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Abstract

Retinal diseases constitute a genetically and phenotypically diverse group of clinical

conditions leading to vision impairment or blindness with limited treatment options.

Advances in reprogramming of somatic cells to induced pluripotent stem cells and

generation of three-dimensional organoids resembling the native retina offer promis-

ing tools to interrogate disease mechanisms and evaluate potential therapies for

currently incurable retinal neurodegeneration. Next-generation sequencing, single-

cell analysis, advanced electrophysiology, and high-throughput screening approaches

are expected to greatly expand the utility of stem cell-derived retinal cells and

organoids for developing personalized treatments. In this review, we discuss the cur-

rent status and future potential of combining retinal organoids as human models with

recent technologies to advance the development of gene, cell, and drug therapies for

retinopathies.
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1 | INTRODUCTION

Loss of sight is one of the most feared disabilities. The retina is

often called the window to the brain, and dysfunction of retinal

neurons in complex multifactorial diseases such as age-related mac-

ular degeneration (AMD), glaucoma, or diabetic retinopathy is a

major cause of incurable blindness worldwide.1,2 Mutations in over

200 genes can lead to inherited retinal and macular diseases (IRDs),

and genetic variations at numerous loci have been associated with

susceptibility to AMD (RetNet, https://sph.uth.edu/retnet/).3-5 Iden-

tification of causative genes has enabled generation of animal

models, resulting in elucidation of physiological functions of underly-

ing gene products and development of gene therapies, in particular

using adeno-associated virus (AAV) vector platform.6 In addition,

fundamental advances in understanding of retinal development has

resulted in rapid preclinical translation of potential cell replacement

therapies,7 especially transplantation of photoreceptors8,9 and retinal

pigment epithelium (RPE).10 Although overall morphology, physiol-

ogy, and molecular profile of the retina are highly conserved, many

human clinical phenotypes are not faithfully recapitulated in animal

models. Therefore, human stem cell-based in vitro models that com-

plement the studies in mice and in vivo systems are highly desirable,

with renewable sources of human cells needed for developing cell-

based treatments. Breakthroughs in differentiating retinal tissues

from patient-specific induced pluripotent stem cells (iPSCs) offer

promising personalized models of human disease as well as provide

a resource for evaluating therapeutic strategies. In this article, we

will review current status of research on stem cell-derived retinal

organoids, including methods for differentiation, and discuss their

utility for identifying potential therapies.
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2 | DIFFERENTIATION METHODS AND
STAGING OF RETINAL ORGANOIDS

