusMycetocola (Mycetocola
tolaasinivorans and Mycetocola lacteus) may protect their host by
an unknown detoxification mechanism. By a combination of met-
abolic profiling, imaging mass spectrometry, structure elucidation,
and bioassays, we found that the helper bacteria inactivate tolaa-
sin by linearizing the lipocyclopeptide. Furthermore, we found
that Mycetocola spp. impair the dissemination of the pathogen
by cleavage of the lactone ring of pseudodesmin. The role of pseu-
dodesmin as a major swarming factor was corroborated by iden-
tification and inactivation of the corresponding biosynthetic gene
cluster. Activity-guided fractionation of the Mycetocola proteome,
matrix-assisted laser desorption/ionization (MALDI) analyses, and
heterologous enzyme production identified the lactonase respon-
sible for toxin cleavage. We revealed an antivirulence strategy in
the context of a tripartite interaction that has high ecological and
agricultural relevance.

antivirulence | brown blotch disease | cyclic lipopeptides | Mycetocola |
tolaasin

Edible mushrooms are an important food source. To maintain
high-yield industrial-scale mushroom farming, it is vital to

prevent infections. Numerous bacterial pathogens are known to
cause detrimental mushroom diseases, such as cobweb, soft rot,
cavity, and brown blotch disease (1). Therefore, many studies
have been directed toward understanding the factors promoting
virulence, which provides the basis for development of rational
measures to prevent mushroom destruction. In general, bacterial
pathogens require signal molecules and surfactants to colonize
mushrooms (2). To weaken the host and to overcome defense
mechanisms, they typically employ virulence factors including
chitinolytic enzymes and antifungal agents (3, 4). A set of
cyclolipopeptides (CLPs) including tolaasin I (1) has been
identified as the major virulence factor of P. tolaasii, the causa-
tive agent of brown blotch disease (1, 5–7). The pore-forming
toxin (8, 9) causes characteristic browning symptoms in the white
button mushroom (A. bisporus), one of the most important cul-
tivated mushrooms worldwide (10, 11). Furthermore, tolaasin-
producing bacteria cause diseases of strawberries, cauliflower,
and tobacco (12, 13), which calls for unifying strategies to control
these pervasive pathogens even beyond mushroom farming.
In contrast to the highly unfavorable use of antibiotics in ag-

riculture, the concept of employing helper bacteria to control
pathogens is a potentially less disruptive alternative (Fig. 1). As
counterparts to the bacterial pathogen, several antagonistic bac-
teria have been discovered that either show predatory behavior
toward the toxin producer (14) or inactivate its main virulence
factor (15–19). For example, the helper bacterium Pseudomonas
‘reactans’ produces a CLP named white-line-inducing principle
(WLIP) that precipitates together with tolaasin, thus, forming a
characteristic white line when cocultivated with P. tolaasii on solid
agar (18). However, WLIP is also toxic against the mushroom host

via membrane pore formation and shows hemolytic activities,
which precludes its use as a biocontrol agent (20, 21). More
promising is the use of helper bacteria that neutralize the effect of
tolaasin. Examples of this tolaasin negation activity are provided
by members of the genus Mycetocola (M. tolaasinivorans and M.
lacteus), which were jointly isolated from the rotting fruiting
bodies of mushroom Pleurotus ostreatus (16, 17). The saprophytic
gram-positive bacteria, the first members of the novel genus
Mycetocola in the family of Microbacteriaceae, are nonpathogenic
with respect to the mushroom and were shown to detoxify
tolaasin (16). Yet, the mechanism of tolaasin detoxification by
these helper bacteria has remained elusive. Here, we report the
molecular basis of the antivirulence strategy of two different
Mycetocola species. We show that they not only efficiently inacti-
vate the antifungal agent, but also cleave an important bacterial
swarming mediator, thus, blocking both pathogenicity and motility
of the pathogen.

Results and Discussion
To gain insight into the pathogen-helper bacteria interaction, we
conducted coinoculation experiments of P. tolaasii with M. tol-
aasinivorans or M. lacteus on mushroom slices (A. bisporus).
Whereas mushroom blocks inoculated with P. tolaasii alone
showed brown sunken lesions, the presence of M. tolaasinivorans
prevented infection symptoms. Nonetheless, A. bisporus was
found to be a suboptimal infection model to monitor the inac-
tivation of tolaasin since inoculation with M. lacteus alone led to
slight browning of the mushroom tissue, likely owing to its sap-
rophytic lifestyle. Therefore, we turned to potato tubers that
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reportedly develop black spots in the presence of the toxin (17).
Blackening caused by P. tolaasii alone was completely inhibited
in coinoculated potato slices (Fig. 2A), indicating effective pro-
tection against tolaasin.
To shed light on the chemical fate of the peptide toxin, we