Groundbreaking discoveries in reprogramming of somatic cells into

iPSCs and their differentiation into retinal lineages have greatly facili-

tated the study and treatment design of retinopathies. Early differen-

tiation protocols used two-dimensional (2D) adherent cultures to

derive retinal cells from pluripotent stem cells (PSCs).11,12 Sasai labo-

ratory pioneered the methods for 3D optic cup morphogenesis in vitro

from mouse embryonic stem cells,13 followed by adaptation of the pro-

tocol to produce human retinal organoids.14 Subsequently, two major

approaches emerged for deriving retinal organoids (Figure 1). In the first

approach, PSCs are suspended as single cells, followed by quick aggre-

gation into embryoid bodies in a multiwell format, and then retinal neu-

roepithelium differentiation is stimulated by addition of basal lamina

components present in Matrigel.14,15 As Matrigel composition can vary

greatly, low concentration of BMP4 can be used in a chemically defined

medium instead.16 Although this approach is suitable for automation

and potential use in high-throughput screens, laminated retinal morphol-

ogy appears to be preserved for a limited period.16 The second set of

protocols combine 2-D and 3-D approaches with initial formation of

embryoid bodies from detached human PSC (hPSC) colonies and neural

induction in suspension, then plating and eye field formation in adherent

conditions, followed by isolation of retinal domains and suspension cul-

ture as retinal organoids.17-19 The initial step of embryoid body forma-

tion can be omitted with growth of hPSCs to confluence and neural

induction in adherent cultures.17,20 Another alternative is mixing hPSC

clumps with Matrigel to form epithelialized cysts, which can be then

plated, later followed by gentle lifting with dispase to form well-

laminated organoids.21,22 Replacement of widely used all-trans retinoic

acid with 9-cis retinal accelerates differentiation of rod photoreceptors

in retinal organoids,23 whereas signaling by thyroid hormone facilitates

the specification of L/M cone subtypes,24 consistent with S-cones being

the default fate of photoreceptors.25,26 Interestingly, scraping of the

adherent culture and selection of subsequently formed optic vesicles

improves the yield and efficiency of generating retinal organoids.27 Typi-

cally, the combination of 2-D and 3-D approaches achieves higher orga-

nization and maturity levels in late-stage organoids.15,19,23,24 The use of

bioreactors significantly improves the culture of brain organoids with

photosensitive cells28 and has shown promise in culture of retinal

organoids.29,30 However, customized and efficient bioreactors are

required for their wider acceptance in the field for producing

organoids.31

The array of methods to derive retinal organoids across indepen-

dent laboratories has created challenges in comparing distinct studies

and assuring faithful recapitulation of native developmental pro-

cesses. Initially, limited sets of markers of retinal cell types for immu-

nohistochemistry or gene profiling were used to characterize

organoid differentiation and correlate it to human eye develop-

ment.18,20,32,33 However, different methods often led to variable

timing or robustness of marker expression. In order to facilitate cross-

comparison across studies, a light microscopy-based staging system

was developed.34 In this classification (Figure 2), stage 1 corresponds

to phase-bright early retinal neuroepithelium developing into an

opaque intermediate stage 2 and followed by stage 3 characterized

by emergence of brush-like surface protrusions that correspond to

developing photoreceptor outer segments.34 In another study, trans-

criptomes of developing retinal organoids were compared to develop-

mental epochs in human fetal retina.35 Expression levels of retinal

genes, however, varied considerably among retinal organoids from

different iPSCs lines.23,36 Transcriptional profiling alone21,23,32,36 or in

combination with open chromatin analysis37 revealed similarities to

human eye development with stage 1 showing early neurogenesis

and retinal progenitor gene signatures, followed by interneuron and

synaptogenesis-related gene expression in stage 2 and, finally, photo-

receptor differentiation and maturation prominent in stage 3. These

studies highlighted broad similarities of organoids to developing

native retina tissue, despite protocol differences, based on light

microscopy and/or transcriptome-based staging.

3 | RETINAL ORGANOIDS AS DISEASE
MODELS

Technologies to convert somatic cells harvested in a patient biopsy

into iPSCs have opened new avenues for interrogating disease mecha-

nisms associated with retinopathies. Early studies using iPSC lines

from retinitis pigmentosa patients differentiated in adherent condi-

tions identified endoplasmic reticulum stress as a common disease sig-

nature.38,39 Subsequently progress in 3-D cultures allowed examining

disease mechanisms in organoids with more native spatial cell

arrangement. Defects in early retinogenesis were modeled in cells car-

rying R200Q mutation in the transcription factor visual system

homeobox 2 (VSX2).40 Consistent with the clinical phenotype of

microphthalmia, optic vesicles revealed slower growth and loss of reti-

nal bipolar cells that express VSX2 at later stages. During retinal

development, a distinct profile of alternative splicing is established,

and retinal organoids have been used for disease modeling of patients

with mutations in splicing factor PRPF31 (RP11).41 Many disease-

causing mutations in IRDs are specifically located in genes related to

sensory cilia and can be modeled in organoids.42 Two of the published

studies examined effects of mutations in a centrosome-cilia protein

CEP290.43,44 Cilia formation was shown to be impaired in fibroblasts

Significance statement

Most retinal diseases resulting in vision impairment still lack

effective treatments. Advances in stem cell technologies

now offer methods of differentiating retinal organoids that

represent key features of native human retina. Better under-

standing of human models derived from patient stem cells

and use of emerging experimental tools will facilitate eluci-

dation of disease mechanisms and design treatments for ret-

inal neurodegeneration.
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derived from CEP290 patients with a more severe syndromic disease

Joubert syndrome, but not in those diagnosed with Leber congenital

amaurosis (LCA), a blinding retinal disease. However, retinal organoids

from CEP290-LCA patients exhibited abnormal ciliogenesis demon-

strating tissue-specific impact of pathogenic mutations and correlating

broader defects with increased disease severity.43 Retinal organoids

from patients with an intronic CEP290 mutation common in LCA

patients revealed a more frequent cryptic exon inclusion compared to

fibroblasts, iPSCs or RPE cells from the same patient.44 Reduced

CEP290 protein levels in CEP290-LCA organoids led to impaired cilia

development. RPGR is another cilia protein commonly mutated in reti-

nitis pigmentosa (RP).45,46 Retinal organoids from patients harboring

RPGR mutations displayed impairment of cilia biogenesis and abnor-

mal photoreceptor morphology as well as decreased expression of

F IGURE 1 Retinal organoid differentiation methods. A, Two main approaches for generation of retinal organoids: 3D suspension culture
throughout, starting from embryoid bodies, which subsequently differentiate into retinal tissues or a mix of 2D/3D culture with isolation of optic
regions from adherent cultures. B, Comparison of main steps between the two approaches and key reagents used at each step
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many phototransduction-related genes.47 However, the molecular

basis of how a defective ciliary protein leads to photoreceptor cell

death still remains elusive. In addition to genes encoding ciliary pro-

teins, mutations in two genes related to structural integrity of the ret-

ina have been studied in organoid cultures. Organoids derived from

iPSCs of a X-linked retinoschisis patient with RS1 mutation recapitu-

lated the retinal phenotype.48 In organoids derived from patient with

mutations in the CRB1 gene, the outer limiting membrane was

disrupted with ectopic photoreceptor cell bodies detected beyond the

apical limit of the neural retina.49 The aforementioned studies have

focused on examining monogenic diseases. With respect to multifacto-

rial traits, such as AMD, glaucoma, or diabetic retinopathy, combining

several tissues by incorporation of a vascular network50 or combining

organoids with RPE into a retina-on-a-chip format51 might be necessary

to recreate more physiological interactions. We note that iPSC-derived

RPE from AMD patients with common ARMS2/HTRA1 susceptibility

variants has demonstrated upregulation of several disease biomarkers,

including complement and pro-inflammatory factors.52 These studies

clearly demonstrate the utility of patient stem cell-derived retinal

organoids in a dish for modeling endophenotypes of human disease in

complement with in vivo animal systems.

4 | EVALUATION OF THERAPEUTIC
STRATEGIES IN HUMAN RETINAL
ORGANOIDS

Most studies to date have used gene editing in iPSCs to rescue dis-

ease phenotypes.41,47,48 However, such a strategy is not yet applica-

ble for patient treatment. Most translational research so far has

focused on gene therapy using AAV vectors and replacement of RPE

or photoreceptors6,7,10; nonetheless, retinal organoid protocols are

now being adapted to search for small molecule therapeutic com-

pounds using high-throughput screening strategies.53,54

4.1 | Gene-based therapies

AAV vector platform has become a gene delivery method of choice

for retinal diseases6 (Figure 3). Transduction of mouse and human ret-

inal organoids as well as RPE tissues has been examined by a panel of

commonly used AAV capsid serotypes.55 Interestingly, ShH10 capsid

serotype, which was developed through directed evolution approach

of screening AAV mutant libraries,56 was highly efficient in

F IGURE 2 Staging of retinal organoids. Based on histological features and molecular marker expression from organoid transcriptome studies,
three major sequential stages of differentiation can be related to molecularly defined epochs in human fetal retina development. Bright-field
images on the left show retinal tissue in organoids at each stage (scale bar 400 μm). Table summarizes key morphological features, molecular
markers, and corresponding human fetal development epoch at each organoid differentiation stage
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transducing all stem cell-derived tissues examined.55 In mouse retinal

organoids, AAV2 vector rescued the CEP290-associated disease phe-

notype.57 For human photoreceptor transduction AAV2 capsid sero-

type also appears to be highly potent, whereas AAV5 is most

effective for RPE cells of both mouse and human origin. Additionally,

AAV5 transduced both human photoreceptors as well as Müller glia,

albeit at a lower frequency, in a separate study.49 Interestingly, human

cone cells seem to be more effectively transduced by AAV8 vector,55

suggesting that even cell subtype differences in tropism might exist.