monitored the metabolic profiles of liquid cocultures by HPLC-MS.
In the axenic P. tolaasii culture, we detected 1 as the main
component of a mixture of known tolaasins (22). In contrast, we
found that the titers of 1 were drastically reduced in cocultures
with each of the helper bacteria (Fig. 2B). The intensity of a
double-charged ion with a m/z difference of 9 was dominant.
This mass difference of 18 Da in the uncharged molecule could
result from the hydration of one of the dehydrobutyrine units or
the hydrolysis of one of the amide bonds in the cyclic part of 1.
Tandem mass spectrometry (MS/MS) measurements ruled out
these possibilities and unequivocally showed that the lactone is
cleaved to yield the linearized congener known as tolaasin C (2,
Fig. 2C) (22). A similar cleavage potential has been implicated
for Microbacterium sp. K3–5 based on MS data (15). We con-
firmed the identity of 2 by comparison of its retention time with
an authentic reference obtained by hydrolysis of 1 with lithium
hydroxide (Fig. 2B).
To corroborate these findings on solid media and to dissect

microbial interaction processes, we monitored bacterial pop-
ulations by MALDI imaging. In the colony of the pathogen, 1 is
detected as the main product. In addition, small amounts of 2 are
colocated with 1, which was not unexpected since 2 occurs nat-
urally in axenic P. tolaasii cultures (22). In the zone where P.
tolaasii was mixed with M. tolaasinivorans or M. lacteus, no 1 was
detected but high amounts of 2 were (Fig. 2D), clearly indicating
that both types of helper bacteria are able to cleave the toxin.
When examining the phenotypes of the cocultures, we noted

that the helper bacteria also impair the swarming ability of the
pathogen. When grown axenically, P. tolaasii colonies spread
uniformly in every direction, forming faint concentric circles that
likely indicate different growth states. When coinoculated with
M. tolaasinivorans orM. lacteus, however, the swarming diameter
of P. tolaasii is reduced to approximately half the size of axenic
colonies (Fig. 3A, see also SI Appendix, Fig. S3). Furthermore,
marked phenotypic changes, such as zone formation and three-
dimensional biofilmlike structures were observed (SI Appendix,
Fig. S4).
Metabolic profiling and MALDI imaging of the cocultures

yielded further insight into the chemical basis of this phenome-
non. In liquid cocultures, we observed the emergence of a new
compound with m/z 1142 [M – H]– that is not detectable in the
requisite axenic cultures (Fig. 3B). MS/MS experiments revealed
a fragmentation pattern typical of a peptide and an amino acid
sequence that matches with viscosinamide A (3) and pseudo-
desmin A (4), two related CLPs that only differ in the absolute

configuration of the leucine residue at position 5 (SI Appendix,
Fig. S5) (23, 24). A mass difference of 18 Da compared to the
reported CLPs, and the MS/MS fragmentations (Fig. 3C) im-
plied that the observed species corresponds to the linearized
form of one of these molecules. To determine its structure, we
isolated the CLP from an up-scaled P. tolaasii culture (2 L). By
analysis of the NMR spectra and comparison of 1H and 13C
chemical shifts with reference data (24, 25), we found that the
isolated CLP is 4 (Fig. 3D, see also SI Appendix), a member of
the viscosin family of biosurfactants involved in bacterial
swarming and motility (24). We named the linearized congener
pseudodesmin C (5) (Fig. 3E) and confirmed its identity further
by comparison with an authentic reference generated by hydrolysis

Pseudomonas tolaasii Mycetocola spp.

no browning

brown blotch disease

virulence factors

virulence factors?

Agaricus bisporus

Fig. 1. Tripartite interaction of mushroom pathogen, helper bacteria,
and fungal host. P. tolaasii produces virulence factors that cause bacte-
rial brown blotch in A. bisporus. Mycetocola spp. can prevent decay of the
mushroom cap. A B
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Fig. 2. Helper bacteria inactivate the toxin produced by the mushroom
pathogen. (A) In vivo infection assays with mushroom and potato tuber
slices. (B) Extracted-ion chromatogram (EIC) traces of 1 (black, 994.1137 [M +
2H]2+) and 2 (red, 1003.1190 [M + 2H]2+) obtained from high-performance
liquid chromatography (HPLC) analysis of culture extracts, isolated 1, and 1
hydrolyzed with 5 eq LiOH, 1 h, RT. (C) Comparison of MS/MS fragmentation
patterns of 1 and 2 with highlighted key fragments. Gray bar indicates
magnified area. c: calculated; o: observed masses. (D) MALDI imaging of
solid cultures of P. tolaasii with M. lacteus, and M. tolaasinivorans, respec-
tively, showing spatial distribution of 1 and 2. Black: colony of M. tolaasi-
nivorans and M. lacteus, respectively; red: colony of P. tolaasii; green:
mixed colonies.
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of pure 4 with aqueous LiOH (Fig. 3B) as well as by evaluation of
NMR data (SI Appendix).
To address whether the cleavage of 4 into 5 in coculture im-

pairs the swarming of P. tolaasii, we scrutinized individual and
coinoculated colonies with MALDI imaging (Fig. 3F). In stark
contrast to the axenic P. tolaasii colony, intact 4 could not be
detected in the zone where P. tolaasii and M. tolaasinivorans
interacted. In lieu of the cyclopeptide, high levels of 5 accumu-
lated in this area. In the coculture of P. tolaasii with M. lacteus,
we still observed 4 as major congener. However, the linear 5 was

also formed in the mixed zone of the cultures. These results show
that the presence of helper bacteria leads to the linearization of
the surfactant 4 and, therefore, to a reduction of the swarming
ability of the pathogen.
To unambiguously demonstrate that intact 4 is essential and

sufficient for swarming, we generated a pseudodesmin-deficient
P. tolaasii mutant. The putative pseudodesmin biosynthesis gene
cluster (BGC) was identified by means of antiSMASH (26)
analysis and predicted substrate specificities of the adenylation
domains (SI Appendix, Fig. S14). To confirm the cluster identity
and to create a nonproducing strain, we deleted a 1.7 kb frag-
ment in the nonribosomal peptide synthetase (NRPS)-encoding
gene pseB by homologous double crossover (Fig. 4A). Colonies
of the verified null producer (ΔpseB mutant) were unable to
swarm (Fig. 4B). To confirm the individual roles of the two
CLPs, we also deleted a 1.7 kb segment within the NRPS gene
(tolA) of the tolaasin biosynthetic locus that is homologous to the
tolaasin BGC in Pseudomonas costantinii (SI Appendix, Fig. S15)
(1). The resulting ΔtolA mutant did not cause browning or other
visible disease symptoms in any of the tested model systems
(Fig. 4B), once again corroborating the key role of 1 in patho-
genesis. Whereas the swarming behavior of the tolaasin-deficient
mutant was altered, motility was still observed (Fig. 4B). Thus,
this surface-active lipopeptide can be considered as a swarming-
enhancing factor. In contrast, 4 is essential and sufficient for
bacterial motility on soft agar and might be beneficial in colo-
nizing the hydrophobic mushroom caps. The hydrolytic agents
produced and released by M. tolaasinivorans and M. lacteus,
therefore, not only inactivate the pore-forming toxin secreted by
P. tolaasii, but also impair bacterial movement by cleaving its
main motility factor.
In order to identify the hydrolytic factor, we investigated the

cell lysate of a mixed culture of M. tolaasinivorans and M. lacteus
as these are the native bacterial flora of cultivated mushroom
(16). Whereas tolaasins were cleaved by treatment with the
crude cell lysate, no conversion was observed using heat-
inactivated (HI) aliquots of the same lysate, indicating that an
enzyme is responsible for the lactone cleavage. The obtained
cytosolic proteome was then fractionated by ammonium sulfate
precipitation, and active fractions were further subjected to fast
protein liquid chromatography (FPLC)-based separations using
different anion exchange columns and hydrophobic interaction
chromatography as well as size exclusion chromatography (Fig. 4C).
Active fractions were analyzed using MALDI-time of flight

and LC-MS in combination with the in silico proteome generated
from genomic sequences of both strains. Then, we filtered the hit
lists for basic local alignment search tool (BLAST)-annotated
hydrolases/peptidases, and hits occurring in at least four out of
nine analyses were chosen for heterologous production in
Escherichia coli. The majority of hits derived from M. lacteus and
all hits from M. tolaasinivorans were represented by homologs.
Therefore, we focused on the production of five different an-
notated peptidases from M. lacteus (Fig. 4C). All candidates
were produced in E. coli using a pET-28-based expression sys-
tem, yet only one of them cleaves 1 (Fig. 4D, also see SI Appendix,
Figs. S16 and S17) and was, thus, named tolaasin-degrading factor
of M. lacteus (TdfL). A BLAST search revealed that the closest
homologs of TdfL are also encoded in the genomes of Mycetocola
tolaasinivorans and Mycetocola saprophilus (pairwise identity of
80.7% and 88.8%, respectively), both identified as tolaasin
detoxifiers. TdfL is annotated as a serine protease of the S9 prolyl
oligopeptidase family, and we could identify the catalytic triad
(Ser, Asp, His) in all three homologs (SI Appendix, Fig. S19).
To prove that these enzymes have the same activity, we het-