Other treatment paradigms are also being explored in organoid

models; these include antisense oligonucleotides (ASOs), which are

short, chemically modified RNA molecules that can interfere with

splicing or translation. ASO treatment is shown to rescue ciliation

defects in retinal organoids and RPE cells derived from a patient with

a common intronic mutation in the CEP290 gene.44,58

4.2 | Cell therapies

Stem cells and organoids have been widely used as a source for

evaluating cell replacement therapy approaches.11,20,59-61 The

degenerative process in retinopathies primarily affects two retinal

cell types: the light-sensitive photoreceptors and RPE.7,10 As a sim-

ple monolayer easily distinguishable by pigmentation and cuboidal

morphology, RPE has been one of the first cell types to be effi-

ciently differentiated from PSC sources and the first hESC-derived

cell type to be transplanted into humans.62 Implanting intact RPE

sheets alone or grown on a bioscaffold is likely to result in improved

outcomes.59,63,64

With respect to photoreceptor cells, pioneering studies on neural

retina transplantation used primary cells derived from either donor

mice8 or human fetal tissue.65 Similar to RPE, both suspension as well

as whole tissue approaches have been studied; however, unlike RPE,

much of the studies so far have focused on animal models. Transplanta-

tion of donor-derived photoreceptor precursor suspensions rescued

some level of visual function in a model of IRD with intact but dysfunc-

tional photoreceptors (Gnat1−/− mice)8,66; however, unfortunately

rather than true functional replacement, this process involved fusion

events and cytoplasmic transfer of reporter and other proteins to the

diseased photoreceptors from the graft.67-69 Notably, transplantation

of stem cell-derived photoreceptors have been performed in both con-

trol and models of advanced retinal degeneration where majority of

host photoreceptors are lost20,70 and assessment of transplanted cells

is not confounded by cell fusion. In such instances, survival of a cell

mass in subretinal space, expression of phototransduction-related pro-

teins, small structures resembling early outer segments (parts of photo-

receptors where light is detected and phototransduction initiated) and

presence of synapse-related proteins in the graft have been reported

F IGURE 3 Utility of retinal organoids in gene therapy studies. Whereas most retinal gene therapy studies to date use animal models of
inherited retinal and macular diseases, breakthroughs in reprogramming and differentiation of patient cells into retinal organoids now allow
testing potential therapeutic approaches in human retinal tissue in vitro. Applications of organoids in retinal gene therapy studies include testing
most effective vector serotypes (left panel), determining transduction of target cells in human tissue (middle panel) and establishing promoter
specificity and levels of expression for driving therapeutic genes (right panel)
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and indicate that the transplanted cells can mature in vivo.20,71,72

Recently, rods directly derived from fibroblasts using a combination of

five small molecules are shown to exhibit similar characteristics when

transplanted into rd1 model of end-stage retinal degeneration and par-

tially restored some aspects of visual function.9 These observations

suggest that, provided they are capable of connecting to the remaining

host visual circuit, these transplanted cells might confer some light sen-

sitivity to severely degenerated retina. Whether such a cell replacement

strategy would indeed be applicable for treatment remains to be

established. Given that donor-host species mismatch in human cell

transplantation into animal models might affect cell-to-cell interactions,

an interesting, as yet unexplored, avenue would be to use the organoids

as in vitro recipient tissue for dissociated human photoreceptors.