erologously produced the homolog encoded in the M. tolaasinivor-
ans genome, named tolaasin-degrading factor of M. tolaasinivorans
(TdfT) and tested the His-tagged protein in the in vitro assay. Like
TdfL, TdfT effectively cleaves the lactone bond of 1, whereas the
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HI aliquot is inactive (negative control) (Fig. 4D). Since neither
TdfL nor TdfT showed any hydrolytic activity toward 4 (Fig. 4E),
we concluded that these hydrolases are substrate specific detoxifiers
and that the helper bacteria harbor at least one other hydrolytic
enzyme responsible for the cleavage of the swarming factor 4.
To exclude that 4 is hydrolyzed indirectly by a nonenzymatic

reaction, we compared the activity of heat-inactivated cultures of
both Mycetocola strains with that of nondenatured cell suspen-
sions toward hydrolysis of 4. For both strains, no formation of 5
could be observed using the heat-treated cultures, indicating that
the cleavage of 4 is facilitated by an enzyme (SI Appendix, Fig.
S20). We further supplemented growth medium with purified
TdfL or TdfT, respectively, prior to inoculation with P. tolaasii to
check whether the hydrolytic activity is maintained under culti-
vation conditions. LC-MS analyses of the culture extracts showed
the same activity pattern as in the in vitro assays, i.e., linearization of 1
but not 4 (Fig. 4). These results illustrate that hydrolysis of 4 is
performed by an independent enzyme and not indirectly, for exam-
ple, via change in the pH in the medium (pH of cocultures 7.5–7.7).

Conclusion
In conclusion, we elucidated the role of the mushroom helper
bacteriaM. tolaasinivorans andM. lacteus that protect A. bisporus
from brown blotch caused by P. tolaasii. For both helper strains,
we identified homologous enzymes that cleave tolaasins, the
major virulence factors of the plant and mushroom pathogen P.
tolaasii, yielding the inactive linear forms. M. tolaasinivorans and
M. lacteus not only disarm the causative agent of the mushroom
disease, but also hamper the colonization of the hydrophobic
mushroom cap by linearizing a second cyclic lipopeptide, 4
(Fig. 5). We assigned a biosynthetic gene cluster and a function
to 4, which is essential for swarming and is, therefore, crucial for
the dissemination of the pathogen. Our findings are an impor-
tant addition to the currently known enzymatic strategies of
bacteria to sabotage microbial virulence. The enzymatic cleavage
of a lipopeptide has been reported as a mechanism that confers
resistance in competing bacterial species (27), and lactonases are
employed by bacteria to interfere with other species’ quorum
sensing signaling (28). Yet, the observation that helper bacteria
halt and disarm pathogens attacking their host is unprecedented.
In this ecological context, the enzymatic cleavage of cyclo-
lipopeptides is a remarkable antivirulence strategy, which is in
line with rational approaches to block pathogenesis and che-
motaxis (29–34). Understanding the mechanism by which helper
bacteria protect their host not only sets the basis for the development
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and 2 (red, 1003.1190 [M + 2H]2+) obtained from HPLC analyses of in vitro
assays of TdfL and TdfT using 1 as a substrate. HI: heat-inactivated. (E) EIC
traces of 4 (black, 1125.7129 [M + H]+) and 5 (red, 1143.7235 [M + H]+)
obtained from HPLC analysis of in vitro assays of TdfL and TdfT using 4 as a
substrate. (F) EIC traces of 1, 2, 4, and 5. In all LC traces: black: cyclic peptides 1
and 4; red: linearized peptides 2 and 5.
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Fig. 5. P. tolaasii produces pseudodesmins as swarming agents and tolaa-
sins as toxins against A. bisporus. In the presence of protective helper bac-
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TdfL or TdfT. One letter code used to represent amino acids in the peptides.
B: dehydrobutyrine; X: 2,4-diaminobutanoic acid; Z: homoserine.
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of biocontrol strains used in agriculture, but also may inspire the
design of protective symbionts for use in medicine.

Materials and Methods
Detailed materials and experimental methods can be found in the SI Ap-
pendix together with additional tables and figures. Genome sequences used
in this study can be accessed via NCBI accession numbers NZ_RCUX00000000
(M. tolaasinivorans), NZ_RCUY00000000 (M. lacteus), NZ_PHHD00000000,
and NZ_CP020369 (both P. tolaasii).

Data Availability. All study data are included in the article and SI Appendix.
Genome sequences used in this study can be accessed in the National Center

for Biotechnology Information (NCBI) GenBank, https://www.ncbi.nlm.nih.
gov/genbank/ [accession nos. NZ_RCUX00000000 (M. tolaasinivorans), NZ_
RCUY00000000 (M. lacteus), NZ_PHHD00000000, and NZ_CP020369 (both P.
tolaasii)].
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