Another approach to treat vision loss in advanced retinal degenera-

tion is transplantation of laminated retinal sheets.60,61,65 Here, 3D reti-

nal tissue is dissected out from organoids and transplanted whole into

the subretinal space to overlay the degenerated retina. The major set-

backs associated with this method include difficulty in maintaining cor-

rect morphology and polarity while surgically placing the graft into the

recipient eye and presence of interneurons in the graft, which may hin-

der connectivity with remaining host inner retina. In contrast to dissoci-

ated cells, retinal sheets transplanted into rat60 or nonhuman primate

recipients61 showed clear elaboration of outer segment structures

suggesting advanced photoreceptor maturation following grafting. The

presence of synaptic connectivity was also detected between the graft

and host. However, obtaining a clear evidence for graft-driven retinal

function remains challenging. Experiments performed on explanted ret-

inas from recipient animals using microelectroretinography and micro-

electrode arrays have shown signals suggestive of light-evoked

responses,73 but unequivocal evidence for functionality of the graft

itself is difficult to obtain in the presence of activity of the host retina.

Stronger and more direct evidence are required for both cell suspension

as well as retinal sheet transplantation to demonstrate efficacy of pho-

toreceptor replacement therapy.

4.3 | Small molecule screening

Retinal neurons and organoids derived from human cells are valuable

model systems to discover candidate target drugs for various diseases.

Such an approach has been successfully applied to identify inhibitors

of Zika virus brain infection74 and assess efficacy of chemotherapy

agents for glioblastoma-like neoplasms.75 A 3-D retinoblastoma

organoid model has been used to assess cellular responses to

currently used chemotherapy drugs.76 Challenges of variability and

scalability of retinal organoid cultures have so far limited their use in

high-throughput compound screens. Organoids grown in a multiwell

format were used to determine impact of seeding density, nutrients

added to culture media and targets of ophthalmic toxicity of the anti-

biotic moxifloxacin.54 Recent changes in methodology23,27 and use of

fluorescent reporter-based screening platforms53,77 should expedite

the use of in vitro-generated organoids for high content screening of

small molecules for treatment of retinal diseases.

5 | CURRENT LIMITATIONS OF RETINAL
ORGANOID TECHNOLOGY

At present, successful use of retinal organoids in modeling and treat-

ment of retinal diseases is limited by several issues. A hallmark of retinal

disease is impairment of visual function, and retinal organoids from

even healthy control cell lines typically show poor, if any, response to

light.19,54 This is likely related to limited development of outer segment

discs, where visual pigments and associated phototransduction proteins

are concentrated, because of the absence of direct interaction with

RPE. In addition, projection neurons in the retina (the retinal ganglion

cells) degenerate in organoids probably due to the lack of connection

to brain targets,19,23,78 further precluding assessment of functional reti-

nal circuits formation. Other challenges for using the organoid system

include a great heterogeneity of cell types,21,28,79 their variability in

maturation states,23 and a lack of consistent laminated structure. The

diversity and developmental variability pose a challenge to comparative

analysis and assessment of therapeutic effects, yet the recent staging

methods may alleviate some of these problems.23,34,54

6 | EMERGING TECHNOLOGIES FOR THE
ANALYSIS OF RETINAL ORGANOIDS

Much of the characterization of retinal organoids, at least thus far, has

been largely focused on histological and bulk transcriptome examina-

tion23,34,78 and suggested differentiation of major retinal cell types in

organoids similar to the human fetal retina.35 However, faithfulness of

subtype diversification, molecular marker expression within subtypes

and relative proportions of various types are still largely missing. Several

recent studies took advantage of the advances in single-cell transcrip-

tional profiling to fill this gap.21,79-82 First studies with a relatively small

number of cells demonstrated robust specification into photoreceptors

and Müller glia.21,79 Analysis of cone photoreceptor profiles highlighted

their similarity to native human cones.21,24,82 Consistent with in vivo

mouse retina data,83,84 neurogenic retinal progenitors have been identi-

fied in the organoids characterized by ASCL1 expression. More compre-

hensive single-cell resolution analyses of developing human retinal

organoids performed in comparison with human fetal retina samples at

equivalent developmental stages have identified transitional cell

populations, similar to the neurogenic retinal progenitors in vivo.80 The

single-cell transcriptomic studies lay foundation for future use of this

new technology in describing pathological changes in stem cell-derived

disease models and more precisely determining the developmental

stage of cells for transplantation in cell therapies.

Although transcriptome profiling provides powerful insights into

gene expression patterns in retinal organoids, little is known as to how

epigenetic regulation of chromatin features contributes to establish-

ment of these transcriptional profiles. In brain organoids derived from

human and nonhuman primate stem cells, combining single-cell profil-

ing with open chromatin analysis using an assay for transposase-

accessible chromatin using sequencing (ATAC-seq) has identified fea-

tures of gene expression characteristic of human development, such as
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expression of cadherin 7 (CDH7) solely in human neurons.86 One could

envisage using similar comparative analysis to decipher regulatory net-

works for fovea/macula development,35 a primate-specific retina struc-

ture required for high acuity vision and affected in many retinal

diseases.

Important but so far unexplored features of retinal organoids are

their proteomic and metabolomic profiles compared to the native ret-

ina. Considering limited development of outer segment structures in

retinal organoids, it is pertinent to comprehensively assess their levels

of phototransduction-related proteins. Research on kidney organoids

has uncovered the extracellular matrix (ECM) formed by stem cell-

derived glomeruli and compared it with native tissue finding an imma-

ture ECM profile more consistent with fetal glomeruli.87 This study

demonstrates the potential to characterize the protein composition of

cellular compartments in organoids and suggests that an analogous

approach could conceivably be used for retinal organoid proteome

characterization. Given the small size, isolated nature, and distinct

protein composition of the photoreceptor cilium compartment,88

determining the impact of mutations in ciliary proteins on cilia proteo-

mic profile might shed light on their impact on the rest of the photore-

ceptor cell, eventually leading to its death. Efficient organoid

protocols might allow performing such analysis with IRD patient-

derived samples.42

The retinal photoreceptors are highly metabolically active89,90

and, because of the nature of light detection machinery, highly

enriched in metabolites related to the retinoid visual cycle. RPE,

which plays critical roles in the metabolic processes of the visual

cycle, is not correctly associated with photoreceptors in current reti-

nal organoid protocols.15,16,18,19,23 Furthermore, vasculature does

not form in organoids, potentially limiting oxygenation and impacting

on oxidative phosphorylation. A study using human cortical

organoids revealed higher cell stress markers in vitro and impaired

molecular subtype specification.91 Cell stress signatures could be

alleviated by transplantation into mouse cortex, presumably by

improved oxygenation and/or exposure to vasculature-derived fac-

tors. Taking into consideration in vitro culture limitations, it would

F IGURE 4 Utility of retinal organoids in developing therapies for retinal diseases. Stem cell-derived retinal organoids are valuable models of
retinal development and disease conditions for studies aiming to identify promising potential gene and cell therapies. Applying emerging
technologies such as single-cell analysis and multi-omics may further inform about how faithfully organoids recapitulate native tissue and provide
insights into molecular mechanisms of disease and therapy development
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be interesting to determine how well the metabolic profile of retinal

organoids recapitulates the native tissue (for summary of novel anal-

ysis approaches, see Figure 4).

7 | CONCLUSION

Exciting fundamental advances in the differentiation of a plethora of

cell lineages and tissues, including the retina, have unlocked new fron-

tiers for deciphering underlying mechanisms of retinopathies and

identifying potential therapies. Somatic cells of affected patients can

now provide, via in vitro differentiation of iPSCs, retinal organoids,

which recapitulate many aspects of gene expression and cell type

organization of the native human retina. Broader incorporation of

high-throughput and next-generation “omics” tools is expected to

expand the utility of retinal organoids as disease models, facilitate elu-

cidation of underlying cellular pathways, and assist in discovery of

effective treatments.
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